LEE- Fizik Mühendisliği Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Çıkarma tarihi ile LEE- Fizik Mühendisliği Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeState density in one dimensional ferromagnetic spin system with impurity(Institute of Science and Technology, 1995) Alp, Murat ; Erzan, Ayşe ; 46467 ; Institute of Science and TechnologySpin sistemleri katıhal fiziğinin önemli çalışma alanlarından birisidir. Atomlar, katıhalde madde içinde örgü noktalarına yerleşirler ve atomların çekirdeği bir elektron bulutu ile sanlıdır., Yalıtkan maddelerde atoma bağlı elektronun potensiyelinin V(r) dönmeye göre simetrisi olmadığı için özdurumları net bir açısal momentuma sahip değildir. Açısal momentumu manyetik moment kaynağı olarak ele almadığımızda geriye elektronun iç spini kalır. Elektronlar arası etkileşmeler ile atomdaki elektronların spinleri tek bir toplam spin yapacak şekilde birleşir. Örgü noktalarındaki toplam spinier ise birbirleri ile aralarındaki uzaklığın fonksiyonu olarak etkileşirler. Yalıtkan maddelerde Hamiltonyen, spin spin etkileşmeleri türünden Heisenberg Hamiltonyeni ile her örgü köşesine yerleşmiş spinlerin bir etkileşme matris elemanının fonksiyonu olarak yazabiliriz. Etkileşmeyi sağlayan değiş tokuş integrali, elektron dalga fonksiyonlarının uzaklığa bağlı olarak üst üste kesişmesinin bir fonksiyonudur. Bu çalışmada ve benzeri çalışmalarda da genellikle en yakın komşu spin etkileşmeleri alınarak çalışılır. Hamilton denklemi en genel halde kristal simetrisinden gelebilen spinlerin uzayda ağırlıklı olarak yönelmek istedikleri yönler olabileceği durumda anizotropik Hamiltonyen denklemi alınır.
-
ÖgeDevelopment of a segmented detector for reactor antineutrinos( 2020) Kandemir, Mustafa ; Çakır, Muammer Altan ; 621467 ; Fizik Mühendisliği ; Physics Engineering
-
ÖgeInteraction between magnetized stars and disks(Lisansüstü Eğitim Enstitüsü, 2021) Türkoğlu, Murat Metehan ; Ekşi, Kazım Yavuz ; 709913 ; Fizik MühendisliğiX-ray binary systems consist of a compact object, such as a neutron star, white dwarf or black hole, and a normal star that transfers mass to this compact object. X-ray binary systems are split into two groups depending on the mass of the donor star. If the mass of the donor star is Md ≤ 1M⊙, these kinds of systems are called LMXB and if the donor star mass is Md > 10M⊙, these systems are known as HMXB. The other component of the X-ray binary systems are compact stars: white dwarfs, neutron stars or black holes. The observed X-ray power of these systems originate from the gravitational potential energy released by the accretion of matter onto the compact star and depends on the compactness, M∗/R. In LMXB, matter from the outer envelope of the donor star may may be transferred to the compact star by Roche lobe overflow. In HMXB, matter from the outer envelope of the donor star may be transferred to compact star by stellar wind. In both cases because the matter transferred from the donor star has angular momentum, the matter can not accrete on to the compact object directly; instead an accretion disk forms. The physical parameters that define the interaction between a neutron star and a surrounding disk are the magnetic field and angular velocity of the of the compact star, and the mass flow rate in the disk. The interactions occur in three different stages: i-) Mass accretion stage: If the inner radius of the disk, Rm, is smaller than the corotation radius, Rco, the matter follows the magnetic field lines and flow to the polar caps of the neutron stars. ii-) Propeller stage: In this stage, Rm > Rco, the matter at the inner region of the disk meets with more rapidly rotating field lines attached to the star. A decline may occur in the observed X-ray flux because the mass accretion is centrifugally inhibited. iii-) Radio pulsar stage: If the inner radius of the disk is larger than the light cylinder radius, RL, an interaction can not occur between the neutron star and the disk. In this stage, the cause of the observed X-ray flux is the slowing down of the rotation of the neutron star. The QPO are thought to be generated in regions close to the neutron star and the inner part of the disk. Therefore, special types of QPOs provide direct evidence for disk-magnetosphere interaction. In this study, models were created by using both observational physical parameters (period, period derivative, luminosity, etc) and QPOs. The observation that the X-ray luminosity does not change significantly during transitions to the spin-down stage led to MTD of Ghosh & Lamb in 1979. In this model, magnetic field can thread the disk by instabilities between disk and magnetosphere and the presence of turbulence in the disk. The magnetic field lines slip around the disk due to the differential rotation between disk and the neutron star. According to the Ghosh & Lamb model, there is a stable region in which the twisted magnetic field balances the spread magnetic field around the disk. In this way a toroidal magnetic field is generated. However, as long as the magnetic field gets twisted around the disk, arbitrarily strong toroidal magnetic field is generated and such strong magnetic fields can destroy the disk. Because of the problems mentioned above, Ghosh & Lamb model have important inadequacies. The magnetic field lines that penetrate the disk beyond the corotation radius slow down the neutron star. The net torque acting on the neutron star is the sum of the material torque which spins up the star and the magnetic torque which slows down the star. Toroidal magnetic field is an important factor that determines the net torque. In order to understand the long-term evolution of the neutron star, it is important to specify how the torque depends on the fastness parameter, ω∗. As LMXB have weak magnetic fields, it is hard to observe the spin change of the system. Also HMXB have stellar winds that affect the torque and observed luminosity, the relation between the fastness and the torque can not be specified, sensitively. For these reasons, we choose 4U–1626 67 which has high magnetic field and accretes from a low mass donor star. 4U–1626 67 underwent two torque reversals in June 1990 and February 2008. We used the torque reversal data and explored the coherence between observational data and some torque models in the literature. It is discovered that each nearby galaxy host one or two "ultraluminous X-ray sources" (ULXs) whose luminosity exceed the Eddington limit for a solar mass object. It was initially assumed that the ULX host IMBH but later with the discovery of X-ray pulsations from some of these objects (e.g M82 X-2, ULX NGC 5907, ULX NGC 7793 P-13, NGC 300 ULX1, M51 ULX-7, NGC 1313 X-2 and Swift J0243.6+6124) showed that they at least some of them are neutron stars. Population studies indicate that the accreting neutron stars are common sources in the ULX population. In this thesis, we investigate the surface magnetic field dipole strength, beaming fraction and fastness parameter of the, PULX, taking into account the accretion flow in the super-critical regime, beaming of X-ray emission and the reduction of the scattering cross section in the presence of a strong magnetic field. We used three different methods for determining the magnetic fields of the PULX: i-) We assume the system to be near torque equilibrium. ii-) We rely on the spin-up rate and solve the torque equation. iii-) We assume the systems to be accreting at the critical rate. This critical rate depends on the electron scattering cross-section determined by the super-critical magnetic fields. The plan of the thesis is as follows: In Chapter 1, the main ideas of the star-disk interactions are given. In Chapter 2, the flux, the period and the period derivative data of 4U-1626 67 embracing the torque reversal events in June 1990 and February 2008 are analysed and compared with Ghosh-Lamb model and some other models in the literature. In Chapter 3, the magnetic fields of the pulsating X-ray sources are calculated using three different assumptions. Also, as the beaming fraction depends on the inner radius of the disc which in turn depends on the mass accretion rate, we find that the isotropic-equivalent luminosity of the source does not depend linearly on the mass accretion rate. In Chapter 4 all of the results are discussed
-
ÖgeNon-relativistic gravity in three-dimensions(Lisansüstü Eğitim Enstitüsü, 2021) Zorba, Utku ; Özdemir, Neşe ; 692464 ; Fizik MühendisliğiIn this thesis, we examined the non-relativistic three-dimensional $\mathcal{N}=2$ supergravity theories. These gravity theories are based on a symmetry algebra in which Lie algebra admits non-degenerate, invariant, and symmetric Killing form. We considered a supersymmetric extension of non-relativistic symmetry algebras from which we constructed Chern-Simons actions, and as a result, we have obtained their gauge transformations and field equations, and the matter couplings. In addition, we developed a framework to construct Lie algebra expansion to obtain extended Schrödinger algebra for the first time in the literature, and this result will be used for our future plan for constructing matter multiplets that transform under supersymmetric extended Schrödinger symmetries. The first chapter of the thesis presents a sufficient groundwork for the following sections. Our purpose is to elaborate on Newton-Cartan geometry, Newton-Cartan gravity, three-dimensional Einstein gravity, Chern-Simons formalism, and finally basics of spinors in three dimensions. Having collected these tools, we apply the corresponding formalism into three-dimensional non-relativistic symmetries. With the term non-relativistic symmetry we imply that all the algebras that we will consider next sections are an extension of Galilei algebra, since we designate the symmetry algebras as non-relativistic. In Ch. 2, we establish the supersymmetric extension of the extended Newton-Hooke, Lifshitz and Schrödinger algebras and construct the corresponding Chern-Simons supergravity models. The extended Newton-Hooke superalgebra admits two distinct non-degenerate invariant bi-linear forms that gives rise to two different supergravity models with the same equations of motion. These two models are particularly different in terms of the parity of the bosonic actions. In particular, we showed that there is an exotic non-relativistic model such that parity-even field equations arise from a parity-odd Lagrangian. We then showed that it is possible to improve the extended Bargmann superalgebra with dilatations (without including non-relativistic special conformal symmetry) which we called the extended Lifshitz superalgebra and also established the Chern-Simons extended Lifshitz supergravity action. In the final step, we include the nonrelativistic special conformal symmetry and establish the extended Schrödinger superalgebra and the corresponding Chern-Simons extended Schrödinger supergravity action. We consider our result as a first step to construct an off-shell formulation for the extended Bargmann supergravity and its matter couplings. In Ch. 3, we present a three-dimensional non-relativistic model of gravity that is invariant under the central extension of the symmetry group that leaves the recently constructed Newtonian gravity action invariant. In particular, we show that the three-dimensional model is the contraction of a bi-metric model that is the sum of the Einstein gravity in Lorentzian and the Euclidean signatures. Moreover, the model is distinct from the Newtonian gravity both at the level of action and the matter coupling. By choosing fields appropriately, we show that this action can be obtained by a contraction procedure. Our model is of the Chern-Simons type, which allowes us to establish the supersymmetric completion by extending the algebra with five supersymmetry generators. The supersymmetric completion of this action provides one of the very few examples of action for non-relativistic supergravity. In Ch 4, we present a Lie algebra expansion method to generate higher-order three-dimensional Schrödinger algebras. Our construction relies on a recent novel three-dimensional non-relativistic conformal Galilei algebra that we used as a core algebra. By employing the Lie algebra expansions, we first recovered the extended Schrödinger algebra and obtained a new higher-order Schrödinger algebra which we refer to as the enhanced Schrödinger algebra. We, next, truncate the non-relativistic conformal symmetry generators and find a new algebra that goes beyond the three-dimensional extended Bargmann algebra. In particular, we show that the symmetry algebra that was proposed as the symmetry algebra of action for Newtonian gravity is not uniquely defined but can be closed with three parameters. We also show that for a particular choice of these parameters the Bargmann algebra becomes a subalgebra of the extended algebra and one can introduce a mass current in a Bargmann-invariant sense to the extended theory.
