LEE- Kimya Mühendisliği-Doktora
Bu koleksiyon için kalıcı URI
Gözat
Çıkarma tarihi ile LEE- Kimya Mühendisliği-Doktora'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeExploring functional dynamics of bacterial and human ribosome structures via coarse grained techniques(Fen Bilimleri Enstitüsü, 2020) Güzel, Pelin ; Kürkçüoğlu Levitas, Ayşe Özge ; 638208 ; Kimya Mühendisliği Ana Bilim DalıThe ribosome is a molecular machine that catalyzes protein synthesis in three kingdoms of life. This process is regulated by the binding of several protein factors to the main ribosomal complex core during different steps of translation, which are initiation, elongation, termination and recycling. This thesis employs coarse-grained (CG) computational techniques that focuses on differences/similarities in especially dynamical behavior between bacterial and human ribosomal complexes at different stages of translation. Investigating the allosteric communication pathways between distant functional sites of the molecular machine is the other focus. In a CG model, sets of atoms are represented by pseudo-atoms to decrease the degrees of freedom and simulation cpu time. In this thesis, residue interaction network, CG molecular dynamics (MD) simulations and anisotropic network model (ANM), which all use reduced representations of the structures based on one-bead coarse-graining, are employed. The findings of at least 500 ns CGMD simulations and ANM using normal mode analysis are interpreted to get an insight into the overall dynamical behavior of ribosomal complexes. Both methods give consistent results with experimental data on the ribosomal complexes. In order to map allosteric communications in the complexes, perturbation response scanning (PRS) and k-shortest pathways calculations are performed using the CGMD trajectories and the residue network model, respectively. PRS provides information on the influence or effectiveness of a given residue in signal transmission. k-shortest pathways calculations requires a source and a sink node and calculates suboptimal pathways. k-shortest path technique is applied to residue interaction networks. CGMD calculations are performed by the RedMD software. ANM using normal mode analysis, residue interaction network model and k-shortest pathways calculations are performed by in-house codes. CGMD calculations are performed on T. thermophilus, E. coli and H. sapiens ribosomal structures. Comparison of experimental and theoretical B-factors (both calculated from CGMD and ANM) shows that the findings are in accord with experimental data. Correlation coefficients are especially in an acceptable range (0.60-0.70) for rRNA portions between experimental-CGMD findings. Most fluctuating parts are found at the solvent-exposed sites on both 30S (small subunit) and 50S (large subunit). For the bacterial ribosome case; head, beak and spur of 30S are found as highly flexible parts. Additionally, some of the sites around the neck where tRNAs and mRNA bind to the ribosome are also flexible. Results point to two flexible fragments in the 50S. One is the L1 stalk which is composed of the uL1 protein and helices H76-H78 of the 23S rRNA. The release of the E-tRNA requires the correct positioning of L1 stalk. Additionally, L7/L12 stalk is another high fluctuating part of the 50S. It is known to make an anticorrelated movement with the L1 stalk. These lateral stalks are found to play a highly crucial role in the proper functioning of the ribosome. The analysis of E. coli crystal structure fluctuations has also shown that the protein components in the ribosomal complex are also in accord with experimental studies. Dynamical cross-correlation maps (DCCMs) based on CGMD trajectories are generated. The findings indicate that there is more coupling within a subunit than between. Coupling within protein chains is also higher than coupling within rRNA chains indicating the more compact globular structures of proteins than rRNAs. Global dynamics of ribosomal complexes are analyzed by employing ANM using normal mode analysis. The calculations are based on four T. thermophilus and one H. sapiens crystal structure. The characteristic conformational changes; ratchet-like rotation (both in T. thermophilus and H. sapiens), 30S/40S head rotation (both), anti-correlated movement of L1 and L7/L12 stalks (T. thermophilus), 40S head and beak regions towards E-tRNA (H. sapiens and T. thermophilus with PDB ID:4v9h), 40S body rotation around vertical axis perpendicular to classical rotation axis called as "subunit rolling" (H. sapiens) are observed. In the second part of this thesis, allosteric regulation mechanisms in the ribosomal complexes are investigated and compared for bacteria and human. For this purpose, k-shortest pathways algorithms and PRS calculations are employed. k-shortest pathway algorithms (Yen's and Dijkstra) are applied to the networks generated from residue interaction. Potential allosteric communication pathways between DC-PTC and the ribosomal tunnel-PTC (peptidyl transferase center) are explored by these CG techniques. Additionally, residues found on the shortest pathways are analyzed in terms of rigidity/flexibility (according to deformation energy analysis) and being "hub" residue or not (according to "contact number" analysis). The calculated suboptimal pathways between the tunnel and the PTC in T. thermophilus ribosomal structures agree with the previously proposed allosteric pathways. Motivated by the success of these models in the tunnel-PTC case, they are employed for investigating potential allosteric communication pathways between highly distant functional sites, the DC and the PTC of the ribosome, which are known to communicate during the translation process. The analysis suggests that especially B3 and B2a inter-subunit bridges are critical for the long-range signal transmission between the DC and the PTC. Then the potential allosteric communication pathways are also investigated on the human ribosomal complex for the first time to our knowledge. The human ribosomal complex seems to employ similar suboptimal pathways between the tunnel and the PTC as well as the DC and the PTC. In this line, B3 and B2a are highlighted as critical hubs in the long-range signal transmission in the ribosomal structures and can be evaluated as drug binding sites. Then, the ribosomal tunnel where the growing polypeptide chain passes through before emerging at the solvent is studied in more detail. In the bacterial ribosome, the ribosomal exit tunnel walls are formed by the 23S rRNA, uL4, uL22 and a bacteria-specific extension of uL23. In eukaryotes, the bacteria-specific extension of uL23 overlaps with eL39. uL4 and uL22 form a constriction within the tunnel which is located approximately 30 Å from the PTC. An additional loop in uL4 makes this constriction narrower in eukaryotes than prokaryotes. In this line, the ribosomal tunnels of both T. thermophilus and H. sapiens are extracted and analyzed in detail. The additional loop in uL4 in eukaryotes changes the dynamical behavior of this region, which may be related to the macrolide binding discrimination in both structures. To get a deeper understanding, the PRS is applied to the conserved critical residues in uL4 which are located at the constriction region of the tunnel. In the same chapter of the thesis, the allosteric communication in the ribosomal exit tunnel is also discussed focusing on both nascent chain interactions and the trigger factor (TF) recruitment mechanism induced by the ribosomal tunnel on E. coli ribosomal structure. PRS analysis is carried out to identify effectors/sensors around the tunnel. The findings are consistent with experimental observations indicating the allosteric communications between PTC-ribosomal tunnel and chaperone binding site in uL23-lower part of ribosomal tunnel. Especially, uL23 can be considered as a novel drug designing targeting its non-conserved pocket.
-
ÖgeAdsorptive removal of heavy metal ions from aqueous solution using metal organic framework(Lisansüstü Eğitim Enstitüsü, 2021) Elaiwi, Fadhil Abid ; Sirkecioğlu, Ahmet ; 711381 ; Kimya MühendisliğiIndustrialization and rapid increase in human population are the cause of increase in wastewater generation. Depending on the source, these wastes may contain hazardous pollutants such as heavy metals, toxic organic compounds, dissolved inorganic solids and etc. Heavy metals are the serious threat to environmental and human health. Due to their toxicity and carcinogenic effects, close attention must be paid to heavy metals containing wastewaters. Even very small amounts of heavy metals can result in severe physiological and neurological damages. Therefore, numerous processes have been developed to treat wastewater minimize this health hazard potential. These processes include membrane filtration, ion exchange, adsorption, chemical precipitation, nanotechnology treatments, electrochemical and advanced oxidation processes. Ion exchange and adsorption are both physicochemical methods used to treat heavy metal containing wastewaters. In both cases high surface are plays an important role. As a new generation of crystalline porous materials, metal-organic frameworks (MOFs) possess high surface area, tunable pore structure and functionalizable surfaces. With these attributes, MOFs have an essential role in several fields, including wastewater treatment. Based on the affinity of amino groups in chelating sites for heavy metal ions, a porous metal-organic framework (MOF) [ED-MIL-101(Cr)] were synthesized as an adsorbent for lead, copper, and cadmium ions. Hydrothermal method was used to synthesize the MOF samples. The functionalized MOF samples were characterized by powder X-ray diffraction (PXRD) to investigate the functionalization process and compare the synthesized MOF with the pristine MIL-101(Cr) samples. Fourier Transform Infrared (FT-IR) spectroscopy was used to analize the functional groups of the adsorbent before and after the treatment process which can be useful in estimating the mechanism for the recovry process and assess the relationship between the ions and the adsorbents sites. Scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), were also performed to investigate crystal structure and the thermal stability of the MOFs in a specified temperature range, respectively. Finally, the surface characteristics of the samples and the particles size distribution were investigated with N2 adsorption-desorption conducted at 77 K. In order to investigate the adsorption performances of ED-MIL-101(Cr) for the chosen heavy metal cations (Pb(II), Cu(II), and Cd(II) ion), batch experiments were conducted with single, binary, and ternary metal solutions. During these experiments the effect of experimental conditions such as pH, adsorbent dosage, initial concentration, were investigated. With the aim of evaluation of conditions for removing of the three metal ions using ED-MIL-101(Cr), several isotherm models were tested to choose the best fit model with the experimental data. Normal and extended forms of Freundlich, Langmuir, and Sips isotherms were adopted to analyze the adsorption behavior of the MOF samples. ED-MIL-101(Cr) exhibits maximum adsorption capacities (mg/g) of 82.55, 69.9 and 63.15 mg/g for Pb(II), Cu(II) and Cd(II), respectively. The experimental data revealed that the adsorption capacity of the adsorbent for the different metal ions at the same concentration mainly depends on the affinity of the adsorbent which was in the order of Pb(II) ˃Cu(II) ˃ Cd(II) in single ion solution. This selectivity order is governed mainly by ionic features such as ionic radius, electronegativity, and hydrated ionic radius. The influence of ionic interaction between the competitive ions in a multi-ion solution namely interaction factor is quantitatively studied and tabulated its values for multi-ion systems. For further studies, kinetics models applied to investigate the Pb(II), Cu(II), and Cd(II) ions adsorption mechanism on ED-MIL-101(Cr). Also, rate-control steps were determined using kinetic method. Linear forms of pseudo-first order, pseudo-second order, and intra-particle diffusion equations were used to interpret the kinetic data. It was observed that the kinetic data that obtained with batch adsorption processes were well fitted with pseudo-second-order model. Also the regeneration process for exhausting ED–MIL–101(Cr) was carried out to assess the recyclability of ED-MIL-101(Cr) for adsorption of lead, copper, and cadmium ions. It was observed that there was an insignificant change in the adsorption efficiency of ED-MIL-101(Cr) samples after three adsorption-regeneration cycles. In order to simulate the real-life experience adsorption experiments conducted also in dynamic system. For this part of the experimental work, a fixed bed of ED-MIL-101(Cr) was prepared for the continuous removal of Pb(II), Cu(II), and Cd(II) ions from the aqueous solutions. A series of experiments were carried out in the fixed bed system to obtain the breakthrough curves data for the adsorption of single and ternary metal ions. The effects of different operating conditions such as static bed height (2, 4, and 6 cm), flow rate (10, 15, and 20 mL/min), and initial concentration of heavy metal ions (50, 75, and 10 mg/L) on the removal efficiency were investigated. The experimental breakthrough data of three metal ions were fitted well with the theoretical model. The breakthrough curves for single and multiple systems showed that Pb(II) has the longest breakthrough time compared with other metals indicating a high affinity toward this ion while Cd(II) had the shortest breakthrough time. Thomas Model and Yoon-Nelson models were used to evaluate the breakthrough curves and evaluate the dynamic data. The results from these two models suggest that the maximum adsorption capacity of the investigated heavy metal ions from single aqueous solutions are in the order of Pb(II) > Cu(II) > Cd(II). These results are in agreement with the experimental data which are also related to the affinity of the adsorbent for the adsorbed ions. Comparably, Yoon-Nelson model is the best model for the data obtained for the metal adsorption experiments conducted with various bed lengths. It can be concluded that amino-functionalized MIL-101(Cr) was found to be a promising candidate for metal ion removal from the aqueous environment.
-
ÖgeInvestigation of plasticization behavior of membrane polymers by a fully atomistic approach(Graduate School, 2021-02-01) Balçık, Marcel ; Ahunbay, Mehmet Göktuğ ; 506152004 ; Chemical Engineering ; Kimya MühendisliğiThe increasing influence of polymeric gas separation membranes in the gas separation industry expedites the pursuit of the polymeric materials to be employed as the membranes. While high permeability and selectivity are anticipated from a commercial membrane material candidate, the plasticization phenomenon should not be disregarded. Several gases, such as CO2, H2S, and condensable hydrocarbons, are known to stimulate increased mobility of polymer segments, subsequently to the gas-induced swelling of the membrane, eventually leading to plasticization. Since the plasticization phenomenon is highly related to the increased free volume of the membrane, sieving capabilities of the membrane are lost with the plasticization, leading to a loss in selectivities. The plasticization phenomenon is dependent on the concentration of the swelling gases and is usually identified with the corresponding pressure of the gas. The plasticization pressures of the membranes are the determining factor in the operating ranges of the membranes. Polyimides (PIs) and Polymers with Intrinsic Microporisities(PIMS) are the polymer classes with the highest potentials to be used as gas separation membrane materials. Polymers belonging to both of the classes have already proven to have excelling gas separation performances. However, their gas separation performances and the effect of gas-induced plasticization remain vastly unstudied. Fundamental understanding of the gas separation performance, plasticization and methods of suppressing plasticization in PIs and PIMs is expected to accelerate the efforts in search of high-performance gas separation materials. In this thesis, molecular simulation tools were employed to understand underlying causes leading to macroscopic behaviors, such as gas permeabilities, swelling, and plasticization, in polymeric membranes. Copolyimides (co-PIs) were studied for their plasticization resistance and method development was performed for modeling gas separation performance and plasticization resistance accurately. Later on, the effect of crosslinking on co-PIs in terms of gas permeabilities and plasticization resistance was investigated in detail, particularly with the help of PAFVCO2+ property, a free volume analysis based on CO2 accessibility, which will be explained in detail in relevant chapters. Mixed Matrix Membranes(MMMs) were studied for their plasticization resistance and segmental dynamics of the polymer phase at the interface. The information obtained from the plasticization studies on PIs were then transferred to PIMs, where PIM-1 was studied for pure and mixed gas separation performance and plasticization resistance. The approach was further extended to triptycene-based PIMs, among which three were novel. One of the most important outcomes of this thesis is the development of atomistic simulation protocols for the accurate estimations of plasticization pressures of PIs and PIMs. While permeabilities could be monitored for plasticization, as in experimental studies, molecular modeling also allows monitoring of free volume elements and correlate to the plasticization pressure. The latter was further extended to analyze the rigidification phenomenon in MMMs and the rigidification effect induced by CO2 was identifed for the first time. Plasticization and mixed gas studies on PIMs have proven that conventional approaches to analyze plasticization in polymers are not adequate, as loss of selectivities in mixed gas conditions were shown to be not only associated with the traditional definition of plasticization. In mixed gas conditions, before upturn of CO2 permeabilities, increased CH4 permeabilities compared to pure gas conditions were observed. Additional effects on the gas permeabilities, such as competitive sorption and increased CH4 diffusivities by CO2-induced swelling, are existent in mixed gas conditions, leading to a more complex concept of plasticization.
