LEE- Hidrolik ve Su Kaynakları Mühendisliği Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Çıkarma tarihi ile LEE- Hidrolik ve Su Kaynakları Mühendisliği Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
Ögeİstanbul Boğazı su seviyesi salınımlarına Tuna Nehri etkisinin belirlenmesi(Lisansüstü Eğitim Enstitüsü, 2021) Karsavran, Yavuz ; Erdik, Tarkan ; 695276 ; Hidrolik ve Su Kaynakları MühendisliğiBu çalışmada İstanbul Boğazı su seviyesi salınımları Tuna Nehri etkisi göz önünde bulundurularak araştırılmış ve ilave olarak İstanbul Boğazı'nın Çanakkale Boğazı'na gecikme zamanı ortaya çıkarılmıştır. İstanbul Boğazı, Karadeniz'in açık denizlere tek bağlantı noktası olması sebebiyle önemli bir su kütlesinin etkileşim noktası olmaktadır. Öyle ki, az tuzlu Karadeniz suları üst akım ile Marmara Denizi'ne taşınırken, daha tuzlu Marmara suları alt akım ile Karadeniz'e taşınmaktadır. Bu karışık durum içerisine lokal yağışlar, rüzgar (fırtına) ve atmosfer basıncı gibi yerel etkenler de eklenince İstanbul Boğazı su seviyesi bileşenlerinin tespit edilmesi ve su seviyesinin öngörülebilmesi oldukça zorlaşmaktadır. Boğaz'daki yalı vb. yerleşim alanları, su kirliliği, çevresel faktörler ve yoğun gemi trafiği nedeniyle su seviyesinin öngörülebilirliği önem arz etmektedir. Bunun yanında Boğaz'da sürekli su seviyesi ölçümü için istasyon kurulması ve gözlem yapılması pahalı olduğundan, su seviyesi bileşenlerinin tespit edilmesi ve mümkünse etki derecelerinin belirlenmesi gelecek vizyonu açısından önem arz etmektedir. Çalışmanın birinci aşamasında Karadeniz'e dökülen toplam tatlısu miktarının % 50'sine sahip Tuna Nehri'nin İstanbul Boğazı'na gecikme zamanı (ulaşım süresi) araştırılmıştır. Bu amaçla Tuna Nehri akımının, İstanbul Boğazı'nın Karadeniz girişindeki su seviyesi, sıcaklığı ve tuzluluk değerlerinin Fourier güç spektraları oluşturulmuştur. Güç spektraları üzerinden Tuna Nehri akım parametresi ile İstanbul Boğazı parametrelerinin etkileşimi araştırılmıştır. Burada Tuna Nehri debi ve İstanbul Boğazı parametreleri güç salınımlarının benzer eğilimlerde olduğu gözlemlenmiştir. Bunun yanında aynı parametreler için zaman serileri çizilmiş ve anlık eşleşmelerle iki ayrı zaman için Tuna Nehri'nin İstanbul Boğazı'na gecikme zamanları 67 ve 74 gün olarak hesaplanmıştır. Zaman serilerindeki eşleşmelerin Tuna Nehri kaynaklı olduğunun gösterilmesi açısından, aynı dönem için İstanbul Boğazı atmosfer basıncı, rüzgar ve yağış zaman serileri çizilmiş ve parametrelerdeki değişikliğin yerel meteorolojik nedenlerle gerçekleşmediği gösterilmiştir. Bu kısımda hesaplanan gecikme zamanları sonraki bölümde İstanbul Boğazı su seviyesi modellemelerinde Tuna Nehri verilerinin girdi olarak kullanılması için gereklidir. İkinci aşamada İstanbul Boğazı su seviyesini tahmin edebilen yapay zeka metodları geliştirilmiştir. Bu bağlamda yapay sinir ağları (YSA) ve destek vektör makineleri (DVM) modelleri geliştirilmiş ve başarı performansları karşılaştırılmıştır. Öncelikle mevcut verilerin regresyon tabanlı pareto grafiği ile Boğaz su seviyesine etki düzeyleri belirlenmiştir. Belirlenen etki düzeyleri esas alınarak toplam 11 adet girdi seti oluşturulmuş ve bu girdi setleri tüm YSA ve DVM modellerinde kullanılmıştır. Verilerin %70'i eğitim, %30'u ise test olarak kullanılmıştır. Model performansları korelasyon katsayısı (R) ve ortalama hata kareleri kökü (OHKK) ile değerlendirilmiştir. Sonuçlar Boğaz su seviyesi tahmininde YSA yönteminin DVM yönteminden daha başarılı olduğunu göstermiştir. Daha sonra en başarılı sonucu veren girdi setine Tuna Nehri debi parametreleri eklendiğinde ve YSA model tekrar uygulandığında R değeri kayda değer miktarda artmış ve OHKK değeri azalmıştır. Üçüncü aşamada İstanbul Boğazı ve Çanakkale Boğazı üst akım debi değerleri sürekli dalgacık dönüşümü (SDD) ile alt bileşenlerine ayrılmış ve sonrasında iki akım arasında çapraz dalgacık dönüşümü (ÇDD) uygulandığında 2-128 saatlik veriler arasında kuvvetli bir etkileşim olduğu gözlemlenmiştir. Buradan İstanbul Boğazı üst akımının Çanakkale Boğazı'na gecikme zamanının yaklaşık 5 