-
ÖgeFemtosaniye lazer ile işlenen yapıların katıhal lazerlerde uygulamaları ve üst çevrim pompalı Tm3+:KY3F10 lazerleri(Lisansüstü Eğitim Enstitüsü, 2021-05-07) Morova, Yağız ; Esinoğlu Aksoy, Seda ; Sennaroğlu, Alphan ; 509142117 ; Fizik Mühendisliğiu tez çalışması ile yakın ve orta kızılaltı bölgede çalışan özgün katıhal lazerlerin geliştirilmesi amaçlanmış ve iki farklı deneysel yaklaşım uygulanmıştır. Bunlardan ilkinde femtosaniye lazer ile işlenen yapılar katıhal lazer tasarımlarında kullanılmıştır. Diğer yaklaşımda ise üst çevrim pompalama yöntemi kullanılarak Tm3+:KY3F10 lazeri iki farklı dalgaboyunda çalıştırılmıştır. Tezin ilk bölümünde, deneysel çalışmalarda kullanılan terimlerin ve kavramların tanıtılması hedeflenmiştir. Bu kapsamda lazer konseptine ait temel teorik altyapı ve deneysel karakterizasyon yöntemleri ile ilgili genel bilgiler sunulmuştur. Tezin ikinci bölümünde, grafen doyabilen soğurucunun femtosaniye lazer ile mikro şeritler oluşturacak şekilde yüzeyden kaldırılmasıyla elde edilen zebra desenli grafen doyabilen soğurucunun, üretimi ve bir test lazer kavitesi içerisinde kip kilitleyici olarak kullanılması sunulmuştur. Grafen doyabilen soğurucular, sahip oldukları avantajlı optik özellikler sayesinde lazer sistemlerinde yakın kızılaltı ve orta kızılaltı bölgelerini de kapayan geniş bir optik spektrum aralığında kip kilitleyici olarak kullanılmaktadırlar. Ancak sahip oldukları %2.3 küçük sinyal soğurması, bu kip kilitleyicileri kayba duyarlı düşük optik kazançlı lazer sistemleri için elverişsiz kılmaktadır. Bu kaybın azaltılmasına yönelik kimyasal katkılama, grafen tabanlı kapasitör, süper kapasitör yapıları gibi farklı deneysel yaklaşımlar literatürde gösterilmiştir. Bu yaklaşımlar genel olarak iyi sonuçlar vermesine rağmen, kimyasal katkılama yönteminde sabit Fermi seviyesi kayması, kapasitör yapılarda dielektrik bozulma riski, süper kapasitör yapılarda ise grafen doyabilen soğurucunun spektral operasyon aralığının daralması bu sistemlerin dezavantajları olarak öne çıkmaktadır. Bu nedenle bahsi geçen dezavantajları aşan ve aynı zamanda grafenin özgün özelliklerini taşıyan bir doyabilen soğurucu geliştirilmesi ihtiyacı doğmuştur. Bu kapsamda tezin ikinci bölümünde sunulan çalışmada infrasil alttaş üzerine kaplanmış tek katmanlı grafen, femtosaniye lazer ile işlenerek zebra desenli grafen doyabilen soğurucu üretilmiştir. Bu üretim süreci seçici aşındırma (ablasyon) yöntemine dayanmaktadır. Bu yöntemde lazer hüzmesinin gücü grafenin aşınma eşiğinden yüksek, alttaş olan infrasilin aşınma eşiğinden düşük tutularak grafenin alttaşa zarar vermeden yüzeyden kaldırılması amaçlanır. Bunun için 120 fs darbe süresine sahip, 1 kHz tekrarlama frekansında ve 800 nm dalgaboyundaki Ti:safir lazeri, 20X büyütmeye sahip bir objektif ile örnek yüzeyine odaklanmış ve tek katmanlı grafen yüzeyden aşındırılarak grafen mikro şeritlerden oluşan altı farklı bölge elde edilmiştir. Her bölgede yüzeyden kaldırılan şeritler arasındaki mesafe değiştirilerek farklı grafen miktarlarına sahip bölgeler elde edilmiştir. Femtosaniye lazer ile mikro işlemenin ardından geliştirilen grafen yapısı, test lazeri olarak seçilen Cr+4:forsterite lazeri içerisine eklenmiş ve kip kilitleme performansı incelenmiştir. Yapılan deney sonucunda mikro işlemeye tabi tutulmamış bölgedeki grafen kaynaklı kayıp %4.14 olarak ölçülürken en düşük grafen kaybına sahip bölgenin kaybı ise %0.21 olarak hesaplanmıştır. Bu sayede grafen kaynaklı kayıplarda belirgin bir azalma tespit edilmiştir. Ayrıca aşındırılmamış bölgede elde edilen kip kilitleme performansı incelendiğinde, 6.3 W sabit giriş gücünde 68 mW çıkış gücü elde edilirken, %0.21 grafen kaybı olan bölgede aynı giriş gücünde elde edilen çıkış gücü 114 mW olarak ölçülmüştür. Darbe süreleri karşılaştırıldığında ise 62 fs'den 48 fs'ye düşüş gözlenmiştir. Bu sonuçlar, kaybı azaltılmış zebra desenli grafen doyabilen soğurucunun geleneksel grafen doyabilen soğurucuya göre lazer performansındaki belirgin iyileşmeyi göstermektedir. Tezin üçüncü bölümünde, femtosaniye lazer ile mikro işleme yöntemi kullanılarak dalga kılavuzu lazer geliştirilmesi ve karakterizasyonu sunulmuştur. Yapılan çalışmada, Tm3+:BaY2F8 kristaline ilk defa femtosaniye lazer ile dalga kılavuzu yazılmış ve bu kristalin lazer olarak çalıştırılması gösterilmiştir. Dalga kılavuzları, 800 nm merkez dalgaboyunda 120 fs darbe süresinde ve 1 kHz tekrarlama frekansındaki lazer hüzmesi 40X objektif kullanılarak %8 (atomik) Tm+3 iyonu katkılanmış baryum yitriyum florür (BaY2F8) kristaline, yüzeyin 100 µm altında sıkıştırılmış kılıf (depressed cladding) biçiminde yazılmıştır. 7 mm uzunluğunda 28 çizgi çizilerek yaklaşık 30 µm çapında silindirik formda sıkıştırılmış kılıf dalga kılavuzu oluşturulmuştur. Dalga kılavuzu yazımını takiben ışık eşleme deneyleri yapılmıştır. Bu deneylerde dalga kılavuzuna, sürekli dalga formunda akort edilebilir Ti:safir lazeri, 3 cm odak uzaklığına sahip bir mercek ile eşlenmiştir. Eşlenen lazerin ilerleme kayıpları hesap edilirken soğurma etkisini minimize etmek amacıyla Ti:safir lazerinin dalgaboyu, Tm3+:BaY2F8 kristalinin soğurma bandı dışına alınarak 731 nm'ye ayarlanmıştır. Yapılan ölçümlerde üretilen dalga kılavuzunun ilerleme kaybının 0.32 dB/cm olduğu tespit edilmiştir. Optik eşleme deneylerini takiben pompa lazeri, 781 nm olan rezonant soğurma dalgaboyuna ayarlanmıştır ve elde edilen dalga kılavuzu, lazer rezonatörü içerisine eklenerek 1858 nm merkez dalgaboyuna sahip sürekli dalga lazer operasyonu gösterilmiştir. Geliştirilen dalga kılavuzu lazerinin, %2 çıkış aynası ile %3.3, %6 çıkış aynası ile %6.5 güç performansı veriminde çalıştığı tespit edilmiştir. Elde edilen en yüksek güç ise 553 mW giriş gücüne karşılık 34 mW olarak ölçülmüştür. En düşük eşik pompa gücü ise %2 çıkış aynası ile 23 mW olarak ölçülmüştür. Tezin dördüncü bölümünde, CeO2 nanoparçacıkların femtosaniye lazer ile işleme yöntemi ve kimyasal çökeltme yöntemi kullanılarak üretilmesi ve karakterizasyonu sunulmuştur. Lazer ile işleme yönteminde CeO2 pelet bir petri kabının içine yerleştirilerek yüzeyi yaklaşık 5 mm geçecek şekilde izopropil alkol ile doldurulmuştur. Hazırlanan örneğin yüzeyine 800 nm dalgaboyunda 1 kHz tekrarlama frekansında 120 fs darbeler üreten Ti:safir lazer hüzmesi, 50 mm odak uzaklığına sahip bir mercek ile odaklanmıştır. 5 mm uzunluğundaki çizigilerin 20 µm aralıklarla yan yana çizilmesi ile 5 mm x 5 mm alanındaki bir bölge lazer ile taranmıştır. Lazer taraması sırasında yüzeyden kopan CeO2 nanoparçacıklar izopropanol içerisinde toplanmıştır. Elde edilen parçacıklar taramalı elektron mikroskobu ile incelenerek 20 nm - 1 µm aralığında üretildiği görülmüştür. Ayrıca dinamik ışık saçılması ölçümü ile üretilen parçacıkların ortalama 333 nm çapına sahip oldukları görülmüştür. 30 dk süren bir işlem sonucunda mikro gram mertebesinde nanoparçacık üretilmiştir. Özellikle dielektrik özellikleri inceleyebilmek için parçacık üretim miktarı kimyasal çökeltme yöntemi kullanılarak artırılmıştır. Bu yöntem ile elde edilen parçacıkların boyutları 100 nm'nin altında olup CeO2 nanoparçacıklarının dielektrik sabiti oda sıcaklığında 25 olarak bulunmuştur. Üretilen ve ticari olarak satın alınan iki CeO2'nin dielektrik ölçümleri karşılaştırılmış ve CeO2 nanoparçacıkların dielektrik katsayısı daha yüksek bulunmuştur. Ayrıca Fe katkılı CeO2 nanoparçacıkları üretilmiş ve karakterize edilmiştir. Tezin beşinci bölümünde, literatürde ilk defa, 1064 nm dalgaboyunda üst çevrim pompalama yöntemi ile pompalanmış Tm3+:KY3F10 lazerinin 1.9 µm ve 2.3 µm dalgaboylarında çalıştırılması sunulmuştur. Florür tabanlı lazer kristallerinin kızılaltı bölgedeki lazer operasyonları, düşük fonon enerjileri, geniş spektral bölgedeki yüksek geçirgenlikleri gibi özellikleri nedeni ile birçok araştırma grubu tarafından incelenmiştir. Bu çalışmalarda genel olarak florür tabanlı lazer kristali grubunun bir üyesi olan Tm3+:KY3F10 kristali, konvensiyonel pompalama yöntemi olan 800 nm civarında doğrudan pompalanarak lazer olarak çalıştırılmıştır. Ancak bu kristalin 1064 nm dalgaboyuna sahip Yb:fiber lazeri ile üstçevrim pompalama yöntemi kullanılarak 1.9 µm ve 2.3 µm dalgaboyunda çalıştırılması ilk kez tez kapsamında yapılan çalışmalar ile gösterilmiştir. Bu çalışma kapsamında öncelikle %8 (atomik) Tm+3 iyonu katkılanmış KY3F10 kristalinin 1064 nm'de doğrusal olmayan soğurma özellikleri incelenmiştir. 2.8 mm uzunluğundaki Tm3+:KY3F10 kristalinin 1064 nm'deki temel seviye soğurmasının %2 olmasına rağmen pompa lazer şiddetinin artmasını takiben uyarılı seviye soğurmasının devreye girmesiyle %38 değerine ulaştığı görülmüştür. Ardından sırası ile x-kavite ve z-kavite mimarileri ile çalıştırılan 1.9 µm ve 2.3 µm lazerlerinin güç performansları incelenmiştir. 1.9 µm operasyonunda %2.3 çıkış aynası ile 1.9 W giriş gücünde en yüksek 142 mW çıkış gücü elde edilmiştir. Ayrıca kavite içerisine eklenen CaF2 ve suprasil prizmalar ile lazer dalgaboyunun 1849 nm - 1994 nm aralığında ayarlanabildiği gösterilmiştir. Bu konfigürasyon için en yüksek güç performans verimi, %5.5 çıkış aynası ile, soğurulan giriş gücüne göre %29 olarak elde edilmiştir. 2.3 µm deneylerinde ise z-kavite kullanılarak 1.6 W giriş gücünde %3 çıkış aynası kullanılarak, soğurulan pompa gücüne göre %36 verimle en yüksek 130 mW çıkış gücü elde edilmiştir. Tezin son bölümü olan sonuçlar bölümünde tez dahilinde yapılan deneysel çalışmaların sonuçları özetlenerek ileriye dönük potansiyel uygulamalarından bahsedilmiştir.
-