-
ÖgeKontrollü aktif molekül salımı yapan pektin temelli hidrojellerin geliştirilmesi(Lisansüstü Eğitim Enstitüsü, 2021-06-24) Kocaağa, Ayşe Banu ; Levitas Kürkçüoğlu, Ayşe Özge ; Güner, Fatma Seniha ; 506912019 ; Kimya MühendisliğiYara tedavisi, bir dizi hücresel ve biyokimyasal olayların, dokuyu tamir etme ve yenileme amacıyla, iç içe geçmiş ve düzenli bir sırada gerçekleştiği bir prosestir. Günümüzde, diyabet hastalığı gibi çeşitli hastalıkların neden olduğu kronik yaralar, hızla yaşlanan nüfus, trafik kazaları ve cerrahi prosedürlerin artışı ile daha etkili yara örtülerine olan gereksinim artmaktadır. Gelişmiş bir yara örtüsü, mükemmel biyouyumluluk ile beraber bakterilere karşı bir koruma sağlamalı, fazla eksudayı absorbe edebilmeli, uygun su buharı ve oksijen geçirgenliği oranı ile de iyileşmeyi hızlandırmalıdır. Ayrıca, hasta ve hasta yakınları için konforlu bir kullanıma sahip olması, mekanik dayanıklılık, uzun raf ömrü, uygun maliyet ve biyobozunurluk da bir yara örtüsü malzemesinde aranan önemli özelliklerdendir. Ancak, çoğu mevcut yara örtüleri bu özelliklerden çok azını bir arada içermektedir. Bu nedenle, tüm aranan özellikleri bir arada barındıran, düşük maliyetli, gelişmiş yara örtülerine ihtiyaç bulunmaktadır. Bu motivasyonla, bu tez çalışmasında in silico ve in vitro yöntemlerin beraber kullanıldığı bir yaklaşımla, yara örtüsü olarak kullanılmak üzere antimikrobiyal, kontrollü ilaç/protein salım sistemleri geliştirilmiştir. Yara örtüsünün ana matrisi olarak pektin seçilmiştir. Hidrofilik pektin fazla yara sıvısını absorplayabilir. Gözenekli hidrojel yapısı ile pektin kontrollü ilaç salımı yapabilir. Pektin zincirlerinin üzerindeki fonksiyonel gruplar aracılığıyla oluşan asidik ortam ise bakterilere ve virüslere karşı bir bariyer görevi görebilir. Tez kapsamında yapılan çalışmalar bölümler halinde sunulmuştur. Öncelikle yara örtüleri için literatürde rapor edilen çalışmalar ve pektinin yara örtüsü olarak kullanımı tartışılmıştır. Bunu, moleküler modelleme ve moleküler dinamik (MD) simülasyonları hakkında kapsamlı bir bölüm takip etmektedir. Tez kapsamında yapılan çalışmalar ise beş ayrı bölümde tartışılmıştır. İlk bölümde, tüm-atom MD simülasyonları kullanılmıştır. Temel olarak galakturonik asit monomerleri içeren pektin zincirleri kimyasal özellikleri farklı karboksil, ester ve amitli grupları barındırmaktadır. Çalışmada, yüksek metoksili ve düşük metoksili olarak 21 monomerli pektin oligomerleri modellenmiştir. Ca2+ iyonlarıyla çapraz bağlanmış zincirlerin düşük enerji seviyelerinde konfigürasyonları taranmış, düşük metoksili pektin zincirlerinin çapraz bağlı yapılarını daha fazla korudukları tespit edilmiştir. Tezin devamında kontrollü ilaç salım sistemlerinde düşük metoksili pektinin kullanılmasına karar verilmiştir. Çalışmaların ikinci bölümünde, düşük metoksili pektinden sentezlenen hidrojeller, farklı Ca2+ iyonu ve ilaç yükleme konsantrasyonlarında, ve farklı sayıda hidrojel katmanlarda çalışılmıştır. Sentezlenen hidrojeller karakterize edilmiş ve istenilen ilaç salım hızının katman sayısı ve film kalınlığı ile kontrol edilebileceği sonucuna ulaşılmıştır. Tezin simülasyon odaklı üçüncü çalışmasında ise, pektin hidrojellerinin yüklenen ilacı kontrollü salabileceği ilaç konsantrasyonu aralığının belirlenmesi için hesaplamalı çalışmalar gerçekleştirilmiştir. Bu amaçla, Ca2+ ile çapraz bağlı 21 monomer uzunluğundaki α-D-galakturonik asit oligomerleri, artan prokain konsantrasyonlarında (6, 30, 60, 90 180 mg ilaç.g-1 film), her sistem için üçer bağımsız 200 ns uzunluğunda tüm-atom MD simülasyonları ile incelenmiştir. Sonuçlara göre 30 mg.g-1 prokain yüklemenin çapraz bağlamayı bozmayacağı, bu konsantrasyonun hidrojeli düşük seviyede degredasyona uğratacağı ve kontrollü salım yapabileceği ön görülmüştür. MD çalışmalarında kullanılan konsantrasyonlarda prokain yüklü pektin hidrojeller sentezlenmiş, karakterize edilmiş, analizler ile prokain salımı ve hidrojel degradasyonunun simülasyonlarla tahmin edilebileceği ortaya konmuştur. Bu hesaplamalı yaklaşım kontrollü salım için kullanılacak benzer esnek sistemlerin tasarımında da kullanılabilir. Tezdeki diğer bir çalışmada, pektin hidrojelin mekanik özelliklerini arttırmak için kafes yapılı alimünasilikat zeolit-A kullanılmıştır. Bu katkı ile kontrollü ilaç salımı yapabilen, modern yara örtüsü için gerekli özelllikleri taşıyan, uygun maliyetli özgün bir yara örtüsü geliştirilmiştir. Membrana difüzyon ve matrise difüzyon olmak üzere iki farklı hidrojel hazırlama metodu ile hazırlanan hidrojellerde farklı çapraz bağlayıcı, zeolit ve teofilin ilacı konsantrasyonlarında çalışılmıştır. Pektin-zeolit etkileşimlerini kontrol etmek amacıyla iki farklı iyonik formatta (Na+ ve Zn2+) zeolit-A kullanılmıştır. Membrana difüzyon yöntemi ile hazırlanan hidrojellerin teofilini kontrollü bir şekilde salabildiği, zeolit-A partiküllerinin teofilin deposu olarak davranırken hidrojel stabilitesini ve oksijen geçirgenlik hızını arttırdığı tayin edilmiştir. Pektin-zeolit hidrojellerin ilaç salımına etki eden en önemli parametrelerin şişme oranı ve iyon konsantrasyonu olduğu belirlenmiştir. Tezin son bölümünde ise hem yüksek kanamalı ve yanık yaralarında önemli bir problem olan, hem de kalp krizi, kanser ve COVID-19 nedeniyle gelişebilen serum albümin eksikliği yaşayan hastaların cerrahi operasyonlarında kullanmak amacıyla serum albümin yüklü pektin-zeolit hidrojeller geliştirilmiştir. pH 6,4 ortamında hazırlanan 100 mg.g-1 film albümin yüklü hidrojelin, yapısında immobilize olmuş albümini kontrollü bir şekilde protein yapısını bozmadan dış ortama salabildiği belirlenmiştir. WST-1 yöntemi ile dermal fibroblast hücrelerine karşı gerçekleştirilen hücre canlılığı analizlerinde, kontrol grubu ile karşılaştırıldıklarında hazırlanan hidrojellerin hücre sayısını düşürmediğini, in vitro yara iyileşmesi analizlerinde ise hücrelerin göçüne etki etmediği, fibroblast hücreleri üzerinde toksik bir etki göstermediği belirlenmiştir. E.coli ve S.aureus'a karşı yapılan antibakteriyel analiz testlerinde ise hidrojellerin antibakteriyel özellikleri gösterilmiştir. Bu tez kapsamında, atık ürün veya yan ürün olarak değerlendirilen pektini kullanarak geliştirilen antibakteriyel, aktif ajan yüklü yara örtüleri ile kişiye özel tasarım (istendiğinde kontrollü veya hızlı salım, ilaç/protein salımı, istenilen ebatta esnek yara örtüsü) yapılabileceği belirlenmiştir. Katma değeri yüksek olan bu ürünün ithal yara örtülerine olan bağımlılığı azaltacağı ve ülke ekonomisine katkıda bulunacak olması ise tezin bir diğer önemli çıktısıdır.
-
ÖgeAtık çinko-karbon ve alkalin pil karışımının hidrometalurjik geri kazanım prosesinin oluşturulması(Lisansüstü Eğitim Enstitüsü, 2021-11-15) Andak, Bayram ; Güner Genceli, Fatma Elif ; 506112005 ; Kimya MühendisliğiBu çalışmada amaç, taşınabilir enerji depolama sistemleri içerisinde en yaygın kullanım alanına sahip pil grubunu oluşturan çinko-karbon ve alkalin pillerin geri kazanılması için hidrometalurjik bir proses oluşturulmasıdır. Bu kapsamda, atık çinko-karbon ve alkalin pil karışımı bir dizi fiziksel ve kimyasal işlemlerden geçirilmiştir. Çalışmanın ilk aşamasında farklı marka ve boyuttaki pillerin fiziksel ve kimyasal karakterizasyonu yapılmıştır.
-
ÖgeBiopolyester / natural polymer blends for biomedical applications(Graduate School, 2022-05-22) Turan, Cansu Ülker ; Güvenilir, Yüksel ; 506152001 ; Chemical EngineeringIn this thesis, it is aimed to fabricate an antibiotic delivery system with optimal release kinetics that will overcome this problem. In recent years, fabrication of biocompatible electrospun nanofibers for drug delivery applications is the subject of increased interest, since they mimic the extracellular matrix, provide high surface area, and controlled drug release. In the present study, natural polymers (gelatin or both gelatin and chitosan) were blended with enzymatically synthesized biopolyester, poly(ω-pentadecalactone-co-ε-caprolactone) copolymer (PDL-CL), in order to obtain a synergetic effect. By the use of synthetic and natural polymers together, it was aimed to combine well-defined degradation and mechanical properties of a synthetic polymer with biocompatibility, cell adhesivity, and ability of site-specific delivery due to their functional groups of natural polymers. In this way, PDL-CL/gelatin and PDL-CL/gelatin/chitosan nanofibrous membranes were fabricated for controlled delivery of tetracycline hydrochloride (TCH) which is a commonly preferred antibiotic for treatment of skin infections resulted from a cut, burn or surgical operation. PDL-CL copolymer was synthesized by the catalysis of a home-made immobilized enzyme, Candida antarctica lipase B (CALB) immobilized onto rice husk ashes (RHA) via physical adsorption. Lipase-catalyzed copolymerization studies are limited and there is an increasing interest to improve material features by this way. Moreover, utilization of an enzymatically synthesized polymer rather than a polymer synthesized by organometallic catalysts in a formulation that will be used for a biomedical application may be advantageous, since the resulting product will be metal-free. Electrospinning of an enzymatically synthesized polymer is a challenging issue due to their low molecular weights, therefore studies that cover fabrication of electrospun nanofibrous drug delivery systems using an enzymatically synthesized polymer are limited in literature.
-
ÖgeYara örtücü ve benzeri uygulamalarda kullanılmak üzere biyopolimerik filmler geliştirilmesi(Lisansüstü Eğitim Enstitüsü, 2022-08-19) Yıldırımlı Akkaya, Nil Erge ; Giz, Hatice Hüceste ; 509142011 ; KimyaGünümüzde denizlerde ve karalarda kirlilik tehlikeli boyutlara ulaşmıştır. Bu kirliliğin önemli bir kısmı hayatımıza girmiş olan sentetik polimerik malzemelerden kaynaklanmaktadır. Doğada bozunmaları yüzyıllar mertebesinde olan bu sentetik polimerler deniz ve kara hayvanlarının ve hatta insanların da besin zincirine girmiş durumdadır. Bu hal, sentetik polimerlerin kullanıldığı her alan için doğada çözünebilen, bozunabilen alternatiflerinin bulunmasını gerektirmektedir. Çalışmamızda sağlık ve gıda alanındaki ihtiyaca bir ölçü de olsa katkı sağlayabilmek amacı ile biyobozunur olmanın ötesinde insan, hayvan, tüm canlıların rahatça tüketebileceği, doğrudan besin zincirinde yer alan polisakkarit yenilebilir filmlerin elde edilmesi ve özelliklerinin incelenmesi amaçlanmıştır. Biyouyumlu filmlerin sağlık alanında çeşitli kullanım yerleri vardır. Bunlar arasında yara örtücüler ve ilaç salım sistemleri sayılabilir. Pamuk ve selüloz bazlı sargıların yaraya yapışması, değiştirilmesindeki zorluk, yarayı dış etkilerden korumada yetersizlikleri yeni arayışlara yol açmıştır. Biyouyumlu polisakkarit bazlı filmler, yara iyileşmesi için gereken nem ve oksijen miktarını sağlamaları, yarayı mikroplardan korumaları ve yara iyileşmesini hızlandırmaları sebebiyle tercih edilmektedirler. Vücuda uzun süre yapıştırılması gereken ilaç salım sistemlerinde ve uzun iyileşme süresi gerektiren kronik yaralarda iyileşme süresini kısaltmaları ve hasta konforunu arttırmaları dolayısı ile biyopolimerik filmler tercih edilmektedir. Yara örtücülerin yüksek katma değerli malzemeler olması yeni yeni piyasaya girmekte olan polisakkarit filmlerin uygulanma şansını da arttırmaktadır. Yenilebilir gıda ambalajı ise bu filmlerin diğer önemli bir kullanım yeri olacaktır. Günümüzde her dakika 15 ton plastik atık okyanuslara dökülmektedir ve bunun %40 kadarı tek kullanımlık ambalaj malzemeleridir. Bu malzemelerin bozulmaları da yüzyıllar aldığından denizler çöplük halini almaktadır. Avrupa Birliğinin aldığı bir karar gereğince 2030 itibarı ile tüm gıda ambalajlarının biyobozunur olması gerekmektedir. Gıda ambalajlarının biyobozunur ve yenilebilir olması elbette günümüzde alışılmış teknolojilerin terk edilerek yeni teknolojilerin geliştirilmesini gerektirdiğinden ek maliyet anlamına gelmektedir ve rekabetçi pazarın da buna tahammülü yoktur. Ancak tüketicilerin bilinçlenmesi ve doğru tercihler kullanması ile yakın zamanda hayatımıza gireceği kesindir. Çalışmamızda potansiyel yara örtücü ve yenilebilir gıda ambalajı olarak agar, keçiboynuzu zamkı ve salep temelli filmler üretildi. Agar kırmızı deniz yosunundan üretilen bir hidrokolloittir. Agaroz ve agaropektin adı verilen iki ayrı birimden oluşur. Agaroz jelleşebilen yapıdadır, agaropektin ise sülfat grubu taşıyan, yüklü, jel oluşturmayan birimdir. Agar oda ve vücut sıcaklığında suda çözünmez ancak 90oC sıcaklıkta suda çözünür, soğuduğu zaman tekrar heliks yapısını alarak suda çözünmez forma geri döner. Agarın jelleşebilen yapısı ve yüksek sıcaklık çözünürlüğü oda sıcaklığında veya en fazla vücut sıcaklığı olarak 36 - 40oC'lerde güvenle kullanılabilmesine olanak sağlar. Jelleşmesi için sentetik bir çapraz bağlayıcı gerektirmemesi de ayrı bir üstünlüğüdür. Agar filmlerinin mukavemetleri ve yüksek yüzde uzama değerleri bu amaçlar için uygundur fakat antimikrobiyal özellikleri yoktur. Bu sebeple antimikrobiyal özellik gösteren diğer polisakkaritlerle katkılanarak kullanılması yoluna gidilmiştir. Seçilen ikincil malzemelerden biri keçiboynuzu zamkıdır (locust bean gum; LBG). Keçiboynuzu zamkı, keçiboynuzu ağacının tohumlarından elde edilen bir polisakkarittir. Ana zinciri mannan, yan grupları ise galaktoz gruplarından oluşur. Bu yapı jelleşen bir yapı değildir fakat uzun agar zincirleri ile etkileşerek suda çözünmeyen filmler oluşturur. Mekanik özellikleri ve su buharı geçirgenliği de uygun değerdedir. Diğer polisakkarit olarak ülkemize özel bir ürün olan salep seçildi. Salep ülkemizde de yetişen orchid genus orchis adlı yabani bir orkide türünün kök yumrularından elde edilir. Çok bileşenli bir polisakkarittir. Yapısında nişasta, kalsiyum, potasyum, demir klorürleri ve zengin miktarda glukomannan bulunur. Çalışmamızın ilk bölümünde agar-LBG ve agar-Salep filmleri elde edilerek fiziksel, antimikrobiyal özellikleri ve hücre yaşamasına etkileri incelendi. LBG ilavesi filmlerin su buharı geçirgenliğini arttırdı, suda ve fosfat tamponunda çözünmeyen, antimikrobiyal özellikleri saf agar filmlerinden çok daha güçlü, hücre yaşam yüzdeleri saf filmlerden daha yüksek, UV geçirgenliği daha düşük filmler elde edildi. Salep katkısı ise (agar-salep) suda çözünür, su buharı geçirgenliği ve UV geçirgenliği daha düşük, antimikrobiyal özellikleri ve hücre yaşam yüzdeleri daha yüksek filmler elde edilmesini sağladı. Hem LBG hem de salebin antimikrobiyal özellikleri yüksek olduğundan ikili filmlerinin daha yüksek antimikrobiyal özellik taşıyabileceği, yumuşak yapılarının da gerek yara örtücü gerekse yenilebilir film olarak daha uygun olabileceği düşünülerek LBG-Salep filmleri yapıldı. Çalışmanın sonunda, LBG-Salep filmleri agar içeren filmlerden çok daha iyi antimikrobiyal özellik göstermiştir. Tek tek gıdaların ambalajlanmasında veya suda çözünebilen filmler gerektiği durumlarda LBG-Salep filmleri iyi bir alternatif olacaktır. Suda çözünmeyen filmlerin uygulama alanı daha geniştir. Su içeren veya içermeyen gıdalar, hazır yemekler vb. ürünler bu tür filmlerden yapılan ambalajlarda saklanabilir. İlk bölümde üretilen agar-LBG filmleri suda çözünmez yapıdadır. Antimikrobiyal değerleri de saf agar filmlerinden oldukça iyi olmasına rağmen biraz daha arttırabilmek amacıyla agar-LBG filmlerine uçucu yağlar katıldı. Uçucu yağ olarak, antimikrobiyal özellikleri bilinen çörek otu, kantaron ve biberiye yağları seçildi. Çalışma sonucunda transparan, kopma mukavemeti ve kopma uzaması daha düşük filmler elde edilmiş ise de antimikrobiyal sonuçlar beklenen aşırı artışı göstermemiştir. Yağların antimikrobiyal özelliğinin çok artmaması, filmin besin değerini de arttırmış oldukları sebebine bağlanabilir. Bu çalışma sonunda her biri farklı özelliklerde biyouyumlu, biyobozunur, yenilebilir agar, LBG, salep ikili kompozit filmleri ilk defa üretilmiş ve özellikleri incelenmiştir, böylelikle yara örtücü ve gıda ambalajı konusunda yeni ve faydalı alternatifler oluşturduğumuza inanıyoruz.