gün olduğu anlaşılmıştır. Dördüncü aşamada İstanbul Boğazı üst akım debi değerleri kullanılarak dalgacık-yapay sinir ağları (D-YSA) modeli ile Çanakkale Boğazı üst akımı gelecek 3 güne kadar tahmin edilebilmiştir. Bu aşamada öncelikle girdi parametresi sayısı hassasiyeti belirlenmiş ve verilerin %70'i eğitim, %30'u test olarak kullanılmıştır. Model performansları determinasyon katsayısı (R2) ve ortalama hata kareleri kökü (OHKK) ile ölçülmüştür. Sonuçlardan anlaşılmaktadır ki; dalgacık dönüşümü ile veri işlenmesi adımı YSA model ile tahmin başarısını önemli ölçüde artırmaktadır. Bu kısımda yapılan araştırma sonuçları İstanbul ve Çanakkale Boğazları arasındaki dinamik etkileşimin ortaya çıkarılması açısından önem arz etmektedir.
-
ÖgeDisaggregation of future climate projection data to generate future rainfall intensity-duration-frequency curves to assess climate change impacts(Graduate School, 2021-04-03) Tayşi, Hüsamettin ; Özger, Mehmet ; 501171524 ; Hydraulics and Water Resources Engineering ; Hidrolik ve Su Kaynakları MühendisliğiA heavy increase in urbanization, industrialization, and population is causing an increase in emissions of greenhouse gases (GHG). Increment in GHG emissions causes variations in the atmosphere and in climate conditions. Climate change is one of the most serious reasons for extreme climate events such as high global temperature, extremely heavy rainfall events, and high evapotranspiration. According to many studies, climate change impacts will intensify in the future. As a result of this, heavy rainfall events tend to enhance. In our case extreme rainfall events, which are responsible for flooding events, were considered. Since flooding is influencing urban areas acutely, controlling and management of flooding is a major necessity for cities. Intensity-Duration-Frequency (IDF) curves play a huge role in representing rainfall characteristics by linking the intensity, duration, and frequency of rainfall. These curves give the expected rainfall intensity in duration (5, 10, 15, 30 min.; 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 hours) and in a return period (2, 10, 25, 50 and 100 years). Hence, IDF curves are used in many water-related applications such as water management, designing of infrastructure, drainage, culverts, gutters, and also flood forecasting. However, current IDF curves are generated based on historical rainfall events. These IDF curves are considered stationary since they only consider historical events. The increase in GHG leads to variations in climate, especially in rainfall behaviors. Thus, IDF curves must catch the changes in rainfall intensities, in other words, they must be non-stationary and time-varying based. This study updates IDF curves to assess future climate conditions. For the study, six meteorological stations from Istanbul (Florya, Goztepe, Sariyer, Sile, Omerli and Canta) were selected as study areas. As a consequence, cities will be prepared for upcoming extreme events, hence possible damages will be decreased. A Global Climate Model (GCM) HadGEM2-ES generated under RCP4.5 and RCP8.5 scenarios were used in the study to represent future rainfall in daily form. 1-min and hourly rainfall data were provided by the Turkish State Meteorological Service (TSMS). HYETOS disaggregation model was applied to both historical and future rainfall data to obtain sub-hourly data (also hourly for future rainfall). Since GCMs are not suitable to use directly due to biases, the distribution mapping method was selected as a bias-correction method. The Gumbel model was applied to annual maximum rainfall to generate IDF curves. Finally, historical and future IDF curves, IDF curves generated under RCP4.5 and RCP8.5, and also IDF curves generated using disaggregated historical data and observed IDF curves provided by TSMS were compared. The study concluded that rainfall intensities increase under RCP4.5 and RCP8.5 scenarios compared to historical IDF curves. Besides, RCP8.5 has higher rainfall intensities when compared to rainfall intensities of RCP4.5.