ÖgeApplication of matrix product states for few photon dynamics and quantum walks in reduced dimensions(Graduate School, 2021-12-02) Danacı, Burçin ; Subaşı, Ahmet Levent ; 509142102 ; Physic EngineeringNumerical simulations of low-dimensional quantum many-body systems have been a very active field in recent years. New techniques have enabled the experimental realization of these systems and have shed light on both theoretical and technological developments. However, the numerical simulations of these systems have been challenging due to the exponential growth of the Hilbert space with the system size. In addition, quantum correlations such as entanglement play an important role in many-body systems. Therefore approximate methods have been developed. One of the methods to simulate such quantum systems in one dimension is the Matrix Product States (MPS) Formalism. In this thesis, we concentrate on the application of MPS to quantum optical systems and quantum walks. For this purpose, we have developed a pedagogical numerical library that consists of functions responsible for the efficient representation of the wave function and its time evolution. We have tested the efficiency of these functions for different parameters. The quantum optical system we consider is a one-dimensional coupled cavity array interacting with a two-level system. One of the techniques to simulate the long-time dynamics of a quantum many-body system in a computationally manageable grid is to impose absorbing boundary conditions. We have applied absorbing boundary conditions in the form of an imaginary potential and determined the optimum parameter intervals for efficient simulation. Another objective of this thesis is to examine the photon dynamics and the decay of the two-level system from its excited state for different interaction strengths. We have shown that in the strong interaction regime where rotating wave approximation (RWA) is applicable, the results obtained from exact diagonalization and MPS simulations are in perfect agreement. For higher interaction strengths we have used polaron transformation to lower the effective interaction and applied RWA afterward. We have discussed the differences between the results in terms of photon numbers and the excited-state population of the two-level system. As part of this thesis, we have studied two types of discrete-time quantum walks. Firstly, we have considered a quantum walk with a single-phase impurity and investigated the effects of the bound states on its spatial localization and non-Markovianity properties. In Markovian systems, there is an irreversible flow of information from the system under consideration to its environment, whereas in non-Markovian systems some of this information flows back to the system. Our findings show that there is a strong relation between localization and non-Markovianity in this model. Secondly, we turned our attention to a quantum walk coupled with a spin chain environment where there is a dynamic spin attached to each site. Using our MPS algorithm, we have studied the relationship between the quasi-energy spectrum obtained from the exact diagonalization of finite systems, dynamical localization, entanglement entropy, and spin dynamics of this walk. We have observed that due to the extensive number of conserved quantities it possesses, this model is similar to the disorder-free localization models found in literature, where disorder is induced due to the interaction between the constituents of the system.
-
ÖgeEffects of solar radiation and neutron, gamma material intereaction effects on the solar cells/modules/panels(Graduate School, 2021-12-17) Demirel Turna, İnal Begüm ; Er, Zuhal ; 509162103 ; Physics EngineeringThis thesis study covers the examination of the performance and degradation conditions of photovoltaic cells/modules/panels that convert solar radiation into electrical energy in case of exposure to solar radiation and nuclear factors (neutron and gamma irradiation) in laboratory and outdoor conditions. In this context, with the beginning of this thesis, first of all, the solar radiation for the province of Istanbul, where the performance and degradation experiments of photovoltaic devices will be carried out, was examined and presented to the literature. In these studies, statistical analysis methods were used to examine the accuracy of the models and the most suitable model was determined for the region to be studied. Afterwards, the working principles of the devices are examined and detailed on the basis of physical science in order to understand the effects of both natural conditions and nuclear effects that the photovoltaic cell/module/panels are exposed to on the device performance and to examine the decay structure. There is a manufacturer's datasheet detailing the electrical characteristics of most of the produced photovoltaic cells/modules/panels at standard test condition (STC; 25℃ and 1000W/m2) and/or nominal operating cell temperature (NOCT; 20℃ and 800W/m2). By using the electrical characteristic data in this datasheet, performance and degradation modeling of photovoltaic cells/modules/panels can be performed theoretically. On the other hand, in some cases, the aforementioned data document may contain incomplete data, and even the data document of the produced device cannot be found at all. In this case, it becomes difficult to examine the performance of the device and to make performance predictions under different environmental conditions. Performance modeling of photovoltaic cells/modules/panels, which is one of the main objectives of this thesis; It was carried out by using the Single Diode Model (SDM), which is frequently used in the literature, and the Double Diode Model (DDM), which is rarely used in the literature, both in the absence of a datasheet or in the absence of a datasheet. The aforementioned theoretical study was firstly carried out by producing sub-models containing interconnected block structures on the MATLAB/Simulink platform and as a result of the merging of the sub-models, with the representation of the photovoltaic device. In the system; with the definition of the ambient conditions, which are the input data, the electrical characteristic output data that the photovoltaic device will show under these ambient conditions has been examined. Simulink study was performed for both SDM and DDM. There are electrical characteristic parameters of the photovoltaic device, which are not available in the manufacturer's datasheet, but have an important place in the evaluation of photovoltaic device performance. These parameters are; photocurrent, ideality factor, saturation current and resistance values. For performance and degradation evaluations, these parameters should be derived in line with the available data. By available data is meant manufacturer data sheet and/or experimental data. In cases where the manufacturer's datasheet is available, with the new photovoltaic device model created on the Simulink platform, firstly the electrical characteristic parameters of the device are derived, and then the electrical data (current, voltage, power) produced by the photovoltaic device under the requested ambient conditions are turned into a program output for performance and degradation analysis. The slope method and/or the simplified open method were used in cases where the manufacturer's data sheet was missing. In this case, theoretical analyzes were carried out with the performance program created with a set of codes on MATLAB. These studies have been carried out for different photovoltaic type devices. Obtained results were compared with experimental data. Both the Simulink model and the MATLAB program result documents created with this doctoral thesis showed that; the theoretically produced performance result for the determined environmental conditions is more compatible with the experimental results carried out within the scope of this thesis in the Double Diode Model compared to the Single Diode Model. As mentioned above, the performance evaluation of photovoltaic cells/modules/panels was also carried out experimentally within the scope of this thesis. The performance of 10W Monocrystalline and 7W Polycrystalline Photovoltaic Modules available in Zuhal ER's Laboratory at ITU Faculty of Arts and Sciences, Fluke Ti90_9Hz Thermal Camera also available within Zuhal ER's Laboratory, and some of the experiments were carried out with the Seaward PV200 Solar PV Test Device and Solar Survey 200R, which were purchased with the project support of the ITU Scientific Research Projects Unit, which is affiliated with the doctoral thesis, with the project number 41722. Performance and degradation effects of environmental factors on photovoltaic modules, which is one of the main objectives of this doctoral thesis, were determined with these devices. The electrical characteristics of the photovoltaic modules with the PV200 Solar PV Test Device and the solar radiation, ambient temperature, photovoltaic module surface temperature were determined with the Solar Survey 200R. It has been seen that the open circuit voltage has increased over time due to the overheating caused by the deterioration of the modules. On the other hand, the surface temperature of the photovoltaic module and extremely hot regions, which are indicators of degradation, were observed and determined with the Fluke Ti90_9Hz Thermal Camera. Performance and degradation evaluations of photovoltaic devices within five years were determined by the laboratory facilities of Zuhal Er, as well as the maximum power determination and performance experiments carried out at the Turkish Standards Institute (TSE). As a result of the experiments carried out at TSE, it was observed that the maximum power values obtained from the modules decreased with the effect of environmental conditions. Experimental studies in addition to the above-mentioned modules, performance and degradation tests of a total of 20 modules, including 1.5W monocrystalline and polycrystalline photovoltaic modules, were carried out. As can be seen, the modules have very low power values compared to the modules mentioned above. The power measurement ranges of the Seaward PV200 Solar PV Test Device, which was purchased with the project support of ITU Scientific Research Projects Unit 41722, is between 5W and 15kW. Therefore, it could not be able to use in the electrical characteristic determination of 1.5W photovoltaic modules. In this case, measuring devices have been produced for the modules that are intended to be examined within the scope of the thesis. Arduino device, which is a microcontroller used in various projects and studies in recent years, has been used for the aforementioned purpose. On the other hand, sensors that determine current, voltage, ambient humidity and temperature are used. The communication protocol called SPI (Serial Peripheral Interface) between the sensors and the Arduino, in other words, the data connection standard starts the operation of the data current sensor and the data flow is provided. Thus, the measurement is started with the Arduino signal and the obtained data is transferred to the SD card; it is recorded via the same communication protocol between the Arduino and the SD card module. Thus, electrical data is collected and recorded for each photovoltaic module. The code is processed on the Arduino in order to determine the initialization of the created measuring device, the operating range, the data collection frequency and the way the data is recorded and listed. Data are performed every five minutes and during the time the solar radiated module. On the