-
ÖgeControlled delivery of chalcone via biopolyester nanohybrid(Graduate School, 2022-11-17) Kaptan, Yasemin ; Güvenilir, Yüksel F ; 506162010 ; Chemical EngineeringIn recent years, biodegradable, biodegradable polymers have received great attention especially in medical applications and have begun to replace traditional petroleum-based synthetic polymers. Durable polymeric materials with superior physical, mechanical and chemical properties are highly demanded for medical applications. It is crucial that these materials can survive and perform in the harsh conditions of the human body, such as very low or very high pH environments and mechanical stress. One approach to manufacturing such advanced medical devices is the use of hybrid polymeric materials. In simple terms, a hybrid polymer is material consisting of two compartments, one of which is a natural or synthetic polymer, interacting with each other at the molecular level. The formation of an organic/inorganic hybrid system allows us to take advantage of the advantageous properties of each component or to create enhanced properties, sometimes synergistically. Especially in drug delivery and controlled release applications, several inorganic materials such as iron oxide nanoparticles, gold nanoparticles, silver nanoparticles, mesoporous silica and various types of clay are widely used either individually or in combination with polymers. These inorganic materials are preferred because of their small particle sizes and improved optical, electrical and mechanical properties. Despite the superior properties of inorganic materials, the use of such inorganic particles as drug carriers has some drawbacks. The main disadvantage is that they require surface modifications to ensure stability and good dispersion. Generally, these inorganic particles are used in drug delivery applications by coating or grafting with biodegradable and biocompatible polymers or forming composites. This approach also increases the biocompatibility of particles, which is one of the key features in the development of successful drug delivery system. These polymers can be synthetic or natural, and the most commonly used polymers in organic/inorganic hybrid systems for medical applications are polycaprolactone, polyvinyl alcohol, poly(d,l-lactide-co-glycolide), polyethylene glycol. Organic/inorganic hybrid systems developed with a polymer and inorganic particles can be classified under two main groups depending on the interactions between the two components. In Class 1 hybrid systems, inorganic particles are trapped or encapsulated in the polymer matrix by weak intermolecular forces such as Van der Waals, electrostatic interactions, and hydrogen bonding. Class 2 organic/inorganic hybrid system is formed by covalent or ionic bonding between organic and inorganic components. This covalent bonding can be formed by two different approaches: polymer in situ synthesis in the presence of inorganic particles, in situ formation of inorganic material, or a combination of polymer and inorganic material, both of which are produced ex situ. Interface characteristic is an important factor that changes the characteristics of the developed hybrid system. PCL has high biocompatibility as its degradation products can be metabolized in the body or excreted directly from the body. Because of its biodegradability and biocompatibility, PCL has been approved by the US Food and Drug Administration for use in medical applications. PCL-based materials have been successfully used in bone tissue regeneration, skin tissue engineering and vascular tissue engineering applications. In addition, several drug release studies using PCL-based drug delivery systems have been reported. PCL can be synthesized both chemically and enzymatically via ring-opening polymerization (ROP). Industrially, tin octoate is used as a metallic catalyst. Metallic catalysts operate at high temperature and pressure. Also, the end product may be toxic due to unremoved metallic residue, thus reducing the chances of PCL's medical applications. On the other hand, enzymes are non-toxic and can catalyze reactions in milder conditions. Lipase enzymes catalyze the polymerization of ε-caprolactone (CL). Drug delivery system (DDS) designs improve drug pharmacokinetics and biodistribution and provide a sustained release profile. DDS provides some exceptional properties compared to conventional drug formulations. The major disadvantage of active substances used in the treatment of diseases is that some molecules agglomerate in body fluids due to their hydrophobic character. Conventional drug formulations provide a solution to this complexity by using appropriate additives. However, these additives can have adverse effects on their intended site of action. The drug carrier used in such designs also protects the targeted area from the toxic effects of active molecules by controlling the dosage and keeping it below the toxic limit. Another function of the carrier material is to protect active molecules from premature degradation and rapid degradation by body metabolism. Smart drug delivery systems (SDDS) are systems designed and developed to deliver active substances to the desired site of action and to release them when stimulated by a physical or chemical change. The main purpose of using SDDS is to control the release kinetics so that the active material can be delivered to the desired site of action without causing any side effects to the non-targeted sites. Controlled release of the active ingredient is usually provided by stimuli-responsive polymers. Such polymers can undergo structural changes when exposed to different physical conditions that facilitate drug release. These changes in the physical environment, or 'stimulants', can be light radiation, temperature, pH, and magnetic stimuli. Chalcones are open-chain molecules naturally found in plants. Their chemical structure consists of two aromatic rings with a three-carbon α,β-unsaturated carbonyl system between them. The chemical structure of chalcones can be varied by adding functional groups to aromatic rings. Trans-chalcone (TC) has attracted attention in recent years in terms of its biological activities, due to its abundance in nature, its preparation and its simple structure. TC has been proven to have anticancer activity against several types. The anti-leishmania activity of trans-chalcone has been widely studied. TC is also anti-inflammatory and acts by reducing oxidative stress caused by various inflammatory diseases. However, there are limitations to the clinical use of TC, mainly due to its water-insoluble and thus low bioavailability. TC is a plant-based chemical, so its toxicity in the body is relatively low compared to synthetic drug molecules. However, one extremely risky aspect of TC accumulation in the body is that TC is a proestrogen. TC is metabolically activated to many other chemicals. These compounds have been shown to have estrogenic activity. Many adverse health effects may occur in mammals due to this estrogenic activity of xenobiotic compounds, such as precocious puberty in females, obesity, decreased sperm count, changes in reproductive organs and sexual behavior, and an increase in certain types of cancer. Therefore, it is very important to control the dosage of TC therapy and prevent the accumulation of TC molecules in the body. This study aimed to synthesize a new hybrid polymer based on PCL and silica particles with low crystallinity and hydrophilic character. The synthesis reaction was in situ ring-opening polymerization of ε-caprolactone catalyzed by immobilized Candida antarctica Lipase B. In this study, the free form of Candida antarctica Lipase B was immobilized on rice husk ash by physical adsorption. The specificity and stability of CALB were increased by providing enzyme immobilization. The support material on which the enzyme was immobilized was first prepared by burning rice husks in an oven at 650 °C for 6 hours. The produced RHA is a material with a high silica content, which plays a very important role in the formation of the nanohybrid system in the next steps. In order to add functional groups that will facilitate enzyme adsorption to the RHA surface, the surface was modified using four different organosilane compounds, 3-APTES, 3-APTMS, 3-GPTMS and 3-TMSPDA, before enzyme immobilization. Results from the analysis of TGA curves found that different organosilane compounds behave differently. Surface modification percentages were calculated as 1.2%, 0.8%, 3.7% and 10.1% for 3-APTES, 3-APTMS, 3-GPTMS and 3-TMSPDA, respectively. This reaction took place through the –OH groups of RHA and the methoxy or ethoxy groups of the silanization agents used, and Si-O-Si bonds were formed. After CALB immobilization on surface modified RHA, the resulting catalytic systems were used to catalyze the ROP of ε-caprolactone and to synthesize PKL-based nanohybrid systems in situ. During this reaction, short PCL chains were grafted from the free –OH groups of surface-modified RHA as well as the long, aliphatic chains of pure PCL. Therefore, it is very important to keep the surface modification at an optimum level in order to achieve PCL grafting from silica. Evidence from this analysis shows that increasing the percentage of silanization by a given amount increases the grafting efficiency. Previous studies suggest an inverse relationship between PCL chain length and the number of surface Si-OH groups. The findings of this study are in line with those of previous studies that suggested the role of silanol groups as co-initiators for the polymerization reaction resulting in a high number of growing chains. A significant decrease in the percentage of crystallinity was observed for all nanohybrid samples, which was associated with low molecular weight and inhibition of crystal formation by silica in the nanohybrids. Also increased glass transition temperature due to restricted mobility caused by grafted PCL. PCL-based nanohybrids were hydrophilic. The hydrophilic character of nanohybrids can markedly increase the bioavailability of poorly water-soluble drug molecules. The second aim of this study is to develop TC-loaded microspheres with O/W emulsion and nanospheres with interfacial polymer deposition method and to investigate the loading efficiency and in vitro release behavior.PCL-based nanohybrids synthesized in the first part of this study were used as polymeric carriers in these drug delivery systems. The result of this research showed that there are optimum microsphere formulations with 60-75% encapsulation efficiency. One of the more important findings from this study is that TC release was prolonged in a controlled manner to 22-57 days. It is an important property of our hydrophilic microspheres as it can increase the bioavailability of poorly water-soluble TC. Similar results were obtained with TC-loaded nanospheres produced by interfacial polymer deposition or nano-deposition method. Higher encapsulation efficiency (80-83%) was obtained with nanospheres. TC release from the nanosphere formulation was increased relative to the microsphere formulations; cumulative emissions reached 83-90%. The nanospheres showed pH-dependent release behavior; the acidity of the release medium increased the release. The TC release has been extended to 28 days under neutral conditions. Water contact angle measurements also revealed the hydrophilic character of the nanospheres.
