İstanbul Boğazı su seviyesi salınımlarına Tuna Nehri etkisinin belirlenmesi
İstanbul Boğazı su seviyesi salınımlarına Tuna Nehri etkisinin belirlenmesi
Dosyalar
Tarih
2021
Yazarlar
Karsavran, Yavuz
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Lisansüstü Eğitim Enstitüsü
Özet
Bu çalışmada İstanbul Boğazı su seviyesi salınımları Tuna Nehri etkisi göz önünde bulundurularak araştırılmış ve ilave olarak İstanbul Boğazı'nın Çanakkale Boğazı'na gecikme zamanı ortaya çıkarılmıştır. İstanbul Boğazı, Karadeniz'in açık denizlere tek bağlantı noktası olması sebebiyle önemli bir su kütlesinin etkileşim noktası olmaktadır. Öyle ki, az tuzlu Karadeniz suları üst akım ile Marmara Denizi'ne taşınırken, daha tuzlu Marmara suları alt akım ile Karadeniz'e taşınmaktadır. Bu karışık durum içerisine lokal yağışlar, rüzgar (fırtına) ve atmosfer basıncı gibi yerel etkenler de eklenince İstanbul Boğazı su seviyesi bileşenlerinin tespit edilmesi ve su seviyesinin öngörülebilmesi oldukça zorlaşmaktadır. Boğaz'daki yalı vb. yerleşim alanları, su kirliliği, çevresel faktörler ve yoğun gemi trafiği nedeniyle su seviyesinin öngörülebilirliği önem arz etmektedir. Bunun yanında Boğaz'da sürekli su seviyesi ölçümü için istasyon kurulması ve gözlem yapılması pahalı olduğundan, su seviyesi bileşenlerinin tespit edilmesi ve mümkünse etki derecelerinin belirlenmesi gelecek vizyonu açısından önem arz etmektedir. Çalışmanın birinci aşamasında Karadeniz'e dökülen toplam tatlısu miktarının % 50'sine sahip Tuna Nehri'nin İstanbul Boğazı'na gecikme zamanı (ulaşım süresi) araştırılmıştır. Bu amaçla Tuna Nehri akımının, İstanbul Boğazı'nın Karadeniz girişindeki su seviyesi, sıcaklığı ve tuzluluk değerlerinin Fourier güç spektraları oluşturulmuştur. Güç spektraları üzerinden Tuna Nehri akım parametresi ile İstanbul Boğazı parametrelerinin etkileşimi araştırılmıştır. Burada Tuna Nehri debi ve İstanbul Boğazı parametreleri güç salınımlarının benzer eğilimlerde olduğu gözlemlenmiştir. Bunun yanında aynı parametreler için zaman serileri çizilmiş ve anlık eşleşmelerle iki ayrı zaman için Tuna Nehri'nin İstanbul Boğazı'na gecikme zamanları 67 ve 74 gün olarak hesaplanmıştır. Zaman serilerindeki eşleşmelerin Tuna Nehri kaynaklı olduğunun gösterilmesi açısından, aynı dönem için İstanbul Boğazı atmosfer basıncı, rüzgar ve yağış zaman serileri çizilmiş ve parametrelerdeki değişikliğin yerel meteorolojik nedenlerle gerçekleşmediği gösterilmiştir. Bu kısımda hesaplanan gecikme zamanları sonraki bölümde İstanbul Boğazı su seviyesi modellemelerinde Tuna Nehri verilerinin girdi olarak kullanılması için gereklidir. İkinci aşamada İstanbul Boğazı su seviyesini tahmin edebilen yapay zeka metodları geliştirilmiştir. Bu bağlamda yapay sinir ağları (YSA) ve destek vektör makineleri (DVM) modelleri geliştirilmiş ve başarı performansları karşılaştırılmıştır. Öncelikle mevcut verilerin regresyon tabanlı pareto grafiği ile Boğaz su seviyesine etki düzeyleri belirlenmiştir. Belirlenen etki düzeyleri esas alınarak toplam 11 adet girdi seti oluşturulmuş ve bu girdi setleri tüm YSA ve DVM modellerinde kullanılmıştır. Verilerin %70'i eğitim, %30'u ise test olarak kullanılmıştır. Model performansları korelasyon katsayısı (R) ve ortalama hata kareleri kökü (OHKK) ile değerlendirilmiştir. Sonuçlar Boğaz su seviyesi tahmininde YSA yönteminin DVM yönteminden daha başarılı olduğunu göstermiştir. Daha sonra en başarılı sonucu veren girdi setine Tuna Nehri debi parametreleri eklendiğinde ve YSA model tekrar uygulandığında R değeri kayda değer miktarda artmış ve OHKK değeri azalmıştır. Üçüncü aşamada İstanbul Boğazı ve Çanakkale Boğazı üst akım debi değerleri sürekli dalgacık dönüşümü (SDD) ile alt bileşenlerine ayrılmış ve sonrasında iki akım arasında çapraz dalgacık dönüşümü (ÇDD) uygulandığında 2-128 saatlik veriler arasında kuvvetli bir etkileşim olduğu gözlemlenmiştir. Buradan İstanbul Boğazı üst akımının Çanakkale Boğazı'na gecikme zamanının yaklaşık 5 gün