-
ÖgeExperimental study on interaction of unsteady flow with bridge piers with different cross sections(Graduate School, 2021-09-16) Gargari, Mehrnoush Kohandel ; Kırca Özgür, Veysel Şadan ; 501152502 ; Hydraulics and Water Resources EngineeringThe problem of interaction between a vertical cylindrical structure (such as a bridge pier or pile) and a gradually varying unsteady flow is addressed in this study. In practice not only circular cylinders, but also various hydraulically streamlined cross-sections are used in bridge piers. The flow structure around these obstacles are significantly altered which leads changes in bed shear stress and amount/geometry of scour that takes place around the bridge pier. In this thesis, the flow-pile interactions under the unsteady flow are investigated, and as such, the similarities and differences in comparison to the case of steady flow are determined. The spatial variations of Reynolds averaged velocity and turbulence characteristics around the cylindrical structures are determined as a useful tool to help us understand how the flow patterns in the wake of the cylinders reacts with change in the cross-sections both in unsteady and steady flows. Although many studies in the literature have dealt with the flow around similar structures, most of these studies are limited to circular cross-sections. Furthermore, due to the complex nature of unsteady flows, there is a gap in the literature regarding studying the effects of local and convective acceleration in the case of gradually-varied unsteady flows. The current experimental study will concentrate on the flow alterations in the wake of cylindrical structures with different cross-sections in the presence of unsteady flow (i.e. during the passage of a hydrograph) in help to fulfil the aforementioned knowledge gap in the literature. Therefore, in this thesis, an experimental study was conducted comprising rigid bed experiments in a 30m long and 1m wide recirculating flume equipped with a variable discharge pump. Circular cylinders with 9 cm diameter (D=9 cm) are used, and elongated cylinders with aspect ratios of L/D=2, 3 and 4 are also investigated. To understand the influence of accelerating and decelerating flow conditions, three unsteady cases with different unsteadiness degrees were tested as well as a reference steady flow case. The spatial and temporal variations of Reynolds-averaged velocity and turbulence characteristics around the pile, as well as undisturbed flow, were analysed. Findings show that there are distinct differences between the tested gradually-varied unsteady flow cases and the reference steady flow case. Three-dimensional velocity measurements were conducted via an Acoustic Doppler velocimeter (ADV) at more than 200 locations for each of the test conditions. Moreover, water level and hydraulics slope values were recorded by use of resistant-type water level sensors. The data were analyzed to obtain spatial and temporal variation of Reynolds-averaged velocities and turbulence characteristics (fluctuating components, Reynolds stresses, turbulent kinetic energy) under steady and unsteady flow case in a comparative manner. Findings show that there are distinct differences between steady and unsteady flow conditions around bridge piers. Considering circular bridge piers, the wake turbulence was observed to get significantly higher during the rising stage of the hydrograph compared to the falling stage, whereas the turbulence due to lateral flow contraction exhibits an inverse behavior. The near bed flow around the bridge pier was seen to react the changing pressure gradient much quicker compared to the main flow region, where the reaction was much delayed, causing a longer recirculation region during the falling stage of the hydrograph. It is concluded that the flow structures foreseen for steady flow becomes noticeably altered in the case of unsteady flow, and these alterations are suggested to be considered in the engineering practices. The Reynolds-averaged velocity vs. Turbulence kinetic Energy plots of undisturbed flow indicated a hysteresis effect, such that larger turbulence is generated during the falling stage of the flow compared to the rising stage. This hysteresis was considerably reduced in the pile wake, and even reversed hysteresis was seen at certain cases. The spatial variation of Reynolds-averaged velocity and turbulence in the peak instant of unsteady flow was qualitatively similar to that of steady flow, but quantitatively, turbulence, flow contraction, and velocity deficit in the near-wake region were smaller in the case of unsteady flow. Contrarily, the unsteady flow generated remarkably higher turbulence levels at further downstream in the pile wake. It is concluded that in the case of unsteady flow the pile behaves as if it has a more streamlined shape. The results were also interpreted from structure-bed interactions perspective, explaining the differences between the pile scour induced by steady and unsteady flow conditions.