other hand, solar radiation data is collected in line with latitude and longitude information via an online platform. Both solar radiation data and module electricity data were recorded and analyzed on both MATLAB and Excel platforms. The obtained results showed that the modules could not perform a full current-voltage curve as expected because they did not receive radiation at all hours of the day. Mostly, data is collected between the maximum power point and the open circuit voltage. On the other hand, it has been observed that modules of the same structure produce similar results. During these studies, since the system was exposed to the external environment, deteriorations such as dulling of the modules and wear at the junction of the cells were observed. In addition to the determination of the effects of environmental factors on photovoltaic cells/modules/panels, neutron and gamma radiation effects are one of the other important objectives of this doctoral thesis. Neutron and gamma rays. Dr. It was held in Isparta, Süleyman Demirel University, Faculty of Arts and Sciences, with the support of İskender Akkurt. Modules that were not exposed to either solar radiation or neutron & gamma radiation before were exposed to gamma and neutron radiation in two sets. first set; two monocrystalline and 2 polycrystalline modules were exposed to gamma radiation for 30 days. second set; Two monocrystalline and 2 polycrystalline modules were exposed to neutron radiation for 15 days. Afterwards, electricity measurements were made under solar radiation like other modules. The results showed that the modules gave voltage values around the open circuit voltage. On the other hand, while fading occurred on the front surface of both sets of modules, deterioration occurred on the rear surface of the modules exposed only to neutron radiation.
-
ÖgeMachine learning analysis of pulsar timing data(Graduate School, 2021-12-17) Eser Hasançebi, Esma ; Çakır, Altan Muammer ; 509191108 ; Physics EngineeringIn 1967, radio pulsations from a celestial body were discovered by a graduate student Jocelyn Bell and her advisor Antony Hewish. This was the first sample of about three thousand similar sources, called pulsars, to be discovered in our galaxy to date. It has been understood that pulsars are rapidly spinning, strongly magnetized neutron stars. Neutron stars are very dense objects formed by the collapse of the cores of massive stars at the end of their life. Each pulsar has its characteristic pulse shape and rotational frequency. The rotational frequency of pulsars can be measured very precisely. The rotation frequencies of pulsars are observed to decrease in time. Pulsars tap their radiative energy from their rotational kinetic energy. The mechanisms by which pulsars achieve this energy conversion is not well-understood. According to a prominent model, the pulsars convert their kinetic energy into radiation by emission of magnetic dipole radiation (MDR). However, studies with young pulsar data show that the MDR model does not fully explain the observations and there should be other mechanisms assisting the spin-down. The ejection of high-energy particles, the growth of the dipole magnetic field over time, interaction with a supernova debris disc, increasing inclination angle between the rotation and magnetic axis, and gravitational wave emission are some of the processes proposed to affect spin-evolution. Occasionally, some pulsars suffer sudden increases in their spin, also known as "glitches" which decay in the following weeks or months. When they were first discovered, it was thought that glitches result from the breaking of the crust and hence they were called "stellar quakes". Today, it is conceived that this model can only account for the smallest glitches or that it could be a triggering mechanism for the main cause of the glitches. According to the more favoured view, the glitches are caused by the dynamics of the crustal superfluid. Sometimes a new glitch occurs before the previous glitch decayed. The presence of glitches in the pulsar data complicates the understanding of the spin evolution. The aim of the thesis is to contribute to the understanding of the spin evolution of pulsars by machine learning methods. To this end, long-term time-dependent spin frequency data of Crab and Vela pulsars are used. These are the two best-known pulsars that have been studied the most. Since the frequency changes by a small fraction throughout the time-span of the observations, we have eliminated the basic trend by fitting the data with a polynomial function. By subtracting this basic trend from the data, we obtained the residuals that clearly show the complicated features of spin evolution such as glitches. We tested the performance of two machine learning methods in reproducing the evolution of the residuals. The first method is called the sparse identification of nonlinear dynamics (SINDY). Given a time-series data, SINDY can identify the governing system of ordinary differential equations. We thus used this method to find the governing equations for the evolution of the residuals. The SINDy method gave information about the order of the equations and their coefficients. In addition, we used a recurrent neural network (RNN) architecture called long short-term memory (LSTM) method on the same data sets. We found that LSTM can predict the dates of glitches in the test data. The results show that SINDy and LSTM applications can contribute to the studies on the spin evolution of pulsars and may take place more in studies related to pulsars in the future.
-
ÖgeA remedy for major cosmological tensions: Dark energy with an oscillating inertial mass density(Graduate School, 2022) Kıbrıs, Cihad ; Akarsu, Özgür ; 772305 ; Department of Physics EngineeringThe preponderance of observational evidence indicates that a vast portion of the energy density of the Universe today comes in dark matter and enigmatic dark energy (DE). The standard cosmological model, namely, the so-called Lambda Cold Dark Matter model ($\Lambda$CDM), resting on this dark sector as well as a small fraction of baryons has been remarkably successful in elucidating the bulk of Universe we inhabit. Though, astronomical observations improving in precision over the course of years are increasingly exposing that $\Lambda$CDM is significantly discrepant with various datasets. The direct and local measurements of the present-day expansion rate yielding $H_{0}=73.04\pm1.04 \;\, {\rm km\,s^{-1}\,Mpc}^{-1}$ are at more than $5\sigma$ tension (the Hubble $H_0$ tension) with the one $H_{0}=67.36\pm0.54 \;\, {\rm km\,s^{-1}\,Mpc}^{-1}$ inferred within the $\Lambda$CDM based on matter-baryon densities and the spacing between acoustic peaks of the CMB. The $H_0$ tension effectively propagates to the supernovae absolute magnitude $M_B$ through the distance modulus $\mu(z_i,H(z))=m_{B,i}-M_{B,i}$ where $m_{B,i}$ is the measured apparent magnitude of the supernovae observed at the redshift $z_i$, and creates a $3.4\sigma$ tension with the results calibrated by the CMB sound horizon scale. Another discrepancy regarding the expansion rate $H(z)$ within the best fit $\Lambda$CDM is the $\sim1.5\sigma$ tension between low (Galaxy BAO) and high redshift (Lyman-$\alpha$ at $z\approx2.33$) BAO data. It first emerged as a preference for smaller $H(z)$ and accompanying negative DE densities for $1.7\lesssim z\lesssim2.34$, being at $2.5\sigma$ tension with $\Lambda$CDM. In addition, $\Lambda$CDM predicts a larger weighted amplitude of matter fluctuations $S_8$ in comparison with what the independent large scale structure dynamical low-redshift probes suggest, thereby running into $2$ to $3\sigma$ tension. Given the long-standing theoretical issues such as the cosmological constant and coincidence problems related to the $\Lambda$, all these enumerated challenges and more inevitably motivate many to seek for a more complete framework either as modified theories of gravity or as minimal extensions beyond $\Lambda$CDM in the context of General Relativity (GR). In this sense, an approach that constitutes an example of the latter attempts focuses on inertial mass density $\Varrho\;=\rho+p$ parametrizations. The graduated dark energy (gDE) model proposed in Akarsu \textit{et al}. [Phys. Rev. D 101, 063528 (2020)], whose inertial mass density $\Varrho$ measures the minimum dynamical deviation $\Varrho\;\propto \rho^{\lambda}$ from the assumption of null QFT vacuum energy $\Varrho_{\Lambda}\;=0$ is one that exhibits nontrivial properties. It turns out that smaller and smaller negative values of the parameter $\lambda$ corresponds to a constant negative DE density that changes its sign from negative to positive in the past. Such a dynamical behavior would imply that $H(z)$ suppressed by the presence of a negative source at high redshifts results in an enhanced $H(z)$ at lower redshifts as the comoving angular diameter distance $D_M(z)$ to the surface of last scattering $D_M(z_*)=c\int_0^{z_*} H^{-1}(z)\d z$ is very stringently and almost model-independently constrained by the CMB for any given pre-recombination physics and should be kept unaltered. This means that if the redshift at which the sign-flip in the DE density occurs is slightly below the anomalous Ly-$\alpha$ at effective redshift $z\approx2.34$, it is quite conceivable that a dynamical DE possessing negative energy density mitigates both the $H_0$ and Ly-$\alpha$ discrepancies. The observational analysis of the gDE strongly favors a scenario in which the sign change of the gDE density is so swift it is practically identical to the cosmological constant phenomenologically flipping its sign much like the step function, except that $\Lambda<0$ in the past. It arises as a limiting case $\lambda\rightarrow-\infty$ of the gDE such that $\rho_{\rm gDE}(a)\rightarrow \rho_{\rm gDE,0}{\rm sgn}[f(a)]$ where sgn is the signum function. This limit has been comprehensively studied under the name of the $\Lambda_{\rm s}$CDM model in Akarsu \textit{et al}. [Phys. Rev. D 104, 123512 (2021)] where the late-time accelerated expansion is driven by $\Lambda_s\equiv\Lambda_{\rm s0}{\rm sgn}[z-z_{\dagger}]$ with $z_\dagger$ being the switching redshift rather than the usual $\Lambda$. The confrontation with the data sets encompassing CMB, Pantheon SNIa with and without SH0ES $M_B$ priors and BAO, shows that $\Lambda_{\rm s}$CDM simultaneously ameliorates six of the present significant tensions, namely $H_0$, $M_B$, $S_8$, Ly-$\alpha$, $t_0$ and $\omega_b$ tensions.