-
ÖgeSu adsorpsiyon kapasitesi nispeten yüksek zeolitler ve kaplamalarının hazırlanması(Lisansüstü Eğitim Enstitüsü, 2023-01-09) Dağlı, Zülfiye ; Tatlıer, Melkon ; Yücedağ Taşdelen, Çiğdem ; 506122003 ; Kimya MühendisliğiZeolitler hem doğada bulunabilen hem de sentetik olarak üretilebilen mikro gözenekli malzemelerdir. Zeolitlerin yüksek yüzey alanına sahip olması, homojen gözenek dağılımı, seçici geçirgen özellikleri, iyon değişimi yapabilmeleri, hidrofilikliği veya hidrofobikliğinin ayarlanabilmesi, birçok alanda kullanılmasına olanak sağlamaktadır. Zeolitler üstün özellikleri sayesinde petrokimyadan biyokimyaya pek çok alanda kullanılabilmektedir. Bu malzemeler, gözenekli yapıları sayesinde geniş yüzey alanına sahip olup, adsorban olarak kullanımları da yaygındır. Enerji kaynaklarındaki azalma ve fosil yakıt kullanımından kaynaklı emisyonların azaltılmasına yönelik politikalar nedeniyle, enerji ile ilgili araştırmalar çevreyle dost teknolojilere yönelmiştir. Adsorpsiyon ısı pompası hem ısıtma hem de soğutma amaçlı kullanılabildiği ve güneş enerjisi, atık ısı ve jeotermal enerjilerinden faydalanabildiği için alternatif bir enerji sistemi olarak karşımıza çıkmaktadır. Adsorpsiyon ısı pompalarının performansını etkileyen parametrelerden birisi kullanılan adsorpsiyon çiftidir. Fiziksel adsorpsiyonun etkin bir şekilde gerçekleşebilmesi için en uygun adsorban-adsorbat çiftinin kullanılması gerekmektedir. Adsorpsiyon ısı pompalarında en yaygın kullanılan adsorpsiyon çiftlerinden birisi zeolit-sudur. Zeolitlerin adsorpsiyon ısı pompalarında kullanılmasında en önemli performans göstergeleri, su adsorpsiyon kapasiteleri, hidrofilik/hidrofobiklikleri ve hidrotermal stabiliteleridir. Bu kriterler, kullanılan zeolitlerin kimyasal bileşimi, iyon tipi ve kafes yapısı ile doğrudan ilişkilidir. Bu çalışmada, adsorpsiyon ısı pompalarında kullanmak üzere, su tutma kapasitesi nispeten yüksek zeolitlerin kaplamalarının hidrotermal sentez yoluyla hazırlanması amaçlanmıştır. Bu kapsamda, EMT, FAU (X,Y) ve GIS (P) tipi zeolitler göz önüne alınmış ve doğrudan ısıtma yöntemi ile paslanmaz çelik yüzeyleri kaplanmıştır. Doğrudan ısıtma yöntemi ile sentez çözeltisi değil de doğrudan kaplanacak metal yüzeyi ısıtılmakta ve bu şekilde, oldukça metastabil olan zeolitlerde oluşabilecek faz dönüşümleri uzun süreler boyunca engellenebilmektedir. Zeolitler, adsorpsiyon ısı pompalarında toz/pelet formu yerine kaplama olarak kullanılmaları durumunda, adsorban metal teması arttırılarak ısı iletim kısıtlamaları giderilebilmekte ve kaplama kalınlığı ayarlanarak optimum kaplama kalınlığı kullanılabilmekte ve bu durumda söz konusu cihazlar için büyük bir avantaj sağlamaktadır. Karşılaştırma yapılabilmesi için geleneksel sentez yöntemi ile de zeolit kaplamaları hazırlanmıştır. Literatürdeki çalışmalar ışığında farklı sentez koşulları kullanılarak hazırlanan kaplamalar, X-ışını kırınımı (XRD), termogravimetri (TG), alan taramalı elektron mikroskopisi (FEGSEM) ve enerji dağılımlı X-ışını spektroskopisi (EDX) yöntemleri ile karakterize edilmiştir. XRD analizi ile zeolit kaplamalarında oluşan fazlar tanımlanmış, TG analizi ile kaplamaların su tutma kapasiteleri, kristalinite ve hidrofilik/hidrofobiklikleri belirlenmiş, FEGSEM analizi ile morfolojileri incelenmiş ve EDX analizi ile kimyasal bileşimleri belirlenmiştir. EMT zeoliti oldukça metastabil bir zeolit olduğundan geleneksel sentez yöntemleriyle organik yönlendirici kullanmadan sentezlenmesi oldukça zordur. Literatürde, organik yönlendirici kullanılarak gerçekleştirilen birçok EMT zeoliti sentez çalışması mevcuttur. Organik yönlendiricinin pahalı ve çevreye zararlı olması ve sentez sonrasında zeolit yapısından uzaklaştırılması sırasında kristal yapısında ve kaplama formunda ise stabilitesinde oluşan olumsuz değişiklikler nedeniyle, kullanılan organik yönlendirici miktarı azaltılarak veya hiç kullanılmadan EMT sentezlenmesi için bazı çalışmalar yapılmıştır. Ancak, organik yönlendirici kullanmadan pratikte işe yarayabilecek kristalin EMT zeolitinin elde edilmesinin zor olduğu görülmüştür. Bu zeolitin, kaplama olarak hazırlanması için ise kayda değer bir çalışma gerçekleştirilmemiştir. Bu tez çalışmasında ise, doğrudan ısıtma yöntemiyle, uygun sıcaklık, süre ve reaksiyon karışımı bileşimi kullanılarak, sentez sırasında oluşabilecek faz dönüşümleri olabildiğince engellenmiş ve organik yönlendirici kullanılmadan oldukça kristalin EMT (ZSM-3) zeoliti sentezlenebilmiştir. Farklı molar reaksiyon karışımı bileşimleri kullanılarak yapılan çalışmada, en kristalin EMT fazı, bileşimi 18Na2O: Al2O3: 15SiO2: 324H2O olan reaksiyon karışımı ile 160 oC ısıtıcı direnç sıcaklığı, 30 C su banyosu sıcaklığı, 24 saatlik sentez süresi kullanılması ve sonrasında sıcaklığı 50 oC'a çıkarılan su banyosunda 1 saatlik ek sentez uygulanmasıyla elde edilmiştir. Ek işlem uygulanmasıyla kristalinitede dikkate değer bir artış oluşmuştur. Bu kaplamanın nispeten düşük sıcaklıklarda su kapasitesinin oldukça yüksek olduğu görülmüştür. Ayrıca, doğrudan ısıtma yöntemi uygulandığında, kaplama kalınlıklarının geleneksel sentez yöntemine göre, 70 kata kadar artış gösterdiği görülmüştür. Fojasit (FAU) kaplamalarının sentezi için, daha önceki gözlemlere dayanarak, 42.5 Na2O: 1 Al2O3:17 SiO2: 850 H2O reaksiyon karışımı bileşimi ile çalışılmıştır. Geleneksel sentez ve doğrudan ısıtma yöntemleri kullanılarak hazırlanan kaplamaların faz analiz sonuçları incelendiğinde, genellikle, fojasit fazının baskın olduğu karışık fazlar elde edilmiştir. Geleneksel sentez ile Y tipi fojasit oluşurken, doğrudan ısıtma yöntemi kullanıldığında, X tipi fojasit elde edildiği görülmüştür. Söz konusu reaksiyon karışımı bileşimi ile de doğrudan ısıtma yöntemi uygulandığında ve belirli bir sentez koşulunda, saf ve kristalin EMT zeoliti kaplaması hazırlanabilmiştir. Bazı kaplamalarda ise, EMT zeolitinin fojasit ve farklı zeolitlerle karışık faz halinde bulunduğu tespit edilmiştir. Isıtıcı direnç sıcaklığı yükseltildiğinde, genellikle, EMT fazı kaybolmuştur. Geleneksel sentez yöntemiyle hazırlanan kaplamaların kalınlıkları 30 m'nin altında kalırken, benzer sentez şartlarında, doğrudan ısıtma yöntemi kullanıldığında, 110-150 m arasında değişmiştir. EMT fazının nispeten hidrofobik yapısı nedeniyle EMT içeren fojasit kaplamalarının, 100 oC'taki su kapasitelerinin nispeten yüksek olduğu gözlemlenmiştir. Genel olarak, doğrudan ısıtma yöntemi ile hazırlanan kaplamaların 100 oC'taki su kapasitelerinin, geleneksel sentez yöntemi ile hazırlananlara göre daha yüksek olduğu görülmüştür. Bu tez çalışmasında, P (GIS) zeolitinin adsorpsiyonlu ısı pompalarında kullanılabilirliğinin araştırılması için de sentez çalışmaları yapılmıştır. Geleneksel yöntemle hazırlanan kaplamaların faz analizi ve su kapasitelerinin ölçülmesi sonucunda, adsorpsiyon ısı pompalarında kullanılmaları için kapasiteleri ve hidrofobikliklerinin yeterli olmadığı sonucuna varılmıştır. Adsorpsiyonlu ısı pompaları için yüksek su kapasitesine sahip zeolitler eldesi amacıyla yapılan çalışmalarda, hazırlanan EMT ve FAU zeolit kaplamalarına Li ve Mg iyon değişimi de uygulanmış ve bazı durumlarda, düşük sıcaklık ve toplam su kapasitelerinin bu yöntemle de arttırılabileceği gösterilmiştir. Bu çalışmada, doğrudan ısıtma yöntemi kullanıldığında, EMT ve FAU tipi zeolitlerin paslanmaz çelik yüzeyler üzerinde kaplamalarının hazırlanabileceği ve uygun sentez koşulları kullanıldığında, bu malzemeler için nispeten yüksek su kapasitesi, hidrofobiklik ve kalınlık değerlerine ulaşılabileceği gösterilmiştir.
-
ÖgeYüksek bor ayırma kapasitesine sahip yeni nesil ince film nanokompozit membranlar(Lisansüstü Eğitim Enstitüsü, 2023-01-12) Kocaoğlu Kürklü, Süer ; Ersolmaz Tantekin, Şerife B ; 506162011 ; Kimya MühendisliğiDünyada artan nüfus ve sanayileşme ile ham maddelere olan ihtiyaç artmaktadır. Ayrıca küresel ısınma da kuraklık ve su kıtlığına neden olmaktadır. Özellikle su canlı hayatının devamını sağlamada önemli olduğu için araştırmacılar su konusunda ortaya çıkan kıtlığa karşı çözüm arayışı içinde bulunmaktadırlar. Dünya üzerindeki alanın %70'ini su oluştururken, bu suyun %97,5'nin tuzlu su olması canlı hayatının devamı için önem arz eden taze su eldesinde deniz suyundan yararlanmayı ön sıraya taşımıştır. Deniz suyundan su eldesinde çok kademeli flaş distilasyon (MSF), çok tesirli distilasyon (MED) ve ters ozmoz (RO) gibi çok çeşitli desalinasyon teknolojileri kullanılmaktadır. Bu teknolojilerden RO dünyada kurulu desalinasyon kapasitelerinin büyük bir kısmını oluşturmaktadır. RO teknolojisinde ince film kompozit (TFC) membranlar kullanılmaktadır. TFC membranlar polietersülfon (PES), polisülfon (PSf) gibi farklı polimerlerden yapılmış bir destek tabakasının üzerinde arayüzey polimerizasyonu ile bir seçici poliamid tabaka oluşturarak hazırlanmaktadır. Bu membranların hazırlanması iyi bilinmekle birlikte, fiziksel, kimyasal veya biyolojik kirlenme, klora dayanıklılık, düşük geçirgenlik ve düşük seçicilik gibi sorunlarla karşılaşılmaktadır. Özellikle sulu çözeltilerde küçük ve nötr halde bulunan bor bileşiklerinin ayrılmasında zorluk yaşanmaktadır. Bor tipik bir deniz suyunda 5 ppm civarında bulunurken, dünyanın bor rezervinin %70'ten fazlasının Türkiye'de olması Akdeniz ve Ege Denizi'nde diğer bölgelere göre daha fazla bor içeriğine neden olmaktadır. Borun insan vucüduna fazla alınması insan sağlığını olumsuz etkilerken sulama sularında fazla bulunması tarımsal ürünlerde zehirlenmelere neden olmaktadır. Bu nedenle, deniz suyundan içme ve sulama suyu eldesinde bor ayırma önem kazanmaktadır. Dünya Sağlık Örgütü içme suyunda 2,4 ppm, sulama suyunda 0,5 ppm bor limitlerini önermektedir. Bor, sulu çözeltilerde farklı pH değerlerinde farklı bor türevleri olarak bulunmaktadır. Yüksek pH değerlerinde yüklü ve daha büyük boyuttaki borat iyonunun oluşmasından yararlanılarak, ya da RO sistemi sonrasında iyon değiştirici, adsorsopsiyon gibi ek ünitelerle RO teknolojisi ile bor ayırma sağlanabilmektedir. Bu proseslerde çözeltilerin pH değerlerinin yükseltilmesi için kimyasallar kullanılmaktadır. Kullanılan ek kimyasallar bor ayırmayı kolaylaştırırken yüksek maliyete neden olmaktadır. Farklı teknolojilerin RO sonrasında kullanılması da sistemleri karmaşıklaştırmaktadır. Dolayısıyla istenen düzeyde bor ayrımının gerçekleştirilmesi için yüksek bor ayırma kapasitesine sahip membranların geliştirilmesi gerekmektedir. Son yıllarda farklı nanoteknoloji ve nanomalzeme sentezlerindeki gelişmelerin artmasıyla belirli özelliklere sahip nanomalzemelerden yararlanılarak TFC membranlara ek özellikler sağlanabilmektedir. İnce film kompozit (TFC) membran hazırlanmasında arayüzey polimerizasyonu sırasında seçici poliamid tabakaya farklı nanomalzemeler eklenmektedir. Silika nanoparçacıklar (NP), zeolit, karbon nanotüp (KNT), metal organik çerçeveler (MOF) bu nanomalzemelerden bazılarıdır. Bu nanomalzemelerin; tek boyutlu gözeneklerinden, ayrılmak istenen bileşene/suya karşı afinitesinden, oluşturduğu pürüzsüz su yollarından ya da mekanik dayanımlarından yararlanılarak RO membranların özelikleri iyileştirilmiş ve hazırlanan membranlar ince film nanokompozit (TFN) membranlar olarak adlandırılmıştır. Böylece, TFC membrana göre TFN membranlarda yüksek su geçirgenliği, yüksek seçicilik ya da kirlenmeye karşı dirençli olma gibi özellikler elde edilmiştir. Bu çalışmada, TFN membran yaklaşımı kullanılarak membranların bor seçiciliğin artırılması hedeflenmiştir. Borun suya göre daha fazla tercih edilmesi, sterik ya da elektrostatik etkiler ile borun membrandan geçişinin azaltılması için üç farklı nanomalzeme kullanılmıştır. Tek gözenek boyutuna sahip olması ve pürüzsüz bir şekilde su akışına izin vermesi nedeniyle su geçirgenliğini artıran KNT'ler, su tutuculuğu yüksek olan zeolitler ve bor giderme kapasitesi yüksek olan metal organik kafes yapılardan ZIF-67, TFN membran yapımı için seçilmiştir. KNT'lerin gözeneklerinin daraltılması ve bora karşı afinitesini değiştirmek için KNT'lerin uç kısımları bor seçiciliği yüksek fonksiyonel gruplarla fonksiyonelleştirilmiştir. TFC membranlarda poliamid tabaka oluşumu için m-fenilendiamin ve trimesoylklorür monomerleri kullanılmış, polisülfon ultrafiltrasyon membranları üzerine arayüzey polimerizasyonu yapılmıştır. TFN membranlar için ise KNT'ler vakum filtrasyon sistemi ile destek membran üzerine yerleştirilip, KNT hizalanmış destek membran üzerine arayüzey polimerizasyonu gerçekleştirilmiştir. Zeolit ve ZIF-67 katkılı TFN membranlarda ise nanomalzemeler monomer çözeltilerinden birine katılarak ya da destek membran üzerinde yerinde (in-situ) sentezlenmiş ve sonrasında polimerizasyon gerçekleştirilmiştir. Hazırlanan tüm membranlar, yapısal ve morfolojik olarak incelenmiş, membran ayırma performansları ölçülmüştür. Membranların yapısal analizi FTIR ve XPS kulanılarak yapılırken, morfolojik özellikleri SEM, AFM ve temas açısı analiz yöntemleri ile belirlenmiştir. Membran performansları literatürde sıklıkla kullanılan acı su (brackish water) test koşulları kullanılarak yapılmıştır. 2000 ppm NaCl ve 5 ppm bor içeren besleme çözeltisi 0,37 m/s sabit akış hızı ile 15,5 bar basınç altında çapraz akışlı RO sisteminde test edilmiştir. Membranlardaki nanomalzemelerin kararlılığı da uzun sürelerde yapılan statik ve dinamik testlerle belirlenmiştir. Optimum koşullarda hazırlanan TFN membranlar %95 ve üzeri tuz giderimi ve literatürdeki çalışmalara yakın değerde saf su geçirgenliği değerlerine ulaşmıştır. Membranların bor giderim performansları TFC membranlara göre daha yüksek değerlerde olup, saf su akıları ZIF-67 katkılı TFN membranda TFC membrana göre üç kat artmıştır. Bu ZIF-67 katkılı TFN membran 9,8 LMH saf su geçirgenliğine, pH 9,5 değerinde %99,1 tuz giderimine ve %82 bor giderimine ulaşmıştır. Bor giderimi TFC membrana göre %24 iyileştirilmiştir. Sonuç olarak, bu tez kapsamında ilk defa KNT katkılı TFN membranlarda bor giderimi performansları değerlendirilmiştir. Ayrıca, TFN membran hazırlanma yöntemi, nanomalzeme çeşidi ve fonksiyonel grup seçiminin membran bor ayırma performansına etkisinin önemi gösterilmiştir.