-
ÖgeNumerical modelling of wave induced soil liquefaction around buried pipelines and cables(Graduate School, 2022-01-17) Yılmaz, Selahattin Utku ; Kırca, Özgür V. Ş. ; 501181532 ; Hydraulics and Water Resources EngineeringIn this thesis at first, the concept of soil liquefaction is researched in terms of physics, and the reasons & consequences of this phenomenon are investigated. Besides, the conditions (occurrence in which type of loadings, in which type of soils, and so on.) that cause this phenomenon is mentioned. In short, there are two different types of liquefaction failure of soil; residual and momentary liquefaction. Then, both type of liquefaction is mentioned. However, in this thesis, the residual liquefaction of soil is investigated for the design aspects of submarine pipelines and offshore cables. Besides, the effect of this phenomenon on the structures especially buried objects is scrutinized in many ways. Then generally, it is stated that the buried objects heavier than the liquefied soil sink deeper in the soil, while lighter objects float to the surface when the soil is liquefied. These are called sinking and floatation failures too. In addition, numerous articles and research about this failure are reviewed in the literature. In these researches, the mechanism of the marine soil, the liquefaction/compaction process of the soil (life cycle of the soil), the stress-strain relationship of the soil under loadings, and the relevant conditions (wave or earthquake loading, soil type, so on) are stated in this thesis as theoretical (with analytical & numerical models) and experimental works. Particularly, the disturbance effect on the soil by buried objects such as offshore pipelines/cables is scrutinized comprehensively based on the relevant articles.
-
ÖgePompaj depolamalı hidroelektrik santrallerin optimizasyonu(Lisansüstü Eğitim Enstitüsü, 2022-01-31) Gürsakal, Hasan ; Uyumaz, Ali ; 501082501 ; Hidrolik ve Su Kaynakları MühendisliğiEnerji, bir materyalde, bir maddede, bir hücrede bulunan iş yapabilme yeteneği ya da ortaya iş çıkarabilme gücüdür. Bir insanda, bir makinede, yüksek bir yerden akan suda her an için belirli bir iş yapabilme gücü, dolayısıyla belirli miktarda enerji vardır. Bir cismin, bir maddenin durumu, konumu, moleküler yapısındaki depolama ile bir potansiyel enerjiye sahiptir. Bu potansiyel enerji bir hareket, bir ivmelenme, kimyasal bir tepkime veya fiziksel bir değişim ile harekete geçerek kinetik enerjiye dönüşür. Dolayısıyla, harekete geçen cisim kitlesiyle ve hızıyla sahip olduğu potansiyel enerjisi kinetik enerjiye dönüşmüş olur ve bu durum da bir iş yapmış olur. Günümüzde enerji, endüstri ve teknolojinin gelişimini ilerletebilmesi için vazgeçilemez araçlardan biri olarak ön plana çıkmakta olup, üretim faaliyetlerinin sürdürülebilmesi için ana unsurların başında gelmektedir. Aynı zamanda toplumların sosyal ve ekonomik olarak kalkınmalarının en önemli gerekliliklerinden biri olan enerjinin artan dünya nüfusuna yetecek şekilde, uygun koşullarda temin edilebilmesi büyük önem arz etmektedir. Evlerde, işyerlerinde, okullarda, fabrika ve sanayi tesislerinde ihtiyaç olan elektrik gücünü temin edebilmek için enerji kaynaklarının elektriğe dönüştürülmesi gerekmektedir. Petrol, doğalgaz, kömür gibi fosil kaynaklar ile rüzgar, güneş, su, jeotermal gibi yenilenebilir enerji kaynakları çeşitli elektrik üretim santralleri sayesinde elektrik enerjisine çevrilerek, insanların günlük ihtiyaçları ve üretim sektöründe kullanılmaktadır. Gelişmekte olan ülkeler arasında bulunan ülkemiz için de gerek toplumsal refahın artırılması gerekse sanayi sektörünün üretim sürekliliği ve gelişimi için en önemli