olduğu anlaşılmıştır. Dördüncü aşamada İstanbul Boğazı üst akım debi değerleri kullanılarak dalgacık-yapay sinir ağları (D-YSA) modeli ile Çanakkale Boğazı üst akımı gelecek 3 güne kadar tahmin edilebilmiştir. Bu aşamada öncelikle girdi parametresi sayısı hassasiyeti belirlenmiş ve verilerin %70'i eğitim, %30'u test olarak kullanılmıştır. Model performansları determinasyon katsayısı (R2) ve ortalama hata kareleri kökü (OHKK) ile ölçülmüştür. Sonuçlardan anlaşılmaktadır ki; dalgacık dönüşümü ile veri işlenmesi adımı YSA model ile tahmin başarısını önemli ölçüde artırmaktadır. Bu kısımda yapılan araştırma sonuçları İstanbul ve Çanakkale Boğazları arasındaki dinamik etkileşimin ortaya çıkarılması açısından önem arz etmektedir.
Bosphorus is the only water passage of the Black Sea to Marmara Sea and thereby to open seas, which make Bosphorus important not only for Turkey, but also for other countries at this region. Also, the Bosphorus is located at the northern side of Turkish Straits System that consists of the Bosphorus and Dardanelles Straits and the Marmara Sea. That strategic position of the Bosphorus makes it topic for water flow researches that are a part of the shore management projects, underwater construction, water quality analysis, etc. Also, water level fluctation is an important phenomenon that should be investigated for the Bosphorus Strait. The water level difference of the Black Sea and Marmara Sea is the main factor that affects the Bosphorus stratified flow. The brackish water of the Black Sea is transported to the Marmara Sea as a surface flow while saltier water of the Marmara Sea is transferred to the Black Sea as an underflow. Hydrometeorological conditions of the Marmara Sea and the Black Sea affect water level fluctation and flow conditions of Bosphorus. Short period of water level fluctations at Bosphorus happens due to tide and atmospheric pressure. However, the main part of the long term sea level fluctations at Bosphorus occurs because of the extra water budget in Black Sea. The extra water budget of Black Sea, which causes water level rise at the northern side of the Bosphorus, is formed by river run-off and more precipitation input than evaporation loss. In general, water level is higher at northern entrance than the southern entrance of the Bosphorus Strait. Because of the irregular bathymetry and complex geometry, it is not easy to model of the Bosphorus system with high sensibility, though well-known flow conditions and factors of affecting water level. Another big problem come across in complex system modelling as Bosphorus Strait is inadequacy of data. Long-term and continious observed data are critical in calibration and set-up on complicated system modeling. Although, there were no long-term and continious measurements in the Bosphorus Strait, researchers used the data, which are collected within the scope of large-scale projects including the Bosphorus, to analyse hydrodynamics of the Bosphorus. This study is based on long term wind speed, atmospheric pressure, water level, water surface salinity, and temperature data which were monitored between September 2004 and January 2006 by TAISEI Corporation, JAPAN, on behalf of General Directorate of Marmaray Project of Ministry of Transportation, General Directorate of Ports, Airports and Railways Construction of Turkey. First study is about the research of Tuna River's effect on water level and hydrodynamics of the Bosphorus Strait. Clearly, it is known that River Danube discharge reaches to the Bosphorus. The approximate distance between outlet of River Danube and northern end of the Bosphorus is nearly 500 km. In this study, the influence of the peak river Danube discharges (higher than 11000 m3/s) on the Bosphorus is investigated by using dataset of TAISEI Corporation, ISKI, Turkish State Meteorological Service and GRDC (Grains Research and Development Corporation). To this end, the power spectra of River