-
ÖgeAltlığın temassız ısıtılması yöntemi ile geniş yüzeylerde zeolit kaplamaların hazırlanması ve karakterizasyonu(Lisansüstü Eğitim Enstitüsü, 2023-01-16) Maraş, Taylan ; Erdem, Ayşe ; 506152006 ; Kimya MühendisliğiZeolitler, moleküler boyutta gözenek ve/veya kanallar içeren, kristal yapılı, sulu alüminosilikat mineralleridir. Doğada bulunabilen çeşitlerinden sayıca çok daha fazlası laboratuvarlarda sentetik olarak da üretilebilmektedir. Moleküler elek özellikleri, geniş yüzey alanları, yüksek boşluk hacimleri ve sulu çözeltilerde değiştirilebilen, kafes yapısına katılmamış iyonlara sahip olmaları gibi nedenlerle, zeolitler endüstride adsorban, katalizör ve iyon değiştirici olarak çeşitli uygulamalarda sıkça tercih edilmektedirler. Zeolit kaplamalar, zeolit kristallerinin bir yüzeye kimyasal ve/veya fiziksel bağ ile bağlanmasıyla oluşan kompozit malzemelerdir. Zeolitlerin kaplama formunda kullanılmaları, toz ve pelet formunda kullanımlarına kıyasla, çeşitli uygulamalarda daha iyi ısı ve kütle iletimi sağladığı için tercih edilmektedir. Çeşitli membran ayırma ve algılama (sensing) uygulamalarındaki potansiyel kullanımları açısından da giderek önem kazanmakta olan zeolit kaplamalar, zeolit sentezi sonrasında kristallerin bir bağlayıcı ya da fiziksel bağ ile altlık yüzeyine tutunmasıyla hazırlanabildiği gibi, zeolitlerin doğrudan altlık üzerinde kristalizasyonu ile de üretilebilmektedir. Zeolit sentezi sonrasına dayanan yöntemlerde, bağlayıcı kullanıldığı durumda yüksek kalınlığa sahip kaplamalar elde edilmesine karşın, kaplamaların yeterince yüksek ısı iletim ve difüzyon katsayısına sahip olmamaları, bağlayıcının adsorpsiyon kapasitesini ve ölü ağırlık yaratarak verimi düşürmesi gibi sorunlarla karşılaşılmaktadır. Zeolitin doğrudan altlık yüzeyinde kristalizasyonu ile elde edilen kaplamalar kullanıldığında ısı ve kütle iletiminin iyileştirilebildiği görülmüştür. Ancak bu yöntemlerin de, kaplamaların sentezi sırasında çözelti içinde kristalizasyon gerçekleşmesi nedeniyle kaplama kalınlığının düşük olması, uzun sentez sürelerinde faz transformasyonu görülmesi gibi dezavantajları vardır. Literatürde önceki çalışmalarda altlığın daha yüksek sıcaklıklarda, sentez çözeltisinin ise daha düşük sıcaklıklarda tutulduğu, altlığın ısıtılması yoluyla kaplama yöntemi kullanılarak sözü geçen dezavantajların azaltıldığı görülmüştür. Bu tezde yeni geliştirilmiş olan indüksiyon yöntemi kullanılarak altlığın uzaktan, temassız ısıtılması yoluyla geniş yüzeylerde nem tutma uygulamaları için yeterince kalın, kristalin ve dayanıklı zeolit kaplamaların hazırlanması amaçlanmıştır. Elde edilen kaplamalar TGA, XRD ve SEM yöntemleri ile karakterize edilmiştir. Zeolit kaplamaların hazırlanabilmesi için ana parçaları indüksiyon ısıtıcı, reaktör, pompa ve ısı değiştirici olan bir sistem kurulmuştur. Öncelikle, önerilen yöntemin altlığın sentez çözeltisi içine daldırılmasına dayanan geleneksel kaplama yöntemi ile farkı araştırılmıştır. Geleneksel kaplama yöntemi ile geniş yüzeylerde elde edilen kaplamaların kristalin olmasına karşın, düşük kalınlığa, homojenliğe ve dayanıklılığa sahip olduğu görülmüştür. İndüksiyon ısıtma yöntemi ile 2 saat gibi kısa sentez süresinde dahi, geleneksel yöntemde 48 saatte hazırlanan kaplamanın 1,5 katı kalınlıkta kaplama elde edilmiştir. Ayrıca kaplamanın yüksek kristaliniteye ve homojenliğe sahip olduğu görülmüştür. İndüksiyon ısıtma yönteminin, altlığın ve çözeltinin hızlı ısıtılması, çözelti içindeki kristalizasyonun baskılanması gibi nedenlerle kaplama birikme ve kristalizasyon hızında önemli avantajlar sağladığı görülmüştür. Deneysel çalışmanın bir sonraki aşamasında, kaplamaların kristalinitelerinin, kalınlıklarının, homojenliklerinin ve içerdikleri fazların reaktör giriş-çıkış sıcaklıkları ve bu sıcaklıklar arasındaki fark ile değişimi incelenmiştir. Bu amaçla indüksiyon gücü, kreostat sıcaklığı ve sirkülasyon debisi değerleri kontrol edilerek, farklı sentez sıcaklık ve sürelerinde deneyler yapılmıştır. Deneysel parametrelere bağlı olarak değişen bir başka önemli parametre olan altlık yüzey sıcaklığının kaplama özellikleri ile ilişkisi de izlenmiştir. Seçilen deney koşulları aralığında, reaktör giriş-çıkış sıcaklıkları arasındaki fark sabit tutularak sıcaklıklar arttırıldığında kaplama kalınlığının ve kristalizasyon hızının arttığı görülmüştür. Öte yandan, sıcaklıklar arttığında, sentez süresi arttıkça sınırlayıcı reaktan miktarının azalmasına bağlı olarak kristalizasyon hızının amorf madde birikme hızının gerisinde kaldığı ve faz transformasyonlarının başladığı görülmüştür. Bu nedenle de kristalinite zamanla azalmıştır. Reaktör giriş-çıkış sıcaklıkları arasındaki fark giriş sıcaklığı arttırılarak düşürüldüğünde kaplama kalınlığı azalırken kristalitenin arttığı ve faz transformasyonlarının ötelendiği gözlenmiştir. İndüksiyon ısıtma yöntemi ile elde edilen kaplamaların ısıl ve mekanik dayanımları ile desorpsiyon kinetiklerini incelemek adına tekrarlı sentezler ile elek, boru ve boru üstü elek altlıklar üzerinde kütlece eşdeğer kalınlıkları 1,2 mm'ye ulaşan ve esas olarak NaX'ten oluşan kaplamalar hazırlanmıştır. Dayanıklılığı arttırmak için sentez sonrasında kaplamalar polimer ile kaplanmıştır. Çift katlı elek ve boru üstüne kaynatılmış çift katlı elek altlıklar üzerinde hazırlanan kaplamaların ısıl ve mekanik dayanımlarının yüksek olduğu, boru altlıklar üzerinde elde edilen kaplamaların ise ısıl test sırasında döküldüğü görülmüştür. Altlıklarda elek kullanımının kaplama dayanıklılığını arttırdığı gözlenmiştir. SEM görüntüleri, kristallerin tellerin üzerinde sıkı şekilde büyüdüğünü ve tel açıklıklarının zeolit kaplamasının yoğun bir tabaka şeklinde değil, açık ve süngerimsi bir yapıda büyümesine yardımcı olduğunu göstermiştir. Metal elekler üzerindeki kaplamaların desorpsiyon kinetiklerinin, benzer metal eleklerden yapılmış petri kabı içindeki toz zeolit örneği ile karşılaştırıldığı durumda, ilk 5 dakikada 3 kat, ilk 10 dakikada 2,5 kat daha yüksek olduğu görülmüştür. Önerilen kaplama yönteminin tekrarlanabilirliği incelendiğinde, kaplama kalınlıklarının ortalamadan en fazla %5,3 gibi düşük bir sapma ile üretilebildiği görülmüştür. Ek olarak üretilen kaplamaların desorpsiyon kinetiklerinin de neredeyse aynı olduğu gözlenmiştir. Ayrıca kurulan sistemin parametreleri dar aralıklarda rahatlıkla kontrol edilebilmiştir. Artan sentez süresinde sınırlayıcı reaktan konsantrasyonunun azalması nedeniyle kaplama oluşum hızının düştüğü görüldüğünden, sistemde dolaşan çözelti hacmi artırılarak tek sentez adımında elde edilen kaplama miktarının artırılmasına çalışılmıştır. Çözelti hacminin etkisini araştırmak için kreostat ve reaktör giriş-çıkışı arasındaki boru hatları uzatılarak sistem hacmi arttırılmıştır. Bu bölüme kadar yapılan deneylerde kullanılan çözelti hacminin %25 ve %50 fazlasının kullanıldığı deneyler gerçekleştirilmiştir. Çözelti hacmi %25 arttırıldığında kaplama kalınlığının arttığı, %50 arttırıldığında ise %25 artışa kıyasla azaldığı görülmüştür. Bu duruma, çözelti hacmi %50 arttırıldığında, çözelti içinde ve boru yüzeylerinde oldukça fazla katı oluşması sonucunda kaplama veriminin düşmesi neden olmuştur. Önceki çalışmalarda boru hattındaki çizgisel hızın daha az olduğu durumlarda, çözelti içinde ve boru yüzeyinde katı oluşumunun azaldığı görüldüğü için, boru hattındaki hızın azaltılması hedeflenmiştir. Bu nedenle reaktör çıkışından kreostata kadar olan, kreostatın içindeki ve kreostat çıkışından tekrar reaktöre dönen hatlar birbirine eş, iki paralel hat olarak bağlanmıştır. Boru hattının paralel olarak bağlanmasıyla,çözeltide ve boru yüzeyinde katı oluşumu engellenebilmiştir. Çözelti hacminin %50 arttırıldığı (paralel hat ile) durumda, %25 artış ile elde edilen kaplamaya yakın kalınlıkta kaplama elde edildiği, kaplama oluşma hızının bir maksimuma ulaştığı ve sınırlayıcı reaktan miktarının hızı belirleyen adım olmaktan çıktığı görülmüştür. Tek bir sentez adımında elde edilen kaplama miktarını ve kaplamanın tuttuğu toplam nem miktarını arttırabilmek adına, kaplama hazırlamaya uygun berrak sentez çözelti bileşimleri araştırılmıştır. Bu amaçla farklı SiO2/Al2O3, H2O/Na2O ve H2O/SiO2 oranlarına sahip sentez bileşimleri ile geleneksel toz sentez deneyleri yapılmıştır. Elde edilen tozların kristaliniteleri, fazları ve toplam nem tutma kapasiteleri incelenmiştir. Bileşimlerin jelleşme eğilimleri ve elde edilen ürünlerin toplam nem kapasitesileri göz önüne alınarak, kaplama deneyinde kullanılabilecek yeni bir bileşim seçilmiştir. Seçilen deney koşulunda, yeni bileşimin kaplama kalınlığını yaklaşık 3 katına çıkardığı görümüştür. Yeni bileşimle, bu deneyden elde edilen kaplama kalınlığının ve kristalinitenin arttırılması adına, denenen parametrelerden elde edilen en iyi sonuçların koşulları kullanılarak bir deney daha yapılmış ve bu amaca ulaşılmıştır. Elde edilen kaplama kalınlığının, çözelti hacminin etkisinin incelendiği deneylerde ölçülmüş en yüksek kalınlığa çok yakın olduğu görülmüştür. Kaplama kalınlığının daha fazla artmaması, sınırlayıcı reaktan miktarının hız belirleyici adım olmaktan çıkması, kaplama oluşma hızını, öncül madde ve reaktanların kalınlaşan kaplama içindeki kütle iletiminin belirlemeye başlaması ile ilişkilendirilmiştir. Sonuç olarak bu çalışmada, indüksiyon ısıtma ile kaplama yöntemi kullanılarak, tek bir sentez adımı ile 400 µm kalınlığa yaklaşan, yüksek kristalinitede ve homojenlikte kaplamalar elde edilmiştir. Ayrıca tekrarlı sentezler ile bu kalınlığın çok daha fazla artırılabileceği de gösterilmiştir. Elde edilen kaplamaların ısıl ve mekanik dayanımlarının oldukça yüksek olduğu ve desorpsiyon kinetiklerinin toz ile pelet formundaki zeolitlere kıyasla çok yüksek olduğu görülmüştür.
-
ÖgeProduction and characterization of antibacterial glass and glass ceramic materials(Graduate School, 2023-02-08) Demirel, Barış ; Taygun Erol, Melek ; 506122006 ; Chemical EngineeringGlass and glass ceramic materials are very important materials in human life, such as kitchen utensils, windows and automobile glass, and their importance has been increasing day by day. the consumption of glass and glass ceramics has been also increasing with the increase in the population of the world. The efforts to add antibacterial properties to many industrial products to protect them from disease-causing microorganisms such as bacteria mold, virus, etc. have increased greatly and scientists have been developing new methods to overcome this threat. There are many ways to struggle with bacteria and viruses. The addition of ions with antibacterial properties in order to prevent the growth of bacteria is one of these solutions. Some metal ions, such as silver, zinc, strontium, and copper, have a function for fighting bacteria and inactivating the proteins of these bacteria's enzymes. For this reason, it is important to add such ions to the glass and glass ceramic in order to gain them antibacterial properties. Today, antibacterial properties of glass materials are gained by using coating with sol-gel or ion exchange methods. Within the scope of this doctoral thesis, it was aimed to develop antibacterial glass and glass ceramic materials by using classical melting method, without the need for sol-gel and ion exchange methods. This method is an easy and economic way. Antibacterial glasses produced by this method can be an alternative with superior qualities and lower costs than those of produced by sol-gel and ion exchange methods in todays' technology. The requirement for high purity raw materials in the sol-gel method makes mass production costly. The chemicals to be used while creating the sol-gel are expensive and have no alternative raw materials. Compared to conventional melting, long cycle times and additional unit investments are required in the sol-gel method. During annealing, coating is made by spraying method and homogeneous coating cannot be achieved on the inner surface of the glass due to the inability to spray properly. Over time, due to the peeling of the coating, its antibacterial property is lost, and it becomes harmful for human health as the decomposed chemicals pass into the product. However, antibacterial glasses obtained by melting metal ions such as silver, zinc, copper and strontium, which provide antibacterial properties, eliminate the disadvantages of peeling. Within the scope of the study, silver, zinc, copper and strontium were selected as antibacterial agents and added to the soda lime and borosilicate glass batches in different amounts in oxide form. Glasses were obtained by using classical melting method at the suitable temperatures for each glass type. First of all, antibacterial activity tests, which is the main subject of the study, were performed. Afterwards, studies were continued with compositions that are suitable for antibacterial properties and can provide more advantages in terms of raw material costs. Secondly, ion release tests of these antibacterial ions, which can be harmful for human health at high amounts, were carried out. Afterwards, structural analyzes and some tests were carried out on the obtained samples to determine the optical, physical and mechanical properties of these glasses by using different techniques. Finally, detailed melting performances of these glass compositions were examined with a high-temperature monitoring system in order to demonstrate the manufacturability of these glass compositions. In addition, the crystallization temperature of antibacterial borosilicate glass was determined by the "Differential Thermal Analysis" method and its forming potential to glass ceramic structure was investigated. Crystal structures were determined by using XRD and Scanning Electron Microscopy (SEM) analyzes. Furthermore, antibacterial activity, ion release, optical, physical and mechanical properties of the obtained samples were also determined. As a result, antibacterial glass products doped with silver oxide and zinc oxide were provided to the soda lime glass industry. Besides household items, borosilicate glasses are frequently used in pharmaceutical packaging, especially vaccine vials, due to their inertness and chemical resistance. The need for borosilicate glass has also increased for vaccines developed as a solution to the Covid-19 pandemic, which has affected the whole world from the beginning of 2020 and whose effects are still continuing today and adding antibacterial properties to borosilicate glasses used in the health field is an important output of the Ph.D. study. Also, this study will enable the production of antibacterial glass and glass ceramic products without requiring any extra cost and without the need to change the production parameters and furnace design. Thus, it seen foreseen that a significant contribution can be made to Turkey's economy.