-
ÖgeSynthesis, temperature sensing and white light production properties of the lithiumniobate and tungstenoxide modifed TeO2+Yb2O3+Er2O3 optical glasses(Graduate School, 2022) Konca, Güliz ; Eryürek, Gönül ; 741241 ; Physics EngineeringTellurium-based glasses doped with rare earths (RE) have been studied in recent years from various aspects due to their many important optical and physical advantages. In this study, glass materials were obtained by synthesizing Yb3+/Er3+ doped TeO2- WO3-LiNbO3 lattices with different ratios by melting method. The lattices of our glass materials were modified by increasing the Er3+ ion concentration. The up-conversion mechanism under 980 nm laser excitation, absorption properties, optical band gaps and Urbach energies in the range of 200-1100 nm, luminescence properties, thermal properties and white light parameters in the wavelength range of 400-850 nm, and the variation of rare earth ions as a function of concentration were investigated. The transitions of Er3+ ions from their ground state, which is 4I15/2, to different excited states, such as 4F3/2,5/2, 2H11/2, 4S3/2, 4F9/2, 4I11/2, were observed. At laser excitation of 400-850 nm, the emission bands 2H11/2-4I15/2, 4S3/2-4I15/2, 4F9/2-4I15/2 and 4I9/2-4I15/2 UC of Er3+ ion transitions were observed. It was found that there were small differences in the measured color parameters of the TWL glasses with increasing power. When comparing the TWL glasses as a function of concentration changes, it was found that the Er3+ concentration shifted slightly from the red to the green range with increasing power. In the optical thermometry study, measurements could be made on the TWL1, TWL2 and TWL3 glass samples. In these measurements, two green emission bands, ~527 nm and ~551 nm, were observed. It was found that the intensity at the 2H11/2→4I15/2 transition at 300 K was quite low compared to the 4S→4I transition at 573 K. On study aims to contribute to the literature on the fabrication of Er3+/Yb3+ doped TeO2-WO3 glass materials, the design of photonic devices, and the development of temperature and light sensors.
-
ÖgeStructural, optical and mechanical properties of polyacrylamide hydrogels doped with multiwalled carbon nanotubes(Graduate School, 2022) Öztürk, Mert Can ; Aktaş Kaya, Demet ; 725977 ; Physics Engineering ProgrammeHydrogels are two or multi-components systems made up of a three-dimensional network of polymer chains and water fillings the gap between macromolecules. Depending on the characteristics of the polymers utilised, and the type and density of the network joints, such structures in equilibrium can comprise varying quantities of water; in the swollen state, the weight percentage of water in a hydrogel is generally considerably larger than the weight percentage of polymer. On the other hand, carbon nanotubes (CNT) are one of the most intriguing novel materials in the last three decades. CNTs are hollow carbon tubes in nanometer sizes. They create a new form of carbon equivalent in configuration to a graphite sheet wrapped in a nanometer-sized hollow tube. It can be synthesized in sizes ranging from a few microns to several nanometers and in the thickness of many carbon layers from single-walled (SWCNT) to multi-walled (MWCNT) structures. The unique structure of these nanotubes gives them properties such as electrical and thermal conductivity, strength, hardness and toughness. CNT's mechanical properties have been extensively researched, both theoretically and experimentally. Measurements were taken using a 'nanostressing stage' inside a scanning electron microscope (SEM) indicating that the Young's modulus of MWCNT's outermost layers ranged from 270 to 950 GPa. Single nanotube tensile strengths were also determined, with values ranging from 11 to 63 GPa. CNT dispersion is critical for manufacturing high-quality nanocomposites because nanotube dispersion has such a large impact on suspension quality. CNTs readily agglomerate, bundle, and entangle, resulting in a plethora of defect sites in composites and a reduction in CNT efficiency. When all accessible CNTs are evenly dispersed in the host matrix, a good distribution is achieved. Mechanical parameters that fall short of theoretical expectations are mostly due to poor distribution and limited interfacial load transmission among CNTs and the polymer matrices. The mechanical characteristics of nanocomposites are influenced by interfaces in particular. Mechanical interlocking, chemical bonding, and the van der Waals force are three interfacial load transfer techniques that have been identified. Inadequate load transference across CNT and polymer chains may result in interfacial slippage and low mechanical strength and stiffness unless the interface is carefully built. When there is no interfacial load transmission, nonlinear stress–strain behavior is expected. CNTs have been widely explored as a novel nanomaterial because of their remarkable electrical conductivities and mechanical qualities. The inclusion of CNTs in the hydrogel matrix could result in a resilient and electrically conductive hydrogel due to their nano-reinforcement and intrinsic conductivity. The preparation procedure, however, is extremely complex due to the CNTs' inherent hydrophobic nature, restricting their application and even reducing the hydrogel's tensile strength. Studies continue on hydrophobic linkages and π-π interactions to better disperse CNTs in the hydrogel matrix. For example, adding oxidized multi-walled carbon nanotubes (oxCNTs) to the PAAm hydrogel results in a hydrogel with high sensitivity, self-recovery, mechanical strength, and stretchability. Gelatin was employed to functionalize the oxCNTs via hydrogen bonding among carboxyl groups on the oxCNTs and hydroxyl, carboxyl groups in the gelatin chain to minimize oxCNT aggregation in the hydrogel mesh. The PAAm-oxCNTs hydrogel was then created by polymerizing AAm free-radically in the presence of an initiator and a chemical crosslinker. The hydrogel's backbone was chemically cross-linked PAAm, and the oxCNTs successfully increased the mechanical characteristics via the nano-enhancement effect. Furthermore, the hydrogel's mechanical characteristics were improved by physical interplays amongst oxCNTs, gelatin, and PAAm. It has increased stretchability and tensile strength and exhibits rapid self-recovery behavior. Furthermore, the hydrogel's mechanical characteristics were improved by physical interactions between oxCNTs, gelatin, and PAAm. The oxCNTs in the hydrogel also contributed to the strain sensing activity by generating conducting routes in the hydrogel. Unlike the literature, in this thesis study, homogeneous distribution of CNTs in pure PAAm hydrogels was observed for the first time. These results are very important in terms of literature for the development of new high quality, conductive and mechanically durable composite systems. The universality class, which shares critical exponents and other universal properties, encompasses a wide range of systems and models with continuous phase transitions in composite systems. Monomers are thought to locate to the corners of a periodic lattice in percolation theory. The ends connecting these corners at any instant, namely chemical bonds, are given with the probability p. The gel point is defined by the percolation threshold p_c at the thermodynamic limit where the infinite set begins to form. Around the percolation threshold, many percolation properties obey the scaling law regardless of network structure and microscopic details. Thus, the scaling laws for the gel fraction, G(p) and mean cluster size, S(p) around the threshold value are obtained. G(p)≈(p-p_c )^β , p>p_c S(p)≈(p_c-p)^(-γ) , p
-
ÖgeTesting spatial curvature and anisotropic expansion of the universe on top of the lambda-ACDM model(Graduate School, 2022) Özyiğit, Maya ; Akarsu, Özgür ; 766671 ; Physics Engineering ProgrammeIn this thesis, we explore the possible advantages of extending the standard $\Lambda$CDM model by more realistic backgrounds compared to its spatially flat Robertson-Walker (RW) spacetime assumption, while preserving the underpinning physics; in particular, by simultaneously allowing non-zero spatial curvature and anisotropic expansion on top of $\Lambda$CDM, viz., the An-$o\Lambda$CDM model. This is to test whether the latest observational data still support spatial flatness and/or isotropic expansion in this case, and, if not, to explore the roles of spatial curvature and expansion anisotropy (due to its stiff fluid-like behavior) in addressing some of the current cosmological tensions associated with $\Lambda$CDM. We first present the theoretical background and explicit mathematical construction of An-$o\Lambda$CDM. We replace, in the simplest manner, the spatially flat RW spacetime assumption of the $\Lambda$CDM model with the simplest more realistic background that simultaneously allows non-zero spatial curvature and anisotropic expansion; namely, considered the simplest anisotropic generalizations of the RW spacetime, viz., the Bianchi type I, V, and IX spacetimes (having the simplest homogeneous and flat, open, and closed spatial sections, respectively) combined in one Friedmann equation. Then we constrain the parameters of this model and its particular cases, namely, An-$\Lambda$CDM (allowing anisotropic expansion), $o\Lambda$CDM (allowing non-zero spatial curvature), and $\Lambda$CDM, by using the latest data sets from different observational probes, viz., Planck CMB(+Lens), BAO, SnIa Pantheon, and CC data, and discuss the results in detail. Ultimately, we conclude that, within the setup under consideration, (i) the observational data confirm the spatial flatness and isotropic expansion assumptions of $\Lambda$CDM, though a very small amount of expansion anisotropy cannot be excluded, e.g., $\Omega_{\sigma0}\lesssim10^{-18}$ (95\% C.L.) for An-$\Lambda$CDM from CMB+Lens data, (ii) the introduction of spatial curvature or anisotropic expansion, or both, on top $\Lambda$CDM does not offer a possible relaxation to the $H_0$ tension, and (iii) the introduction of anisotropic expansion neither affects the closed space prediction from the CMB(+Lens) data nor does it improve the drastically reduced value of $H_0$ led by the closed space.