ihtiyaç haline gelen enerjinin, yerinde, zamanında ve güvenilir bir şekilde karşılanması gerekmektedir. Son dönemlerde ülkemizin yakaladığı yüksek büyüme oranları, enerji talebinin de hızla artmasını beraberinde getirmiştir. Önümüzdeki yıllarda da büyüme oranlarıyla birlikte enerji talebinin de artış eğiliminin devam edeceği hesaplanmaktadır. Artan enerji talebinin karşılanması için enerji sektörünün yeniden yapılanmasına yönelik olarak enerji mevzuatları 2000'li yılların başından itibaren yeniden ele alınarak çeşitli düzenleme yapılarak, enerji sektöründe liberalleşme adımları atılmıştır. Mevzuat değişiklikleri, yeni düzenlemeler ve oluşturulan yeni kurumlarla elektriğin yeterli, kaliteli, sürekli, düşük maliyetli ve çevreye uyumlu bir şekilde tüketicilerin kullanımına sunulması için, rekabet ortamında özel hukuk hükümlerine göre faaliyet gösterebilecek, mali açıdan güçlü, istikrarlı ve şeffaf bir elektrik enerjisi piyasasının oluşturulması ve bu piyasada bağımsız bir düzenleme ve denetimin sağlanması amaçlanmıştır. Geçen süre içerisinde, ülkemizde yapılan yeni düzenlemeler, enerji piyasasının liberalleştirilme çalışmaları, yapılan enerji yatırımlarına rağmen artan enerji ihtiyacını ülkenin kendi öz kaynakları ile karşılayamaz durumda olup, enerji açısında dışa bağımlılık devam etmektedir. Enerji kaynakları açısından dışa bağımlı olunması, ülkenin ekonomisini ve stratejik durumunu olumsuz yönde etkilemektedir. Enerji kaynaklarında dışa bağımlı ülkeler, ekonomisinin büyümesinde ve stratejik kararlar almak gibi en önemli konularda başka ülkelere bağımlı hale gelmektedir. Bu nedenlerden dolayı, ülke içerisinde başta yenilenebilir enerji kaynakları olmak üzere, tüm kaynaklarının en optimum şekilde enerjiye dönüştürülerek kullanımının sağlanması ve dışa bağımlılığın azaltılması temel hedef haline gelmesi gerekmektedir. Pompaj depolamalı hidroelektrik santraller (PDHES), pik talebin karşılanmasında rezervuarlı HES'lerin yetersiz kalması durumunda veya baz santrallerin ülkenin enerji sistem içinde dengelenebilmesi için devreye girerek enerji ihtiyacını karşılayan sistemlerdir. PDHES'ler bir çeşit elektrik depolama sistemleridir. Bu santraller, elektrik fiyatlarının düşük olduğu zamanlarda suyu yüksekteki doğal veya yapay bir üst hazneye pompa yardımıyla basarak depolar ve gün içinde veya ay içinde elektrik ihtiyaçlarının meydana geldiği ve dolayısıyla elektrik fiyatlarının yükseldiği zamanlar üst haznede biriktirilen suyu türbinler vasıtasıyla hidroelektrik enerjiye dönüştürür. Başta Amerika Birleşik Devletleri ve Japonya olmak üzere dünyada yaklaşık 100.000 MW pompaj depolamalı hidroelektrik santral işletmede olmasına karşın, ülkemizde işletmede pompaj depolamalı santral bulunmamakla birlikte, bu tesislerin yapılması planlanması durumunda ne şekilde optimize edilmesi gerektiği yönünde yeterince çalışma da yapılmamıştır. Elektrik İşleri Etüt İdaresi Genel Müdürlüğü tarafından ilk etüt aşamasında 11 adet mevcut baraj üzerinde, 5 adet yeni yatırım olmak üzere toplamda 16 adet pompaj depolamalı hidroelektrik santral planlaması yapılmış olup, detaylı çalışmalar da henüz planlama aşamasında bulunmaktadır. Son dönemlerde devletin ilgili kurumlarında, PDHES'lerin yapımı konusunda bazı güncel mevzuat çalışmaları devam etmekle birlikte, henüz resmiyet kazanmış bir durum da söz konusu değildir. Gerçekleştirilen doktora tez çalışması kapsamında, pompaj depolamalı hidroelektrik santrallerin kapasitesinin net faydayı maksimize etmesiyle belirlenen kapasite optimizasyon modeli (KOPMOD) olarak adlandırılacak olup, deterministik bir yaklaşımla çalışılan bu matematik modelde yapı boyutları, kurulu güç ve net faydanın optimizasyonu ele alınacaktır. Bu