-
ÖgeSynthesis of conjugated polymers through light- induced step-growth polymerization(Graduate School, 2023-03-22) Çeliker, Tuğba ; Yağcı, Yusuf ; Kışkan, Barış ; 509182291 ; ChemistryConjugated conducting polymers have attracted a great deal of attention since their discovery 50 years ago because of their distinctive conductive properties and potential uses in fuel cells, actuators, adhesives, and electronic components like organic field- effect inverters, photovoltaic panels, and light-emitting devices. In recent years, these materials have been very important in making people's living spaces more comfortable. As a result, it is critical to create unique, high-performance conjugated conductive materials. Electropolymerization, oxidative polymerization, and coupling processes are some of the most statistically significant xxiolüene synthesis of these polymers (e.g., Suzuki and Yamamoto). Polymers with distinct morphologies and, therefore, diverse physical and chemical characteristics can be produced based on the synthetic process employed. Additionally, they can be blended with other synthetic polymers to enhance their processability and characteristics. Photopolymerization is a fast-growing method due to its many benefits. For example, it is solvent-free, energy-efficient, and appropriate for heat-sensitive materials. In addition, photopolymerization only proceeds in the lighted region, resulting in both temporal and spatial resolutions that are complete. These advantages make it possible to produce films and intricate three-dimensional objects for industries including protective coating, adhesive, automotive, microcircuit, and semiconductor. High spatial resolution and a wide variety of potential uses are provided by the use of photosensitive resins in cost and easy additive manufacturing methods. By exposing photosensitive compounds, particularly photoinitiators, to ultraviolet or visible light, a chain reaction is initiated that transforms a monomer into a polymer.. Unlike traditional chain polymerizations, photoinduced step-growth polymerizations do not need the use of an initiator. When two monomers with different functions react at equal molar concentrations, a difunctional polymer is formed. During the first stages of polymerization, just a single reaction mechanism is at work, and the total increase in molecular weight is slow. In contrast to a chain-growth process, the phases of initiation, propagation, and termination are thus omitted. In the first part of the thesis, we provide a novel, easy photochemical method for step- growth polymerization xxiolüene synthesis of polypyrene (PPy). PPy synthesis using the photo-induced polymerization technique in the presence of iodonium salt (DPI) was carried out with low cost and high efficiency. A thorough examination of the structural, morphological, electrochemical, and molecular weight features of the polymers indicated that the DPI/Py ratio has a significant impact on the chain length and on the efficiency of electropolymerization. This technique is very applicable to functional pyrenes and other conjugated monomers. In the second part of the thesis, we describe the manufacture of microspherical conjugated polymer structures based on carbazole, an essential material for OLED, OPV, and electronic circular dichroism applications. A novel photochemical method xxiiolüene metal-free synthesis of a hollow spherical conjugated polymer is presented. CBP, which contains both carbazole and biphenyl units, was polymerized at 350 nm in the presence of iodonium salt (Ph2I+PF6-), and the resulting polymers were studied. The dedoping method resulted in the transformation of self-assembled microspheres with a great distance into more homogeneous spherical structures, according to atomic force microscopy (AFM) and transmittance electron microscopy (TEM) analyses. In the last part of the thesis, xxiiolüene synthesis of 9-(4-vinylphenyl) carbazole-based polymers, we disclosed a completely photochemical synthetic strategy that involves the sequential and simultaneous combination of free radical and step-growth polymerization processes. As a result of diminishing crystallinity in the sequential technique, the resultant polymers have a smooth surface. The following photoinitiated step-growth polymerization of the carbazole groups using diphenyliodonium hexafluorophosphate (DPI) resulted in highly branching and cross-linked polymers with microspheres on the surface, as seen by TEM examination. Simultaneous photoinitiated free radical and step-growth polymerizations utilizing DPI produced cross-linked polymers with scattered distribution in the one-pot method.
-
Öge5-fluorourasil için polimer/biyoseramik ve grafen oksit içerikli ilaç taşıyıcı malzeme üretimi ve kinetik çalışmaları(Lisansüstü Eğitim Enstitüsü, 2023-05-04) Kahraman, Ebru ; Saygılı Nasün, Gülhayat ; 506162003 ; Kimya Mühendisliğiİnsan yaşamı için ciddi bir tehdit oluşturan kanser, dünya çapında önde gelen ölüm nedenlerinden biri olmaya devam etmektedir. Dünya Sağlık Örgütü (WHO) tarafından kanserin 183 ülkenin 112'sinde 70 yaş öncesi için birinci veya ikinci ana ölüm faktörü olduğu tahmin edilmektedir. Kanser tedavisi sürecinde karşılaşılan en önemli zorluklardan birisi, uygulanan yüksek toksisiteye sahip ilaçların vücut içerisinde ani ve kontrolsüz salımının, kanser hücreleri dışındaki sağlıklı dokuları da etkileyerek yorgunluk, ateş, saç dökülmesi, deri döküntüsü ve mide bulantısı gibi istenmeyen yan etkilere yol açabilmesidir. Bununla birlikte, biyolojik ortamla ilaç arasında meydana gelen etkileşimler, aktivite ve terapötik etki kaybına neden olarak tedavinin etkinliğini azaltabilmektedir. Bu nedenle, ilaçları uygun terapötik seviyede tutarak yan etkileri azaltmak ve dış etkenlerden koruyarak tedavinin etkinliğini arttırmak amacı ile tasarlanan ilaç taşıyıcı sistem çalışmaları önem taşımaktadır. 5-Fluorourasil (5-FU) ilacı, günümüzde kolon kanseri başta olmak üzere, rektum, göğüs, yumurtalık, pankreas, mide, beyin ve cilt kanseri gibi pek çok kanser türünün tedavisinde yaygın olarak kullanılan bir anti kanser ajanıdır. Bu ilaç, C(Karbon)-5 pozisyonunda hidrojen atomu yerine flor atomu bulunan bir urasil primidini analoğu türüdür. Anti kanser etkinliği oldukça üstün olmasına rağmen, kan plazmasında yarılanma süresi oldukça kısa olan (8-20 dakika) ve kanserli hücreler tarafından seçiciliği olmayan 5-FU ilacı sağlıklı hücreleri de etkileyerek istenmeyen yan etkilere ve tedavi veriminin düşmesine sebep olabilmektedir. Bununla birlikte, düşük molekül ağırlığı ve hidrofilik karakteri, 5-FU ilacının ilaç taşıyıcı sistemlere yüklenme kapasitesinin düşük olmasına neden olmakta ve kontrollü bir salımın sağlanmasına engel oluşturmaktadır. Bu nedenlerden dolayı, 5-FU'nun vücut içerisinde dolaşım süresini arttırabilecek ilaç taşıyıcı malzemelerin geliştirilmesi önem taşımaktadır. Grafen oksit (GO), grafenin oksidasyonu ile elde edilen ve oksijen içeren fonksiyonel gruplara sahip iki boyutlu bir grafen türevidir. Grafene benzer şekilde katmanlı bir yapıya sahip olan grafen oksit; epoksi, hidroksil, karbonil ve karboksilik gruplar gibi oksijen içerikli fonksiyonel gruplar bulundurmaktadır. Bu grupların varlığı, grafen oksite hidrofilik bir karakter kazandırmakta ve biyolojik ortamda çözünürlüğünü arttırarak biyouyumluğunu iyileştirmektedir. Yüksek spesifik yüzey alanı ile birlikte - etkileşimi ve hidrojen bağı oluşumuyla ilaç molekülleri ile etkileşeme geçebilme kapasitesi, grafen oksitin ilaç yükleme ve salım çalışmalarında tercih edilen bir malzeme olarak ortaya çıkmasına neden olmuştur. Bununla birlikte, grafen oksitin vücut içerisinde yalnız başına uygulanması durumunda hücre canlılığında düşüşe sebep olabileceği raporlanmış olup, biyouyumluluğunu iyileştirmek ve mümkün olabilecek toksik etkileri azaltmak için farklı biyomalzemeler ile birlikte fonksiyonelleştirilerek kullanımı tercih edilmektedir. Hidroksiapatit (HAp, Ca10(PO4)6(OH)2), insan vücudu içerisinde diş ve kemik yapısında bulunan, biyoseramik yapılı kalsiyum fosfat bir malzemedir. Biyoaktif, biyouyumlu, yavaş bozunan, osteokondüktif ve osteoindüktif yapısı nedeni ile diş hekimliği, kemik doku mühendisliği alanları başta olmak üzere, ilaç taşıyıcı sistemler ve hücre görüntüleme gibi biyomedikal alanlarda yaygın olarak kullanılmaktadır. Nanoboyutlu hidroksiapatit parçacıklarının farklı kanser hücreleri üzerinde büyümeyi önleyici etki gösterebilmesi nedeni ile, hidroksiapatit içeren kompozit malzemeler kanser ilaçları için geliştirilen ilaç taşıyıcı sistemlerde tercih edilebilmektedir. Bununla birlikte, sert ve kırılgan bir yapıya sebep olmasından kaynaklanan mekanik dezavantajları, hidroksiapatitin tek başına klinik uygulamalarda kullanımını kısıtlayabilmektedir. Ek olarak, yalnızca hidroksiapatitin taşıyıcı malzeme olarak kullanıldığı ilaç salım çalışmalarında yüksek ilk ani salım oranları görülmüştür. Bu nedenlerle, mekanik özellikleri ve kontrollü salımı iyileştirebilecek çeşitli malzemelerin katkısı ile kompozit halinde kullanımı tercih edilmektedir. Jelatin (GEL), kollajenin kısmi hidrolizi ile elde edilen doğal bir polimerdir. Asidik veya bazik prosesler ile elde edilme şekline göre sırası ile A ve B tipi olarak sınıflandırılmakta olup; hayvan derisi, kemik, kıkırdak ve bağ dokusundan elde edilebilmektedir. Düşük immünojenikliği, toksik olmaması, biyouyumluluğu, biyolojik bozunabilirliği ve düşük maliyeti nedeniyle, biyomedikal alanda yaygın olarak kullanılan doğal polimerlerden biri olarak ortaya çıkmıştır. Poliüretan (PU), termoplastik ve termoset polimer sınıfında yer alan, üretimi ve kullanım alanı açısından pek çok çeşidi bulunan bir polimerdir. Yapısal olarak yumuşak parça ve sert parça olmak üzere iki farklı şekilde sınıflandırılan bloklardan oluşan poliüretanlar, moleküler düzeydeki bu parçalı yapıları nedeni ile elastiklik, aşınma dayanımı, kimyasal stabilite ve işlenebilirlik gibi avantajlı özellikler barınıdırmaktadır. Esneklik ve mekanik dayanımın birlikte sağlanabilmesi, poliüretanların medikal alanda kullanımı avantajlı bir malzeme olarak öne çıkmasına neden olmuştur. Bununla birlikte, biyouyumlu ve pH değişimine duyarlı özellik göstermeleri nedeni ile, kontrollü ilaç salım sistemi çalışmalarında kullanımı tercih edilen malzemeler arasında yer almaktadırlar. Yapılan çalışmanın amacı; 5-FU kanser ilacının in vitro ortamda kontrollü salımını sağlayabilecek polimer/biyoseramik ve grafen oksit içerikli ilaç taşıyıcı malzemelerin geliştirilmesi, bu malzemelerin ilaç yükleme ve salım performanslarının araştırılması, deneysel tasarım ve kinetik modelleme çalışmaları ile optimizasyonun yapılmasıdır. Polimer malzemeler olarak jelatin ve poliüretan seçilirken, biyoseramik malzeme olarak hidroksiapatit tercih edilmiştir. İlk olarak, değişen jelatin konsantrasyonları içeren grafen oksit/jelatin (GO/GEL) kompozitleri üretilmiş ve bu kompozitlere adsorpsiyon yolu ile 5-FU ilacı yüklenmiştir. Deneysel tasarım çalışmaları sonucunda, düşük jelatin konsantrasyonu ve pH 8 değerinde 5-FU adsorpsiyonun maksimum olduğu görülmüştür. Adsorpsiyon izotermi çalışmaları sonucunda, 5-FU adsorpsiyonu için en uygun modelin Freundlich modeli olduğu görülmüştür. In vitro salım çalışmaları sonucunda, düşük jelatin konsantrasyonlarında birinci derece kinetik modele ve yüksek jelatin konsantrasyonlarında Higuchi kinetik modeline uygunluk görülmüştür. MCF-7 göğüs kanseri hücre hattına karşılık yapılan MTT testinde 5-FU yüklü GO/GEL kompoziti %22.8'lik bir hücre canlılığı göstermiş, 5-FU ilacının salımını ve etkisini doğrulamıştır. L-929 fibroblast hücre hattına karşılık yapılan MTT testi sonucu,15 μg/ml 5-FU yüklü GO/GEL konsantrasyonlarına kadar %80 hücre canlılığı elde edilmiş ve kompozitlerin biyouyumluluğu doğrulanmıştır. İkinci aşamada, değişen grafen oksit (GO) miktarları içeren grafen oksit/hidroksiapatit (GO/HAp) kompozitleri üretilmiş ve adsorpsiyon yolu ile 5-FU ilacı yüklenmiştir. Deneysel tasarım çalışmaları sonucunda, düşük pH (pH 2) ve düşük başlangıç 5-FU konsantrasyonlarında 5-FU adsorpsiyonu oranının maksimum olduğu görülürken, grafen oksitin hafif bir artışa sebep olduğu görülmüştür. 5-FU adsorpsiyonu için en uygun modelin Freundlich modeli olduğu görülmüş ve maksimum adsorpsiyon kapasitesi (Qm) pH 2.0 koşullarında 36.9 mg/g olarak hesaplanmıştır. In vitro salım çalışmalarında, pH 7.4 koşullarında tüm GO oranlarında salımın sıfır derece kinetik modele uygunluk görülürken, düşük pH değerlerinde ise Higuchi kinetik modele uyum görülmüştür. Üçüncü aşamada, GO/HAp kompozitlerinin 5-FU ilacı için adsorpsiyon yüzdesini iyileştirmek amacı ile, aminlenmiş grafen oksit üretimi yapılmıştır. Aminlenmiş grafen oksit/hidroksiapatit (GO-NH2/HAp) kompoziti sentezlenmiştir ve adsorpsiyon yolu ile 5-FU ilacı yüklenmiştir. GO/HAp kompoziti ile benzer şekilde, GO-NH2/HAp için yüksek GO-NH2, düşük pH ( pH 2) ve düşük başlangıç 5-FU konsantrasyonlarında en yüksek 5-FU adsorpsiyon oranı görülmüştür. Grafen oksitin aminlenmesi işlemi sonrası maksimum adsorplanan ilaç oranında %9.7'lik bir artış belirlenmiştir. 5-FU adsorpsiyonu için en uygun modelin Freundlich modeli olduğu görülmüş ve maksimum adsorpsiyon kapasitesi (Qm) pH 2.0 koşullarında 21.2 mg/g olarak hesaplanmıştır. In vitro salım çalışmalarında, tüm pH koşullarında 5-FU salımı sıfır derece kinetik modele uygunluk göstermiştir. Son aşamada, grafen oksit/poliüretan (GO/PU) kompozit film üretimi yapılmıştır. Poliüretan üretimi aşamasında, biyouyumlu ve ekonomik bir alternatif olan ayçiçek yağı ve hint yağı hidroksil kaynağı olarak kullanılmıştır. 5-FU yükleme işlemi, üretimi aşamasında 5-FU ilacının enkapsülasyonu ile gerçekleştirilmiştir. Deneysel tasarım çalışmaları sonucunda, 5-FU'nun GO/PU kompoziti içerisinden salım yüzdesinin, yüksek pH (pH 10), yüksek GO miktarı ve düşük başlangıç 5-FU konsantrasyonlarında arttığı görülmüştür. Kompozitlerde pH'a duyarlı ilaç salımı gerçekleştiği görülmekle birlikte, yüksek GO içeren kompozit için tüm pH koşullarında, Higuchi kinetik modeline uygunluk sağlanmıştır. Azalan GO miktarlarında ise, salım profilinin sıfır derece kinetik modele uyum gösterdiği belirlenmiştir. Bu tezin bulguları, sentezlenen GO/GEL, GO/HAP, GO-NH2/HAp ve GO/PU malzemelerinin 5-FU kanser ilacı için kontrollü salımı sağlayabilecek biyoyumlu ve ekonomik ilaç taşıyıcı malzemeler olarak potansiyele sahip olduğunu göstermiştir.