-
ÖgeNon-relativistic gravity theories and their relations to multi-metric theories(Graduate School, 2022) Şenışık, Cemal Berfu ; Kahya, Emre Onur ; 770975 ; Physics Engineering ProgrammeLie algebra expansion is an exciting method to obtain higher dimensional algebras and using this method one can write some interesting non-relativistic gravitational theories beginning from the Poincaré algebra. This method was first developed by Hatsuda and Sakaguchi (2003) and has been used in many other studies. In this work, we will first give a brief introduction to the gauge theories, which are seminal for understanding gravitational theories in depth, especially the algebraic structure of gravitational theories. Note that this is crucial for many gravity theories, such as supergravity. After that, we will study the general aspects of differential geometry shortly. This will give us the main mathematical framework to study gravity as a gauge theory. Thirdly, we will try to understand the theories of gravity, especially general relativity, as a gauge theory. After a simple introduction to the second-order formalism of GR, we will define the first-order formalism and its action. In the last part of this section, we will obtain GR beginning from the Poincaré algebra and by gauging this algebra. At last, we will give the definition of Newton-Cartan theory, its conditions, and its action. We will first show that this theory can be obtained from an algebraic point of view, i.e. by using Lie Algebra Expansion. We will also give the method, which is based on Ekiz et al. (2022), to obtain the same results by contraction of a multi-metric theory.
-
ÖgeInvestigation of thermal conduction in microcontacts created by indentation(Graduate School, 2022) Uluca, Ahmed ; Özer, Hakan Özgür ; 509191101 ; Physics Engineering ProgrammeThermal contact conduction has been investigated on different scales for many practical and scientific motivations in the literature. Demands for engineering the interfaces are increasing for accurately managing the contact mechanics and heat transfer with miniaturization of the electronics devices. In this study, microcontacts, that are created by indentation, have been investigated with experimental, simulation, and analytical works. The spreading resistance perspective of the disc constriction case has been extended for the studied highly plastic microcontacts of indentation. Creating the microcontacts and investigating the conductance through them had been realized by indentation of metallic surfaces by specially prepared diamond micro-particles/indenters. Thermal measurements had been realized by mounting thin thermocouples on diamond tips. The experimental setup is home-built with commercial piezo, motor, DAQ utilities, and other miscellaneous devices. PC User Interface and Intercessor Microcontroller Unit had been programmed to properly manage to conduct experiments. Furthermore, to measure the resistance, we employed an oscillatory experimental procedure and lumped analysis of transient heat transfer. The application of oscillations at different indentation depths has enabled us to extract the RC behavior of the microcontacts created by high plastic deformation. Therefore, the time constant of the contacts can be obtained. Additionally, we could find an effective measure of the thermal diffusivity of the contact through the diamond tip by fitting the change of time constant to depth with the proposed modified constriction models. Moreover, to analyze and predict the change of the time constant with respect to depth and load, several simulations and calculation work had been pursued. The increase in the contact area by indenter penetration into the sample has been concerned to be suppressed by gradient occurrence along the tip-sample contact. Moreover, with help of the simulations, we deduced the effect of plasticity such as pile-up on the improvement of the indentation contact for the heat transfer can be effective. Consequently, for the first time, we conducted the periodic contact procedure for the thermal contact of single micro asperity of indentation. The periodic experimental procedure and fin efficiency application to spreading cases for single microcontact are unique parts of this work. Results with the diamond tip on three different metallic samples showed that the gradient occurrence along the indentation contact can be analyzed with the fin solutions of the literature. Experimental results were fitted properly to a unified function of conic fin and spreading resistance functions. In addition, parameters of the fits can be deduced for the conductivity and interface conductance. However, state of the results are not sufficient to exactly determine the contact and material parameters due to need for exact parameters for transient analysis and, uncertainties in the properties of the tip and samples. With help of more precise thermal measurements and indenter systems, this experimental procedure may provide further advances and ease in the investigation of the thermal contacts of many different materials and scales. In addition, for the solid-state thermal interface materials solutions, we deduce that investigation of the geometry optimization for pressure and heat transfer as indicated in this thesis would provide insights into the bottlenecks of the contact heat transfer. Specifically, the gradient occurrence and its effectivity on the overall contact heat transfer should be taken into account for the indentation contacts while improving the contact by plasticity.
-
ÖgeHo(1-x)ErxNi2B2C yapısında gözlemlenen burgaç oluşumu(Lisansüstü Eğitim Enstitüsü, 2022-01-11) Gündoğdu, Sultan Süleyman ; Ramazanoğlu, Mehmet Kerim ; 509171117 ; Fizik MühendisliğiNadir toprak elementlerinin farklı oranlardaki katkılanmaları ile Ho(1-x)ErxNi2B2C (x = 0, 0.25, 0.50, 0.75, 1) tek kristal numunelerdeki manyetik düzen gerek manyetizasyon deneyleriyle gerekse nötron difraksiyon deneyleriyle incelenmiştir. Kristal yapıda olan numunelerimizden nötron deneyleri sırasında güçlü sinyaller elde edebilmek adına elimizdeki birden çok tek kristalin birlikte yönlendirilmesi, Laue X-ışını ölçümleriyle, Kanada'da (Hamilton, Ontario) McMaster Üniversitesi bünyesinde bulunan Brockhouse Institute for Materials Research (BIMR)'de yapılmıştır. Manyetizasyon ve manyetik duygunluk ölçümleri de yine aynı enstitünün PPMS (Physical Properties Measurement Systems), yani Fiziksel Parametreler Ölçüm Düzeneği, manyetik ve Küçük Açı Nötron Saçılması KANS (Small Angle Neutron Scattering, SANS) deneyleri ise Washington DC, ABD'de kurulu bulunan National Institute of Standards and Technology (NIST) enstitüsünün nötron kısmı olan NIST Center for Neutron Research (NCNR) laboratuvarında sırasıyla BT-9, NG-7, NG-5 ve BT-7 deney mahalleri (beam-line) kullanılarak gerçekleştirilmiştir. Geçiş sıcaklığı, R2CuO4 süperiletken bileşiğinde, R'nin Er ve Ho olduğu durumlar için yaklaşık 10 K'dir. Ne var ki, bu malzemeleri asıl ilginç kılan husus, bunların, içlerinde tam da bu sıcaklıklar civarında bir manyetik düzen oluşturmalarıdır. Nadir toprak kısmın yapısına bağlı olmakla birlikte süperiletkenlik ile manyetizma arasındaki bağlaşma, yeniden girilen süperiletkenliğin oranlı ve oransız antiferromanyetizma ile eşzamanlı olarak varolmasından tutun da zayıf bir ferromanyetik düzen ile tamamıyla oransız antiferromanyetik bir spin modülasyonunun birlikte varolmasına kadar çeşitli fazların oluşmasına sebebiyet verir. Tüm bu fazlar süperiletkenlik ile eşzamanlı olarak varolurlar. "Saf" bileşiklerdeki manyetik düzen RKKY manyetik etkileşmesi ile açıklanmış olup katkılı numunelerdeki manyetik yapıyla saf numunelerin manyetik yapıları üzerinde yapılan nötron saçılması deneylerinin sonuçları da karşılaştırılmıştır. Saf Ho yapısında Er katkısının artmasıyla 1. Derece düzenli fazdan 3D XY düzen değerlerine doğru bir değişim gözlemlenmiştir. Özellikle Er katkısının oranı 0.75 olduğunda manyetik pik diğer numunelerden daha farklı bir yansıma oluşturmuş ve bu pik, daha önce başka bir araştırmada R2CuO4 (R = Nd ve Pr) kuantum mıknatısında gözlemlenmiş olan manyetik tepe profiline benzetilmiştir.