Danube is calculated and compared with those of water level, surface layer water salinity and finally, surface water temperature data at the northern end of the Bosphorus. Similar trends are observed between power spectra of River Danube and those of water level, surface water salinity and surface water temperature. So, the influence of River Danube on the Bosphorus hydrodynamics and water level is clearly visible. In addition, the time series of water temperature, water salinity, and water level of the northern end of the Bosphorus is examined together with time serie of River Danube discharge to find the lag time of Tuna River to the Bosphorus between 1st Oct 2004 and 31st Sept 2005 . In this period 67 and 74 days are found as lag times of Danube River to the Bosphorus.The validation is performed by checking wind speed, air pressure and precipitation data on the Bosphorus Strait during that time. In the second study, the originality is that the most popular artificial intelligence (AI) techniques, such as the Artificial Neural Networks (ANN) and the Support Vector Machines (SVM) methods are employed to predict seawater level in the Bosphorus Strait by using the wind speed, atmospheric pressure, water level, water surface salinity, and temperature data, which were measured between September 2004 and January 2006 by TAISEI Corporation. 70% of the data is used to train the model and the remaining 30% data is utilized for test purposes. As a result, ANN has better performance than SVM for predicting sea level in the Bosphorus by R= 0.76 and RMSE= 0.059. Besides, the influence of river Danube discharge in prediction is investigated in the present study. The discharge of the Danube River by the lag time of 70 days yields the highest performance on ANN by R= 0.82 and RMSE= 0.048. The model performances are compared with the root mean square error (RMSE) and the coefficient of correlation (R). Turkish Straits System (TSS) is formed by the Bosphorus and the Dardanelles Straits, and the Marmara Sea, which exchange sea-water of the Black Sea and the Mediterranean. The objective of the third study is to find a lag time between Bosphorus and Dardanelles Straits for upper layer flow and to predict the Dardanelles upper layer discharge by using Bosphorus upper layer discharge. There is not enough study on these issues in the literature. The observed hourly upper layer discharge data of the Bosphorus and Dardanelles are decomposed into sub-series by using continuous wavelet transform (CWT) as a pre-processing tool to remove the noise of data. The cross wavelet transform (XWT) and wavelet coherence (WTC) are employed to find a lag time of Bosphorus upper layer flow to Dardanelles. It is estimated that the lag time of Bosphorus upper layer flow to Dardanelles is around 5 days. In the fourth study, the stand-alone ANN and wavelet-ANN (WANN) methods are used to forecast the Dardanelles upper layer discharges from Bosphorus observations. The model performances are compared with the root mean square error (RMSE) and determination coefficient (R2). 70% of the data is used to train the model and the remaining 30% data is utilized for test purposes The ANN and WANN models are developed to perform discharge predictions up to 168 hours (7 days) lead time. The use of wavelet transform as a pre-processing technique improved the predicitions remarkably compared to stand-alone ANN model. The WANN model is able to make accurate predictions of upper layer discharges of the Dardanelles up to 72 hours (3 days) whereas, stand-alone ANN is not able to predict well for any lead times. To get more sensible and high accuracy on Bosphorus models, there will be need detailed long-term and continuous observed data in Bosphorus Strait and adjacent seas. The detailed observed data will provide better analysis of the water flow in the Bosphorus Strait and making more reliable decisions for the future project planning in the region.