-
ÖgeDevelopment of selective iron-based fischer-tropsch catalysts to light olefins(Graduate School, 2023-08-29) Aghdaei Fatih, Yasemin ; Atakül, Hüsnü ; Sarıoğlan, Alper ; 506162021 ; Chemical EngineeringLight olefins (alkenes) are among the key chemicals that are globally most produced from crude oil in amounts exceeding 200 million tons per year. They are hydrocarbons with at least one carbon - carbon double bond (C2-C4) namely, ethylene(C2H4), propylene(C3H6), and butylene(C4H8). Lower olefins (light olefins) are intermediates for the synthesis of a wide range of products such as solvents, polymers, drugs, detergents, and cosmetics. There are three types of olefins: alpha (also called ethylene molecules), beta, and gamma. Carbon-carbon double bond is located at the beginning, in the middle, and at the end of the olefin chain in alpha, beta, and gamma types, respectively. Currently, commercial light olefin production is mainly based on steam cracking of a broad range of hydrocarbon feedstock including naphtha, gas oil, condensates, ethane and propane. However, the production of lower olefins by steam cracking is one of the most energy-consuming processes of the chemical and petrochemical industry. The oil reserves are expected to be depleted at faster pace as the oil consumption surpasses the conventional oil production. As the conventional easy-reached oil reserves deplete, attempts are being made to use unconventional oil reserves for oil production. The extraction and upgrading of oil from unconventional oil reserves, however, may be expensive and involve release of higher amounts of CO2 release in comparison to conventional reserves. CO2, with its green-house effect, is widely claimed to be responsible for climate change and there is rapidly growing global awareness in this respect which leads to more and more stringent regulations about CO2 emissions. Therefore, many countries are searching for alternatives to reduce their reliance on imported crude oil and refined products and to comply with CO2 regulations. The new alternative fuels for olefin production are coal, natural gas and biomass. Light olefins may be produced from the synthesis gas (CO/ H2) obtained from gasification of these fuels by direct Fischer-Tropsch-to-Olefins (FTO) process. FTO is a catalytic process and the most crucial and critical issue of this process is using proper and effective catalyst(s). Although there are plenty of research available in literature focusing on FTO process, there still exists lack of a proper catalytic process to be used commercially in FTO. In this work, the aim was to make an effort to produce light olefins in direct unconventional way via FTS by synthesizing iron-based catalysts with different promoters and supports that can show high FTO performance, means high CO conversion and stability with time on stream, high selectivity to light olefins, and low selectivity to methane and CO2. In other words, the aim was to narrow the wide hydrocarbon range produced by FTS to C2-C4 olefins. To reach the goal of study, the catalysts have been synthesized in different routes and with promoters. Their performance has been evaluated via catalytic tests and catalytic activity-structure relation have been investigated. In this term, iron-based catalysts have been prepared both by precipitation and impregnation techniques. Precipitation route has been tuned as well by changing the alkalinity of the precipitation environment. To synthesize the first set of bulk catalysts, nitrate salt solutions of iron and zinc as prepared in a stoichiometry of Fe:Zn=2 have been co-precipitated with NH4OH (AH). Sodium has been incorporated to Fe.Zn precipitate by different routes; use of sodium nitrate during co-precipitation reaction (AH route) or its subsequent impregnation on co-precipitated Fe.Zn catalyst (AH-I route). Alternatively, Na2CO3 (SC) was employed instead of NH4OH (AH) for the initial precipitation to investigate the role of the precipitant and its effect on catalyst surface basicity in terms of Fischer-Tropsch activity. The basicity of the precipitate Fe.Zn (SC) has been altered by changing the number of washing cycles as well and impregnated with a sodium precursor for further basicity. The last route has been called as SC-I. In addition to Na, Cu and K promoters have been impregnated to Fe.Zn precipitate as well. For the impregnation route, activated carbon (AC) and nitrogen-doped AC have been used as support material. Fe:Zn of 2 with alkali promoters has been chosen since it resulted in high olefin selectivity for unsupported catalysts. Activated carbon (AC) and its nitrogen doped form have been used as support. Activated carbon has been treated with N-containing chemicals namely, HNO3, NH3 and urea in order to create nitrogenous surface functional groups over AC (Chemical modification of surface). The so-formed supports were denoted as AC-N1, AC-N2, and AC-N3, respectively upon treatment with HNO3, NH3, and urea. Co-impregnation has been applied as by first dissolving the metal salts in stoichiometric amounts in a minimum amount of water and then by wetting AC support with the metal salt solutions. All catalysts have been calcined, reduced and tested in a high pressure fixed-bed reactor to investigate their catalyst activity and performance in Fischer-Tropsch synthesis to light olefins (FTO). Test results were interpreted together with the characterizations such as BET surface areas via N2 adsorption, crystal phase identification by x-ray diffraction (XRD), elemental analysis by inductively coupled plasma (ICP-OES), thermal stability of supports using (TGA) analysis, morphological investigation by scanning electron microscopy (SEM), reducibility characteristics of active phases using H2-TPR , the basicity of Na promoted bulk catalysts by CO2-TPD, and SEM-EDS mapping to observe metal distribution in Na promoted catalysts and a carbon supported catalyst. As total alkalinity of precipitation affects hydrolysis and influences the composition of the intermediate hydrolytic complexes, the final features of metal hydroxide precipitates might be induced with the precipitation conditions. This was proved by the observed change on the textural properties of zinc ferrites such as total surface area, crystal size and morphology under different alkaline precipitation environment. Improved conversion due to the facilitated CO dissociation over basic sites and concomitant deactivation possibly through fouling might be interpreted as both the number of basic sites and strength were determinant on the final catalytic behavior. Na provides a surface with high electron density that leads to intensification of CO dissociation and adsorption. However, although this is a favorable effect, it has limitation in terms of alkali content of the catalyst and its dispersion. As mentioned before, there is an optimum basicity which ensures a balance between CO conversion to CHx and the rate of hydrocarbon chain growth and its termination. If this balance alters, long chain hydrocarbon may form and cover the catalyst surface which can block the active sites. Depleted surface vacancies might suppress the rate of CO dissociation with time on stream and result in high deactivation. In this case, the hydrocarbon distribution does not change significantly but deactivation dominates. When surface is covered with high C content, surface H deficiency may result in a decrease in hydrogenation activity that might end up with poor paraffin and methane selectivity. Alkali metals may also improve re-adsorption of olefinic intermediates which may further polymerize to C5+ species. Therefore, both C2-C4 olefin light olefin and C5+ selectivity increase in the presence of alkali promoter, sodium or potassium. However, potassium as with more alkalinity strength led to more coke formation over the catalytic surface, e.g. a total carbon content of 17% on the spent ⁓3%K-2Fe.Zn(SC) catalyst and thereby, a fast decrease in CO conversion from 88% to 55% has been observed. Copper (Cu) is a widely accepted promoter for facilitated reduction of iron oxides and it improves the catalyst stability when the reduction occurs at lower temperatures. Temperature programmed reduction (TPR) profile of the catalysts have shown the improved dispersion upon copper addition. AC and N-doped AC supported Fe.Zn catalysts have shown high and satisfactory FTO performance. High surface area of AC whether in N-doped form or not has provided improved catalytic stability. Supported catalysts in the same Fe:Zn ratio seemed to be less deactivated in comparison to the bulk catalysts. For all supported catalysts in Fe: Zn: P=2:1:0.2 molar ratios where P=Na and K, high olefin selectivity of ⁓ 45-50% and high CO conversion of ⁓89-93%(stability) have been achieved. Using AC as the support of the catalyst, dispersion and hence the number of active sites have been increased and accessibility to each single active site has been improved as compared to the case in bulk catalysts. In conclusion, the hydrocarbon product distribution in the presence of alkali has been altered towards high C2-C4 olefin and C5+ selectivity values. The strength and homogeneity of surface basicity seemed effective in case of bulk catalysts. Highly active and selective bulk catalysts can be prepared by changing the precipitation conditions. Copper was seen to stabilize the catalytic activity by improving the dispersion and reducing the reduction temperatures of metal oxides. Activated carbon appeared as a suitable support for well dispersion of active sites. Its surface nature has been modified with nitrogen and slight changes in catalytic performance has been noticed. Improved thermal stability upon nitrogen doping was the only point to be remarked. All in all, Fe to Zn ratio of 2 as in zinc ferrite spinel crystals were active catalysts for Fischer-Tropsch reaction and reaction selectivity have been directed to light olefins when appropriately doped with alkali metals.
-
ÖgeExploring allosteric mechanisms of chemokine receptor CXCR4 and implications in drug design(Graduate School, 2023-09-07) İnan, Tuğçe ; Levitas Kürkçüoğlu, Özge A. ; 506162009 ; Chemical EngineeringProteins work together with other proteins and bind to biomolecules and ions to perform crucial tasks in living organisms. The active site of a protein controls its functional activity, while ligand binding to its allosteric sites can trigger changes in its shape and adjust its activity. The active sites of the proteins induce vital activities. On the other hand, allosteric sites on which ligands are capable of binding promote their conformational changes, and in this way, fundamental properties of biomolecules can regulate. Therefore, targeting the allosteric sites of the protein is a progressive strategy for drug repurposing or design owing to low side effects compared to orthosteric site targeting. Several computational methods have been utilized to elucidate protein structures and explore new drug-binding regions. Elastic Network Models (ENMs) are valuable for defining collective dynamics and functions. Gaussian Network Model (GNM) is one of the ENMs, which describes the structure consisting of nodes assigned to amino acids and springs between nodes. Here, the amino acids involved in both high and low-frequency motions have a high potential as new allosteric drug binding sites. Another coarse-grained model, the residue network model (RNM), is constructed based on the contact topology. A protein complex comprises edges and nodes using the local interaction strengths of residues. The centrality measure of the betweenness of the network can detect the 'hub residues' having a high capacity to receive and send allosteric signals. These residues also promise plausible drug targets. This thesis begins with elastic network models to identify potential allosteric sites. GNM and RNM are applied to various protein structures. The dataset comprises the allosteric enzymes from the glycolytic pathway, belonging to parasites, bacteria, and humans; class A GPCRs; and the MainPro of SARS-CoV-2. Both models consistently capture the same regions as a potential allosteric site. Also, the Site Identification by Ligand Competitive Saturation (SILCS) approach is applied to GPCRs to determine the allosteric druggable pockets. Among the database, CXCR4 is selected for further docking and molecular dynamic studies. CXCR4 is a member of the CXC motif GPCR, and its ligand, CXCL12, is a chemokine protein. CXCR4/CXCL12 axis influences chemotaxis, particularly tumor cell proliferation and metastasis. CXCR4 gets attention with overexpression in cancer cells and is a coreceptor of HIV. Therefore, in this thesis, a systematic approach is used to explore allosteric binding sites to CXCR4. As a consequence of CXCR4 being found as a homodimer in cancer cells, monomer, and homodimer forms are individually studied. To begin with, the GNM and RIN are employed to discover the critical residues that can participate in allosteric regulations and further propose allosteric sites for CXCR4. Subsequently, the SILCS approach is applied for mapping both monomer and homodimer CXCR4 and revealing the druggability of the allosteric sites proposed. SILCS also indicates ring fragments on those sites, which gain to drug design. Mdpocket also identifies these pockets. The Allosigma web server is also utilized to determine free energy differences profiles of potential allosteric sites of interest. Following, FDA-approved and investigational drugs are docked using SP docking, the Glide module of Schrodinger, and calculate Prime MM/GBSA energies. Considering clinical importance and MM/GBSA energies, 41 ligands are investigated with 50 ns long molecular dynamics (MD) simulations and recalculated MM/GBSA energies. HIV protease inhibitors, antimalarial drugs, and anticancer agents, particularly against breast cancer, are subject to hit compounds. ZINC29238439, bemcentinib, and dibutyl-lumefantrine shine, with high binding free energies for monomer CXCR4. On the other hand, itraconazole, isavuconazonium, and brecanavir stand out among the hit compounds proposed for homodimer. Among the hit compounds, fulvestrant and lumefantrine are selected for 1 μs long MD studies due to biological relevancy with CXCR4. MD runs are performed using the NAMD program. According to the results, the dynamic behaviors of monomer and homodimer CXCR4 are different from each other. Also, allosteric behaviors and ligand effects are determined using essential dynamic analysis (EDA), dynamic cross-correlation map (DCCM), and gRINN, which supplies an energy interaction network.
-
ÖgeDesign and control of alternative downstream processes of IBE fermentation(Graduate School, 2023-12-19) Oksal, İlayda Nur ; Kaymak, Devrim Barış ; 506162005 ; Chemical EngineeringIn this thesis, three alternative downstream process configurations are designed to obtain high-purity alcohol products from isopropanol-butanol-ethanol (IBE) fermentation broth. In order to make a fair comparison between process configurations, the same IBE fermentation broth, which is recovered by adsorption and gas stripping as in-situ recovery methods, is utilized as a feed stream. The fermentation broth, containing two homogeneous and one heterogeneous azeotropes, is highly dilute. Therefore, the downstream separation process of IBE fermentation broth is very energy intensive. The purpose of this thesis is to propose an energy-efficient process configuration and develop a heat-integrated version of the proposed configuration to further reduce the energy requirement and capital cost. In addition, the examination of controllability of the proposed process configuration and its heat-integrated version by dynamic simulations is also aimed. The steady-state designs of alternative configurations are compared in terms of economic and gas emissions. Optimization of the design parameters for alternative process configurations are done based on economic analysis. Total annual cost (TAC) is used as the objective function of economic optimization. The minimum value of the objective function is searched by using sequential iterative optimization method that can be defined as a grid search method. In addition to the economic evaluation, gas emissions of the configuration are calculated as an important metric for environmental evaluation. Pure distillation configuration has eight distillation columns and one decanter. Firstly, a significant amount of water present in the fermentation broth is taken away from the mixture by a preconcentration column. Then, water in homogeneous azeotropes and water in heterogeneous azeotrope are removed by extractive distillation and decanter-distillation systems, respectively. In this configuration, butanol, isopropanol (IPA) and ethanol are obtained in high purity. On the other hand, hybrid extraction-distillation configuration includes extraction, extractive distillation and conventional distillation units to separate butanol from IBE fermentation broth. In this configuration, a consecutive extractor and extractive distillation system is utilized to remove excess amount of water. In order to take away IBE mixture from water, too much solvent is required in this configuration. Therefore, capital and operating costs of this configuration are high due to the liquid circulating in the downstream units. In reactive distillation configuration, a significant part of water in the fermentation broth is removed by a preconcentration column, and the rest of water is consumed in the reactive distillation by an ethylene oxide-water reaction which forms ethylene glycol. This configuration reduces the energy consumption, operating and capital cost significantly compared to other two configurations. Based on the results, the reactive distillation configuration is selected as the proposed configuration since it is more economical and has less gas emissions compared to alternative configurations. Once the final steady-state designs are completed and the results are examined, then the dynamic controllability of the proposed configuration for downstream separation of IBE fermentation is investigated. Dynamic simulation of the process is created and three plantwide control structures are designed for the proposed process. The results of plantwide control structures are examined in terms of robustness. The robustness of control structures is tested against disturbances in feed flowrate and feed composition. Keeping biobutanol purity at its set-point against disturbances is the main aim of the designed plantwide control structures. The responses against the disturbances show that the control structure including dual temperature control for reactive distillation and biobutanol purification columns provides a robust control. Lastly, a heat-integrated version of the most energy efficient and economical alternative, reactive distillation configuration, is developed. Heat integration between condenser and reboiler of the columns is applied to reduce the energy consumption of the reactive distillation configuration in addition to process-to-process heat transfer between product and feed streams. The results show that the heat-integrated reactive distillation configuration provides remarkable reduction in costs and energy consumption.