-
ÖgeDynamical system analysis of cosmological inflation models with axion-like-particles (ALP)(Graduate School, 2022-01-13) Çağan, Sermet ; Arapoğlu, Savaş A. ; 509181126 ; Physics EngineeringInflation theory, developed in 1980 by Alan Guth, solves the two biggest problems of the standard Big Bang cosmology called flatness and horizon problem. The flatness problem essentially is a fine-tuning of the initial value of the energy density problem. The name itself comes from the relation between energy density to critical energy density ratio and curvature parameter. From current observations, we know that the deviation of the ratio of the energy density of the content of the universe to the critical energy density from unity is of the order $O\left(10^{-3}\right)$. Extrapolating this deviation back in time reveals that, in order to satisfy current observations, the value of the energy density has to be in agreement with the critical energy density of the order $O\left(10^{-62}\right)$. Therefore this extreme sensitivity to initial conditions arises the flatness problem. The horizon problem is the problem regarding the inexplicability of isotropy and homogeneity in the observed cosmic microwave background radiation (CMBR/CMB). CMB is almost uniformly in agreement on temperature distribution with $T \approx 2.7\ \text{K}$. One important fact of the CMB is that it contains regions that are separated by a distance larger than the particle horizon. Particle horizon is the definition of distance that light can reach from the start of the universe until now. Thus, regions or simply points in space-time that are separated more than the particle horizon are called causally disconnected regions. Causally disconnected points can never contact each other or ever be in contact previously. Therefore, CMB having causally disconnected patches that are almost in thermal equilibrium arises the question of how are the causally disconnected patches can reach a thermal equilibrium without the possibility of information exchange. Inflation theory solves those two major problems by introducing an exponential accelerated expansion in the very early universe before the start of the Big Bang theory. This accelerated expansion eventually reveals that there is no need for extreme fine-tuning of initial conditions on the energy density. Furthermore, the theory explains the horizon problem as rapid early accelerated expansion separates regions that were actually in causal contact but now seems to be causally disconnected, by the process called shrinking Hubble radius. There is no shortage of cosmological inflation theory models in the literature, starting from the original inflation theory model called chaotic inflation with squared potential to string theory motivated axion monodromy inflation. Axions are hypothetical pseudo-Nambu-Goldstone bosons that are emerged from solution to the CP problem, introduced by R.D. Peccei and H. Quinn in 1977. Axions in cosmology are regarded as the scalar field that enjoys the shift symmetry, i.e. $\phi \rightarrow \phi + \text{const}$ which solves the UV sensitivity of slow-roll inflation models. Cosmological inflation models can be examined by employing a mathematical method called dynamical system analysis. In this thesis, we tried to work out dynamical system analysis of two main axion-like inflation theory models in the linear stability analysis framework. In linear stability analysis, one defines meaningful model variables so that the evolution of said dynamical variables can be written in terms of the defined variables, i.e. there is no explicit dependence on the independent variables of the dynamical variables. This differential equation system building is called an autonomous equation system. Solution of the autonomous equation system yields several or no critical points of the system that the behaviour of mentioned critical points in the phase space can be understood by examining the eigenvalues of the evaluated Jacobian matrix at critical points of the autonomous system. There is more advanced method to determine the behaviour of critical points that fails to be determined in linear stability analysis but the scope of this thesis does not include them and further discussion on the reason for not including them is clarified in the thesis. We started with the linear stability analysis of a single scalar field having a natural inflation potential with several couplings to the gravity sector of the model. The analysis showed that having a cosine potential form is problematic in the definition of linear stability analysis therefore, we approximated to chaotic-like one. Results showed that in most of the configurations the critical points of the phase space behaves as an unstable point and in other cases linear stability theory fails to determine its behaviour. Moreover, we continued the analysis on the non-Abelian gauge field inflation model with extra scalar introduced to the model as an axion-like particle field with several different potential settings. We omitted the couplings to the gravity sector in this model for simplicity since most of the complexity comes from those said couplings and further difficulty comes from the fact that the model now has a multi-field form by definition. In a scenario where the extra scalar field is free, i.e. zero potential, with $F^{2}$ term has the coupling with the axionic field does not provide an inflationary period and by changing the potential to different forms, i.e. exponential, chaotic and general monomial we have found that in exponential case all critical points of the autonomous equation system becomes unstable and in chaotic-like and general monomial setting, none of the points' behaviour can be determined by linear stability analysis. The final attempt of linear stability analysis to axion-like field models was made to save the zero potential case by instead of coupling axion-like field to $F^{2}$ term we coupled it to a $F^{4}$ term which automatically solves the problem of not having an inflationary period since now the extra contribution coming from the $F^{4}$ has the equation of state parameter value of minus one. Although inflationary period is saved, linear stability method suffers from the non-minimal couplings since in order to observe the effect of newly introduced term one needs to use the same dynamical variables defined in the $F^{2}$ model, and while most of the equations can be written in required form, some explicit dependence to the coupling functions makes the model non-closed therefore none examinable with the same variables. Therefore, a direct comparison between those two models can not be made without defining a new variable set. As a result, we learned that the examination of axion-like cosmological model is not viable utilizing the dynamical system analysis with linear stability analysis constraint.
-
ÖgeElektron demeti buharlaştırma yöntemi ile hazırlanmış tungsten oksit ince filmler üzerine detaylı bir çalışma: Elektrokromik cihaz üretimi ve karakterizasyonları(Lisansüstü Eğitim Enstitüsü, 2022-03-15) Evecan, Dilek ; Zayim, Esra ; 509112108 ; Fizik MühendisliğiSon yıllarda, akademik ve endüstriyel araştırmacılar, uygulama açısından hızla gelişen elektrokromik (EC) malzeme ve cihaz teknolojilerine gün geçtikçe artan bir ilgi duymaktadır. Elektrokromik cihazlar, uygulanan düşük voltajla renklerini tersinir olarak değiştirebilirler ve bu teknoloji, akıllı camlar, parlamayı önleyici araba dikiz aynaları, akıllı güneş gözlükleri, elektrokromik enerji depolama cihazları ve ekran uygulamaları gibi birçok alanda umut verici olması nedeniyle önem kazanmaktadır. En yaygın uygulama alanlarından biri olan elektrokromik pencereler (akıllı pencereler), odaya giren güneş ışığı miktarını ayarlayarak binalarda enerji tasarrufu sağlayan önemli bir teknoloji haline gelmiştir. Enerji tüketiminin önemli bir kısmı, yaklaşık yüzde kırktan fazlası binalarda ısıtma ve aydınlatmada kullanılmaktadır. Enerji verimliliği açısından binalarda akıllı cam sistemlerinin kullanılması iç mekân konforu ve az enerji tüketimi gibi avantajlar sağlamaktadır. Gelecekte artan bir talep ile mevcut cam sistemlerinin yerini, çoğunlukla elektrokromik olmak üzere akıllı cam sistemlerine bırakması beklenmektedir. Yüksek ticarileşme potansiyeli, enerjinin verimli kullanılması gibi sebeplerden dolayı özellikle tungsten oksit tabanlı elektrokromik cihazlara olan ilgi her geçen gün artmaktadır. Elektrokromik cihazın aktif tabakası olarak kullanılan tungsten oksit, gösterdiği üstün elektrokromik performansından dolayı, üzerinde en çok çalışılan malzemelerden biri olmuştur. Tersinir olarak renk değişiminin önemli olduğu ileri teknoloji sistemlerinde kullanım için yüksek optik modülasyonlu elektrokromik cihaz üretimi daha da önem kazanmaktadır. Bu tezin amacı, ticarileşmeye başlayan, yakın gelecekte farklı uygulama alanları bulacak olan ve gelecek vadeden tungsten oksit ince film tabanlı tersinir, kısmen hızlı yanıt süresine sahip, yüksek optik kontrastlı ve yüksek verimlilikte elektrokromik cihazların üretilmesi, karakterizasyonu ve geliştirilmesidir. Ekonomik, homojen ve yüksek saflıkta elektrokromik ince film yapılarını üretmek, büyük ölçekte elektrokromik akıllı camlarda kullanımı ve gelecekteki uygulama alanları açısından önemlidir. Kaplama yöntemi ve kaplama parametreleri film kalitesini etkileyen en önemli unsurlardır. Bu çalışmada son yıllarda daha sık kullanılmaya başlanan ve fiziksel kaplama yöntemlerinden biri olan elektron demeti buharlaştırma yöntemi uygulanmıştır. Bu yöntemin diğer yaygın kullanılan fiziksel yöntemlere göre üstünlüğü, toz numunelerden (genellikle pelet halinde) yüksek saflıkta ince filmlerin üretilmesi sayılabilir. Elektron demeti buharlaştırma yöntemi, hedef malzemeleri yüksek bir sıcaklığa kadar ısıtabilmekte ve ayrıca yüksek kaplama hızlarına ulaşmaya ve yüksek erime noktalı metalleri kolayca buharlaştırmaya olanak sağlamaktadır. Bu şekilde maliyeti yüksek hedef malzemesi alımı, kompozisyonun değiştirilememesi gibi zorluklar elimine edilebilirken, yüksek saflıkta ve kalitede ince filmler üretilebilmektedir. Bu çalışmada amaç, anahtarlama hızı, renklenme etkinliği gibi parametreleri optimize edilen elektrokromik cihazlar için, elektron demeti buharlaştırma yöntemi ile homojen ve amorf tungsten oksit ince filmlerini oluşturmaktır. Kaplanan filmlerin elektriksel, optik ve elektrokimyasal ölçümleri ve katı kromojenik cihazda kullanımı incelenmiştir. İlk aşamada ticari tungsten oksit tozu kullanılarak elektron demeti buharlaştırma yöntemi ile üretilen WO3-x ince filmlerin XRD, SEM, EDS, AFM, NKD, EIS, CV ve CA ölçümleri ile yapısal, optik ve elektrokimyasal karakterizasyonları detaylı olarak incelenmiştir. X-ışını kırınım desenleri, filmlerin amorf olduğunu göstermektedir. Amorf tungsten oksit ince film yapısının elektrokromik cihazlarda kullanımı avantaj sağlamaktadır. Üretilen ince filmlerin kalınlıkları, profilometre ve SEM ölçümleri ile belirlenmiştir. Bütün karakterizasyonlarda, üç elektrotlu sistemde ve katı EC cihaz yapımında kullanılan WO3-x filmlerin kalınlığı ~200 nm'dir. SEM ölçüm sonuçlarına göre e-demeti buharlaştırma yöntemi ile kaplanan filmler yüksek homojenliktedir. Optik, elektriksel ve elektrokimyasal karakterizasyonlar, akıllı sistemlerin farklı koşullarda kullanımı için önem taşımaktadırlar. Bu nedenle homojen ve amorf tungsten oksit ince filmlerin sıcaklığa bağlı elektriksel özellikleri, spektrofotometre ve NKD analizörü ile geniş bir spektrumda optik özellikleri incelenmiştir. DC tip elektriksel ölçümlerde incelenen tüm örnekler için omik bir davranış görülmüştür. Üç elektrot sisteminde (LiClO4/PC