çalışmayı yaparken öncelikle karar değişkenleri belirlenerek, bu parametrelerin kapasiteyi belirli aralıklar içinde seçerek modelde kullanılması amaç edinilmiştir. Kapasitenin çalışma aralıkları da dünyada tesis edilmiş PDHES'ler ile ülke şartları ve ihtiyaçları dikkate alınarak belirlenmiştir. Elektrik fiyatlarının gün içindeki değişimleri, uzun yıllar oluşan fiyatların analiz edilmesi ve elektrik fiyatlarına etki eden faktörler ele alınarak modellere işlenerek, modellerin oluşturulması sağlanmıştır. Elektrik fiyatlarının analizleri PDHES'lerin çalışma saatlerinin belirlenmesinde etkin rol oynamaktadır. Karar değişkenleri olarak tesisi kurulu güç kapasitesi, çalışma saati ve karlılık oranları, indirgeme oranı, iç verim oranı, tesis süreleri ve yapım birim fiyatları gibi ana unsurlar olarak belirlenmiştir. Net faydanın maksimize edilmesi üzerine kurulu olan sonuç kısmının en önemli sonuç parametreleri tesis yatırım bedeli, tesisin geliri ve giderleri, elektrik üretim ve tüketimleridir. üretim ve güç, maliyetler, gelir ve gider, ekonomik analiz ana başlıkları altında değerlendirilmiştir. Üretim, tüketim ve kurulu güç ana başlığı altında hesaplanan değerler tersinir türbinlerin teknik değerleri ve karar değişkenlerine bağlı olarak değişim göstermektedir. Maliyetler ise, kapasite değişiklikleri sonucu boyutları belirlenen tesislerin birim fiyatları ve piyasa fiyatları dikkate alınarak hesaplanmaktadır. Gelir ve giderler ise, elektrik fiyatları ve işletme aşamasında oluşacak olan giderlerin piyasa koşullarında fiyatlandırılması ile belirlenmektedir. Maliyetler, gelir ve giderlerin belirlenmesi sonucu ekonomik analiz kapsamında hesaplanan net fayda hesaplaması sonucunda hangi seçimin en uygun olduğu model ile ortaya çıkmaktadır. KOPMOD ile oluşturulacak matematik modelde değişkenlerin değişimi ile net faydanın da değişimi izlenebilmektedir. Çalışmalarda YEKDEM sistemi kapsamında devlet tarafından belirlenen elektrik satış fiyatları da ayrıca çalışmalarda dikkate alınmıştır. Karar değişkenleri, sonuç parametreleri, kapasite değişim aralığı, aralarındaki bağlantıları ve değerleme kriterleri belirlendikten sonra, PDHES için oluşturulan KOPMOD'un çalıştırılması ile net faydanın maksimize edildiği kapasite belirlenerek en uygun kurulu güç seçilmektedir. Modelin çalışma saati ve karlılık oranlarının belirlenmesi için KOPMOD öncesi göreceli karlılık analizi yaklaşımı (GÖKAY) modeli kullanılmaktadır. GÖKAY'da Türkiye'de geçmiş yıllarda gerçekleşmiş elektrik satış fiyatları modelin analiz edilecek verileri olarak ele alınmaktadır. PDHES için belirlenen bir iç verim oranı (İVO) esas alınarak gün içindeki en düşük elektrik satış fiyatları ve en yüksek elektrik fiyatları belirlenir. En düşük elektrik fiyatlarına iç verimden kaynaklanan kayıplar da bindirilerek en yüksek fiyatlar arasında PDHES'in elektrik üretim ile tüketiminden gün içinde kar elde ettiği saatlere ulaşılır. Seçilecek her bir iç verim oranı çalışma saatini ve karlılık oranlarını değiştirmektedir. GÖKAY modelinin sonuçları değerlendirildiğinde İVO değeri arttıkça çalışma saati artmasına karşılık, karlılık oranları azalmaktadır. Karlılık oranı ve çalışma saati birlikte ele alındığında ise, İVO değeri arttıkça normalize edilmiş karlılık oranının da arttığı görülmektedir. Sonuç olarak, PDHES'in ilk planlama aşamasında mevcut piyasa şartları, topoğrafyası, yatırımın ekonomik durumu ve piyasa elektrik fiyatları ile KOPMOD çalıştırılarak bulunan kapasitede PDHES'in yapımına karar verilebilmektedir. Kapasite belirlendikten sonra, tesisi yapılarının boyutları, maliyetleri, üretim ve tüketimleri ortaya çıkacağı için PDHES'in ekonomik olarak yapımına karar verilebilecektir.