-
ÖgeOlefin/paraffin separation in polymer/mof mixed-matrix membranes(Graduate School, 2023-12-22) Doğan, Elif Begüm ; Ahunbay, Mehmet Göktuğ ; Maurin, Guillaume ; 506172006 ; Chemical EngineeringMembranes, due to their low cost, high energy efficiency and ease of processing, have aroused great interest in the field of gas separation. Polymer membranes currently occupy a dominant position in the commercial market, despite the existing tradeoff between permeability and selectivity associated with their use. Over the past decade a novel class of inorganic-organic porous materials, Metal-Organic Frameworks (MOFs), has emerged as a new research domain in solid state materials. These hybrid nanoporous materials formed by the self-assembly of metal ions or clusters, linked together via a variety of bridging ligands, creating stable open structures with sufficiently large pores for industrially-important applications, such as in gas adsorption, storage and separation. Indeed, a number of recent studies have demonstrated that MOFs could be optimal candidates for membrane-based gas separation processes. In addition, owing to the remarkable properties of MOFs, an alternative strategy to overcome the selectivity/permeability trade-off limits of polymer membranes is to make mixed-matrix membranes (MMMs), in which MOF particles are incorporated into polymer matrices. Typically, the alkane/alkene separation is highly topical since it was identified recently as one of the "7 chemical separation to change the world". Propylene (C3H6) is with ethylene (C2H4), the largest feedstock in petrochemical industries with a global production that exceeds 200 million tons per year, with these chemicals mostly used to produce polymer-grade and plastic products, particularly the widely utilized polypropylene. The objective of the PhD will be to predict the separation performances of a series of MMMs for diverse olefin/paraffin separation based on atomistic models constructed for the corresponding MMMs using a combination of force field and quantum calculations. More specifically, we implement an MC/MD simulation scheme to perform simulations of membrane permeation processes. This prediction will pave the way towards the development of the corresponding MMM and their separation testing by collaborators.
-
ÖgeInvestigation of the mechanisms of hERG1 blocker toxins as anti-cancer agent with molecular modeling techniques(Graduate School, 2024-02-20) Günay Çolak, Beril ; Yurtsever, Mine ; Durdağı, Serdar ; 509092222 ; ChemistryIon channels are membrane-inserted proteins which regulate the movement of ions through cell membrane. Potassium (K+) ion channels ubiquitously exist in almost all species and locate in cell membranes. Members of this channel family play important roles in cellular signaling, including various processes. It is well-known that K+ ion channels involved in signaling pathways lead to cell proliferation or apoptosis. Because of their location on cell surface and their well-known pharmacology, they can be used as potential targets in anticancer therapies. The human ether-a-go-go related gene 1 (hERG1) K+ channels play crucial role in the heart, different regions of brain, endocrine cells, smooth muscle cells, and numerous tumor cells. It is known that the inherited mutations of hERG1 gene may lead to the disorder of cardiac repolarization (i.e., long QT syndrome (LQTS)), which may result in sudden cardiac death. It is known that K+ ion channels involved in signaling pathways lead to cell proliferation or apoptosis and some specific toxins were investigated for diverse therapeutic applications on targeting the hERG1 K+ channel. Thus, investigation of channel/toxin interactions mechanisms in atomic level is an important topic for the development of toxin-based therapeutics. Thus, in the first part of this thesis, the interaction mechanisms of two toxins named as BeKm-1 and BmTx3b with the closed-state hERG1 channel have been studied by using different molecular modeling techniques including protein-protein docking and molecular dynamics (MD) simulations. The crucial residues of toxins in channel interactions have been elucidated. It is found that R1, K6, K18, R20, K23 and R27 residues in BeKm-1 and F1, K7, K19, K20 and K28 in BmTx3b are the important residues involved in the strong interactions with the closed-state hERG1 K+ channel. The results of this study can be used by medicinal chemists in the designing of diverse therapeutic applications of natural or synthetic peptides targeting the closed state hERG1 K+ channels. In the second part of the thesis, the information that obtained from hERG-BeKm-1 and hERG-BmTx3b interactions, was used to design de novo peptides. The designed de novo peptides were investigated on open-state hERG. In addition to de novo peptides, peptidomimetics and FDA-approved molecules were included in the study to increase the number of molecules studied. It is believed that the data obtained in the thesis study will provide guidance for hERG inhibition for therapeutic purposes. In this way, it is expected to be able to eliminate various types of disease without causing sudden cardiac death.
-
ÖgeÜlkemiz yerli enerji kaynaklarının yeni teknolojilerle değerlendirilmesi sonucunda oluşacak sera gazı azaltım potansiyelinin belirlenmesi ve maliyet analizleri(Lisansüstü Eğitim Enstitüsü, 2024-03-15) Çakmak, Ece Gizem ; Okutan, Hasan Can ; 506132003 ; Kimya Mühendisliğiİklim değişikliği, 21. yüzyılda küresel ölçekte karşılaşılan en önemli ve acil sorunlardan biri olarak değerlendirilmektedir. Bu çerçevede oluşturulan Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi kapsamında 2015 yılında kabul edilen Paris Anlaşması ile, sanayi öncesi düzeye göre küresel ortalama sıcaklık artışını 2°C'nin çok altında, tercihen 1,5°C'de tutmak amacıyla ülkeler sera gazı emisyonlarını azaltmaya davet edilmiştir. Elektrik üretim sektörü antropojenik sera gazı emisyonlarının yaklaşık %34'ünü oluşturduğu için Paris Anlaşması hedeflerine ulaşılması açısından elektrik üretim altyapısının düşük emisyonlu alternatif teknolojiler ile dönüştürülmesi gerekmektedir. Gelişmekte olan bir ülke olarak Türkiye, toplam sera gazı emisyonlarını 2030 yılına kadar beklenen seviyeye kıyasla %41 oranında azaltmayı taahhüt etmiştir. Fosil yakıtlara dayalı elektrik üretimi kaynaklı sera gazı emisyonları Türkiye'nin toplam sera gazı emisyonlarının yaklaşık %25'ine tekabül etmekte olup, elektrik üretim sektöründe yüzyılın ortasına kadar net sıfır hedeflerine ulaşabilmek için ekonomik büyüme ve sosyal kalkınmaya zarar vermeyecek bir planlama yapılmasına ihtiyaç bulunmaktadır. Öte yandan elektrik üretim sektöründe dışa bağımlılığın azaltılabilmesi adına yerli kömür ve biyokütle kaynaklarının değerlendirmesine yönelik temiz teknolojilere yatırımın arttırılması ve güneş ve rüzgar enerjisi gibi yenilenebilir enerji kaynaklarının kullanımının arttırılması da önem arz etmektedir. Bu çerçevede elektrik üretim sektöründe yeni yatırımların, hem sera gazı emisyonlarına etkileri hem de yerli enerji kaynaklarının kullanımının arttırılması noktasında değerlendirilmesi ve alternatif politika seçeneklerinin senaryolar bazında ortaya konmasına ihtiyaç duyulmaktadır. Türkiye'de elektrik üretiminden kaynaklanan emisyonların azaltılmasına yönelik potansiyel yolları araştırmak için, bu çalışma kapsamında TIMES (The Integrated MARKAL-EFOM System) modelleme aracı kullanılarak bir model geliştirilmiştir. Bu model çerçevesinde, ülkemiz yerel şartlarını yansıtan bir referans enerji sistemi oluşturularak 2055 yılına kadar gerçekleşmesi beklenen elektrik tüketim miktarları ve buna karşılık oluşması beklenen sera gazı emisyon miktarı elektrik üretim kaynakları bazında tahmin edilmiştir. Bu amaçla ilk olarak Türkiye'deki mevcut elektrik üretim altyapısının kapsamlı bir değerlendirmesini yapmak için elektrik üretim sektörünü ve teknoloji alternatiflerini yansıtan ulusal bir veri tabanı oluşturulmuştur. Bir sonraki aşamada bu veri tabanı kullanılarak TIMES modelinde referans enerji sistemi oluşturulmuş ve sanayi, konut, hizmet ve ulaştırma sektörleri bazında 2055 yılı elektrik tüketim projeksiyonları gerçekleştirilmiştir. 2055 yılı elektrik tüketim tahminleri yapılırken, Türkiye İstatistik Kurumu tarafından yayınlanan ve 2080 yılını kapsayan nüfus projeksiyonları, Enerji ve Tabii Kaynaklar Bakanlığı'nca gerçekleştirilen ve 2040 yılına kadar uzanan elektrik enerjisi talep projeksiyonları ve Ekonomik Kalkınma ve İşbirliği Örgütü tarafınca Türkiye için 2060 yılına kadar öngörülen Gayri Safi Yurtiçi Hasıla değerleri dikkate alınmıştır. Bu çerçevede referans senaryoda toplam elektrik enerjisi talebinin 2055 yılına kadar 2020 yılına kıyasla 2,6 kat artış göstereceği öngörülmüştür. Öte yandan model kalibrasyonu referans senaryo (REF) bazında, 2015 ve 2020 yılları için gerçekleştirilmiş olup, bu yıllar için modelde elde edilen sonuçlar ulusal istatistikler ile karşılaştırılmıştır. Buna göre, elektrik üretim sektörü kaynaklı toplam sera gazı emisyonları açısından model sonuçları ve ulusal istatistikler arasında ortalama ± %0,2 seviyesinde fark oluşmuş olup, modelin baz yıl olarak seçilen 2015 ve 2020 yılları için uyumlu sonuçlar verdiği ve 2025-2055 yılları arasını kapsayan projeksiyon periyodu boyunca güvenilir sonuçlar ortaya koyabileceği değerlendirilmiştir. Elektrik üretim sektörünün mevcut durumundan yola çıkarak, uygulama ve politikaların değişmeyeceğini öngören referans senaryo sonuçlarına göre 2020 yılında 126,2 Mton CO2e seviyesinde gerçekleşen elektrik üretim sektörü toplam sera gazı emisyonlarının 2055 yılına gelindiğinde yaklaşık 2,7 kat artarak 336,5 Mton CO2e seviyesine ulaşacağı öngörülmüştür. Benzer şekilde elektrik üretim miktarının da 2020 yılındaki 299 TWh seviyesinden, 2055 yılında 820 TWh seviyesine yükselerek 2,7 kat artması beklenmektedir. Elektrik üretim kurulu kapasitesine bakıldığında ise, ithal kömür, linyit ve doğal gaz yakıtlı tesislerin 2020 yılında sırasıyla 9,2 GW, 11,3 GW ve 25,5 GW seviyesinde olan kapasitelerini, 2055 yılında 30,2 GW, 20,4 GW ve 55,5 GW'a yükselteceği ve fosil yakıtların mevcut durumda olduğu gibi gelecekte de toplam kurulu kapasitenin yarısını oluşturacağı öngörülmüştür. Buna karşılık elektrik üretim sektörünce ortaya konan toplam maliyetin 2020 yılındaki 25,3 bin 2022 $USm seviyesinden 2055 yılında 74,3 bin 2022 $USm'a yükseleceği değerlendirilmiştir. Tez çalışması kapsamında alternatif teknoloji seçenekleri ve politikaların sera gazı emisyon azaltımı ve toplam sektörel maliyetler üzerindeki etkisini incelemek adına 10 adet alternatif senaryo oluşturulmuştur. Emisyon limiti senaryoları (CC15, CC25, CC41 ve CC44), yenilenebilir enerji teknolojileri senaryoları (RENL, RENM ve RENH) ve yeni teknolojiler senaryoları (NTEC, NTECH ve NTECHH) olmak üzere üç ana başlık altında gruplandırılan senaryoların sonuçları ortaya konulan toplam sera gazı emisyon miktarı, kaynaklar ve teknolojiler bazında kurulu kapasite ve elektrik üretim miktarı, toplam ve birim maliyetler açısından kıyaslanmıştır. Senaryolar bazında gerçekleştirilen analizlere göre, 2050 yılında referans senaryoya kıyasla %18 ila %80 arasında sera gazı emisyon azaltım potansiyeli bulunmaktadır. Özellikle entegre gazlaştırma, karbon yakalama, biyokütle dönüşümü gibi katı yakıtların işlenmesine ek olarak, açık deniz rüzgar türbinleri, konsantre güneş enerjisi santralleri ve nükleer dönüşüm teknolojileri gibi unsurları dikkate alan NTECH senaryosunda baz senaryoya kıyasla %59 ile nispeten yüksek bir azaltım oranına ulaşılmıştır. Bu senaryoda yenilenebilir ve nükleer enerji teknolojilerinin toplam kurulu gücü 2050 yılında 158,4 GW'a ulaşarak toplam kurulu gücün yaklaşık %60'ını oluşturmuştur. Karbon yakalama ve depolama teknolojisinin entegre edildiği ithal kömür ve doğal gaz santralleri toplam kurulu kapasitesi ise 6,9 GW seviyesine ulaşmıştır. Üretilen elektrik miktarı açısından bakıldığında ise toplam üretimin %67'sinin yenilenebilir ve nükleer enerji santrallerinden geldiği, fosil yakıtların ise 2020 yılındaki %58 seviyesinden 2050 yılında %33 seviyesine gerilediği öngörülmüştür. Bu senaryoya hidrojen enerjisinin dahil edildiği NTECHH senaryosunda ise toplam sera gazı emisyon azaltımı %79,7 seviyesine yükselmiştir. Üretilen elektriğin sera gazı emisyon yoğunluğuna bakıldığında ise, baz yılında 0,419 ton CO2e/MWh seviyesinde gerçekleşen değerin, 2050 yılında emisyon limiti senaryolarında ortalama 0,292 ton CO2e/MWh, yenilenebilir enerji teknolojileri senaryolarında ortalama 0,288 ton CO2e/MWh ve yeni teknolojiler senaryolarında ortalama 0,153 ton CO2e/MWh seviyesine düştüğü görülmüştür. Modelleme çalışmasında, optimizasyon problemi temel olarak toplam sistem maliyetlerini minimize etmeye odaklandığından, her bir senaryo bazında elde edilen toplam ve birim maliyetler de analiz edilmiştir. Senaryolar bazında toplam sistem maliyetinin referans senaryosundan yeni teknolojiler senaryosuna gidildikçe arttığı gözlenmiştir. Elektrik üretim miktarı bazındaki maliyetler açısından ise referans senaryoda 2020 yılında 0,084 2022 $US/kWh seviyesinde gerçekleşen birim maliyetin, 2050 yılında emisyon limiti senaryolarında ortalama 0,087 2022 $US/kWh, yenilenebilir enerji teknolojileri senaryolarında ortalama 0,091 2022 $US/kWh ve yeni teknolojiler senaryolarında ortalama 0,105 2022 $US/kWh seviyesine yükseldiği görülmüştür. Yeni elektrik üretim teknolojilerinin entegrasyonu ve sera gazı emisyonlarına sınırların konulması gibi politika önlemlerinin, elektrik birim maliyetini %20'ye varan oranda arttırdığı ve nihai tüketiciler üzerinde etki oluşturduğu tespit edilmiştir. Bu çalışmanın sonuçları, özellikle katı yakıta ve biyokütleye dayalı enerji santralleriyle ilgili geniş bir veri tabanı oluşturmak amacıyla ulusal istatistiklerden elde edilen veriler kullanılarak belirlenmiştir. Ayrıca, inşa halindeki veya işletmeden çıkarma aşamasındaki santrallerle ilgili bilgiler, modelleme çerçevesine dahil edilerek, enerji sistemine ilişkin yakın dönem belirsizliklerin önemli ölçüde azaltılması mümkün olmuştur. Türkiye için TIMES modelleme platformu kullanılarak geliştirilen enerji, ekonomi ve çevre optimizasyon modeli, gelecekte beklenen nüfus ve gayri safi yurtiçi hasıla artışı sonucu ortaya çıkacak elektrik talebini karşılamak için uygun enerji üretim portföyünün belirlenmesine olanak sağlamıştır. Elektrik üretim sektöründe sera gazı emisyonlarının azaltımının yeni teknolojilerin ve yenilenebilir enerji kaynaklarının dahil edilmesi ile mümkün olduğu, öte yandan sistem maliyetlerinin de doğru orantılı olarak artış gösterdiği ortaya konmuştur. Tüketiciler üzerinde ek yük oluşturacak maliyetlerin azaltılabilmesi için, hem ithalat bağımlılığının azaltılmasına hem de sera gazı emisyonlarının azaltılmasına katkıda bulunması beklenen, temiz kömür ve biyokütle teknolojilerinin uygulanmasını destekleyebilecek politika önlemlerinin geliştirilmesi önerilmektedir. Bu tez çalışması kapsamındaki bulgular, yerli enerji kaynaklarının kullanımını geliştirirken enerji sektörü için karbonsuzlaştırma yollarının değerlendirilmesinde karar vericilere yardımcı olacaktır.