sıvı elektroliti kullanılarak) dönüşümlü voltametri ve kronoamperometri ölçümleri ile tungsten oksit ince filmlerin elektrokromik özellikleri ayrıntılı olarak araştırılmıştır. Bu ölçümler neticesinde yapının kararlı olduğu, sırasıyla 10 ve 4 saniyelik renklenme ve saydamlaşma anahtarlama süresi gösterdiği gözlemlenmiştir. Bu sistemde yapılan ömür testlerinde 100 çevrimin sonunda elde edilen CA eğrilerinde ciddi bir değişime rastlanmamıştır. Ayrıca hafıza etkisi incelendiğinde filmin rengini açık devrede ve oda şartlarında 1,5 saat koruduğu, bu süre sonunda yaklaşık % 1 optik geçirgenlik farkı oluştuğu görülmüştür. Optiksel ölçümler sonucunda 630 nm'de % 68,7 optik geçirgenlik farkı gözlemlenmiştir. Filmlerin renklenme verimliliği, 52,6 cm2/C olarak hesaplanmıştır. Sonraki aşamada ticari tozlardan üretilen tungsten oksit filmler kullanılarak katı EC cihaz yapımına geçilmiştir. Üretilen katı cihazlar, geçirgen iletken elektrot olarak indiyum kalay oksit kaplı cam, katodik renklenen malzeme olarak tungsten oksit ve elektrolit olarak ise LiClO4-PC-PMMA bazlı iletken jel içermektedirler. Buna göre Cam /ITO/WO3-x/Jel Elektrolit/ITO/Cam sandviç yapısına sahip katı cihaz üretimi yapılmıştır. Katı cihazın elektrokimyasal ölçümleri ± 3,2 V potansiyel aralığında test edilmiştir ve 630 nm dalga boyunda optik kontrastının yaklaşık % 48,1 olduğu görülmüştür. Ardından çoklu çevrim için tasarlanan cihazın ömür testi yapılarak cihazın renk değişiminin 600. çevrimde de tersinir olarak devam ettiği gözlemlenmiştir. Sonraki aşamada Cam/ITO/WO3-x/Elektrolit/PANI/ITO konfigürasyonunda olmak üzere LiClO4-PC-PMMA bazlı iletken jel ve Nafyon elektrolit kullanılarak farklı cihaz üretimleri yapılmıştır ve sırasıyla 124 cm2/C ve 173 cm2/C renklenme verimliliği elde edilerek cihaz performansında artış olmuştur. EC cihazların yapımı için tungsten oksit tozu üretmek ekonomik açıdan önemlidir. Birçok yöntem arasında çözelti yanma sentezi (SCS) yöntemi, sahip olduğu avantajlar neticesinde öne çıkmaktadır. Bu yöntemin en büyük avantajı, nano boyutlu oksitlerin hazırlanmasındaki kolaylıktır. En fazla çalışılmış EC malzeme olan tungsten oksitin EC özellikleri üzerine kapsamlı araştırmalar yapılmış olmasına rağmen, akıllı cam uygulamaları için elektron demeti buharlaştırma yöntemi ile hazırlanmış tungsten oksit ince film çalışmaları sınırlı sayıdadır. Bu nedenle, EC cihazında kullanmak üzere hazırlanan düzgün ve yüzeye iyi tutunan tungsten oksit ince filmler, kendi ürettiğimiz tungsten oksit tozundan e-demeti buharlaştırma yöntemi ile hazırlanmıştır. Yeni tozun ince filmlerin özellikleri üzerindeki etkisini gösterebilmek için, fiziksel ve morfolojik özellikleri, ticari tungsten oksit tozu ile hazırlanan ince film ile karşılaştırılmıştır. SCS yöntemi ile sentezlenen ve ticari tungsten oksit tozlarından e-demeti buharlaştırma yöntemi ile hazırlanan ince filmler (~150-200 nm) cam ve ITO kaplı cam altlıklar üzerine kaplanmış ve SEM görüntüleri filmlerin homojen ve düzgün yapıda olduğunu göstermiştir. Filmlerin EC özellikleri incelendikten sonra sentezlenen tungsten oksit tozu ile katı EC cihaz üretimi yapılmıştır. Yüksek optik geçirgenlik modülasyonuna (550 nm'de % 63) sahip Nafyon elektrolit ile hazırlanan ve tüm katmanları katı halde EC cihazının elektrokimyasal ve optik özellikleri incelenmiştir. Bu çalışma, EC aktif tabaka için çözelti yanma sentezi yöntemiyle sentezlenen nano boyutlu, yüksek saflıkta tungsten oksit tozundan üretilen ince filmlerin ayrıntılı olarak incelenmesinde öncü çalışmalardan biridir. Böylece bu çalışma istenilen boyutta ve kompozisyonda tozların sentezlenmesine olanak sağlayan SCS yöntemiyle sentezlenmiş tungsten oksit tozunun kullanımını mümkün kılan ve e-demeti buharlaştırma yöntemi ile hazırlanan filmlerle daha ekonomik, enerji verimli EC aktif malzeme ve cihazlarının geliştirilmesi ve tasarlanması için bir temel sağlamaktadır. En son aşamada ticari tungsten oksit tozu kullanılarak elektron demeti buharlaştırma ile hazırlanan ince filmlerin dielektrik özellikleri farklı sıcaklıklarda frekansa bağlı incelenerek yapı hakkında daha detaylı araştırma yapılmıştır. Deneysel sonuçlar, kaplanan filmlerin yapılarının çok düzgün ve homojen olmasından dolayı hem katı hem de sıvı elektrolit ile hazırlanan elektrokromik cihazların başlangıçta çok saydam olduğunu ve yapılarına rahat iyon girmesi nedeniyle mükemmel optik modülasyon ve renklenme etkinliği sergilediklerini göstermiştir. Ortaya çıkan en önemli bulgulardan biri, elektron demeti buharlaştırma yöntemi ile hazırlanmış tungsten oksit ince film tabanlı elektrokromik cihazların, diğer kaplama yöntemlerine göre göreceli olarak üstün performans göstermesidir. Bu nedenle, renk değişimi davranışının mükemmel tersinir olması elektrokromik enerji depolama cihazlarında ve gelecekteki birçok uygulama alanında kullanım için önemli olmaktadır. Bu tez, elektron demeti buharlaştırma yöntemi ile kaplanmış ince, homojen ve düzgün tungsten oksit film tabanlı katı elektrokromik cihazlara yönelik kapsamlı ve ayrıntılı bir çalışmadır. Ticarileştirmeye aday ve yüksek performanslı prototip elektrokromik cihazlar üretilmiş ve detaylı olarak karakterize edilmiştir. Bu çalışma, her geçen gün ticarileşme oranı artan akıllı cihazların mevcut ve gelecekteki uygulamaları için bir temel oluşturmaktadır.
-
ÖgeQuantum corrected correlation functions and power spectra of spectator scalar and inflaton fields during inflation(Graduate School, 2022-05-31) Karakaya, Gülay ; Önemli, Vakıf Kemal ; 509132104 ; Physics EngineeringThe inflationary cosmology not only explains apparently mysterious features of the universe like the flatness, horizon, and relic particle abundance problems, but also provides a natural mechanism to produce primordial density fluctuations that eventually lead to the cosmic structure formation. The primordial density perturbations are generated spontaneously from the quantum fluctuations of a scalar field, called inflaton, that drives the inflation. The physical origin of quantum fluctuations is the uncertainty principle that manifests itself as the virtual particle pair production out of vacuum. The observed anisotropies in the cosmic microwave background (CMB) are believed to be the amplified imprints of the fluctuations of an inflaton which later grow, due to gravitational instability, to become galaxies and clusters of galaxies. Variation of the amplitudes of fields with length scales is measured by the spectral index. Predictions of the inflation models for the spectral index and its variation with scale, quantified the by running of the spectral index, can be compared with observations to discriminate between the alternative inflation models. It is, therefore, important to study the correlation function and power spectrum of the quantum fluctuations to understand the distribution and the origin of large scale structure in the universe.
-
ÖgeProspects of nonresonant Higgs boson pair production measurement in the WWγγ channel at the HL-LHC with the phase-II CMS detector(Graduate School, 2022-06-02) Güzel, Ahmet Oğuz ; Çakır, Altan M. ; 509181120 ; Physics EngineeringSince the discovery of the Higgs boson in 2012 by the CMS and ATLAS experiments at the CERN's Large Hadron Collider in Geneva, Switzerland, physicists have tried to measure accurately its properties and to understand better the underlying electroweak symmetry breaking mechanism. In this pursuit, the search for Higgs boson pair production is crucial to test our understanding of the Higgs potential and to search for clues for the Beyond the Standard Model searches. This thesis describes the search for the Higgs boson pair production in decays to a W boson pair and a photon pair. The ττγγ channel of the Higgs boson pair decay is analysed alongside since an overlap is expected in the final states. Monte Carlo simulations of proton-proton collisions corresponding to an integrated luminosity of 3000 fb^-1 at a centre-of-mass energy of 14 TeV are used. The gluon-gluon fusion production mode of the Higgs boson pair is considered only. The Delphes fast detector simulation is used with an average pile-up of 200 per interaction with a dedicated card for Phase-2-upgraded CMS detector. A Python-based analysis library called Bamboo is used to perform the object selections and event categorisation in the data analysis of the study. Cut-flow tables reporting the number of events at each final state of interest are shown. Two binary Deep Neural Networks (DNN) are employed using the Keras API for TensorFlow machine learning library in order to increase the signal and background discrimination in the semi-leptonic final state of WWγγ and single τ final state of ττγγ channels. DNN score cuts are applied to each final state and the di-photon invariant mass distributions are obtained. The results are then used in the Higgs Combine Tool with the statistical and systematic uncertainties applied. The significance levels are reported for each final state along with their combination.
-
ÖgeTheoretical and observational aspects of inflationary cosmology(Graduate School, 2022-06-22) Akın, Kemal ; Arapoğlu, Savaş ; 509181112 ; Physics EngineeringA testable theory of the universe has come up with Einstein's theory of general relativity. Combination of the theory with fundamental physics has provided significant understanding of the universe in the light of modern cosmological observations. On the other hand, the success of the hot Big Bang and Λ-CDM relies on the existence of dark energy and dark matter which are beyond the standard model of particle physics. Another required extension is inflationary mechanism which was suggested as a resolution to shortcomings Big Bang such as horizon and flatness problems. However, the biggest success of the inflationary paradigm is to explain the generation of initial perturbations that are responsible for the structure formation in the universe. A scalar field, called inflaton, leads to a exponential expansion in the early stage of the universe. Although inflation is a very strong theory for the early universe, direct test of the theory is not possible due to extremely-high energy scales. Instead, inflationary models are tested against observations come from imprints of the primordial density perturbations. An important pair of parameters that comes from the observations are spectral index n_s and tensor-to-scalar ratio r. Many inflationary models rely on slow--roll mechanism in which the inflaton slowly rolls through its potential minima so that equation of state parameter satisfies the acceleration condition ω < -1/3. Slow--roll parameters are used to dictate such behaviour to the inflaton field. Besides, perturbations and therefore inflationary observables can be expressed in terms of slow--roll parameters. Despite the fact that various minimally coupled single field models are consistent with current observations, quantum field theory in curved space anticipates a non-minimal coupling of scalar field to curvature scalar R. In this study, inflationary dynamics within the context of general relativity and scalar--tensor theories of gravitation is investigated. In the minimally coupled case, inflaton with a potential of the form φ^n is studied. In the non-minimally coupled case, same model with a coupling F(φ) = 1 + ξ φ^2 to curvature scalar is examined. In order to study inflation in scalar--tensor theories, usually conformal transformations are used, and for convenience the analysis is performed in Einstein Frame. In addition to standard Einstein frame analysis, we also perform the analysis in the Jordan frame. The predictions of the models are compared with PLANCK dataset using CosmoMC.