Bosphorus is the only water passage of the Black Sea to Marmara Sea and thereby to open seas, which make Bosphorus important not only for Turkey, but also for other countries at this region. Also, the Bosphorus is located at the northern side of Turkish Straits System that consists of the Bosphorus and Dardanelles Straits and the Marmara Sea. That strategic position of the Bosphorus makes it topic for water flow researches that are a part of the shore management projects, underwater construction, water quality analysis, etc. Also, water level fluctation is an important phenomenon that should be investigated for the Bosphorus Strait. The water level difference of the Black Sea and Marmara Sea is the main factor that affects the Bosphorus stratified flow. The brackish water of the Black Sea is transported to the Marmara Sea as a surface flow while saltier water of the Marmara Sea is transferred to the Black Sea as an underflow. Hydrometeorological conditions of the Marmara Sea and the Black Sea affect water level fluctation and flow conditions of Bosphorus. Short period of water level fluctations at Bosphorus happens due to tide and atmospheric pressure. However, the main part of the long term sea level fluctations at Bosphorus occurs because of the extra water budget in Black Sea. The extra water budget of Black Sea, which causes water level rise at the northern side of the Bosphorus, is formed by river run-off and more precipitation input than evaporation loss. In general, water level is higher at northern entrance than the southern entrance of the Bosphorus Strait. Because of the irregular bathymetry and complex geometry, it is not easy to model of the Bosphorus system with high sensibility, though well-known flow conditions and factors of affecting water level. Another big problem come across in complex system modelling as Bosphorus Strait is inadequacy of data. Long-term and continious observed data are critical in calibration and set-up on complicated system modeling. Although, there were no long-term and continious measurements in the Bosphorus Strait, researchers used the data, which are collected within the scope of large-scale projects including the Bosphorus, to analyse hydrodynamics of the Bosphorus. This study is based on long term wind speed, atmospheric pressure, water level, water surface salinity, and temperature data which were monitored between September 2004 and January 2006 by TAISEI Corporation, JAPAN, on behalf of General Directorate of Marmaray Project of Ministry of Transportation, General Directorate of Ports, Airports and Railways Construction of Turkey. First study is about the research of Tuna River's effect on water level and hydrodynamics of the Bosphorus Strait. Clearly, it is known that River Danube discharge reaches to the Bosphorus. The approximate distance between outlet of River Danube and northern end of the Bosphorus is nearly 500 km. In this study, the influence of the peak river Danube discharges (higher than 11000 m3/s) on the Bosphorus is investigated by using dataset of TAISEI Corporation, ISKI, Turkish State Meteorological Service and GRDC (Grains Research and Development Corporation). To this end, the power spectra of River Danube is calculated and compared with those of water level, surface layer water salinity and finally, surface water temperature data at the northern end of the Bosphorus. Similar trends are observed between power spectra of River Danube and those of water level, surface water salinity and surface water temperature. So, the influence of River Danube on the Bosphorus hydrodynamics and water level is clearly visible. In addition, the time series of water temperature, water salinity, and water level of the northern end of the Bosphorus is examined together with time serie of River Danube discharge to find the lag time of Tuna River to the Bosphorus between 1st Oct 2004 and 31st Sept 2005 . In this period 67 and 74 days are found as lag times of Danube River to the Bosphorus.The validation is performed by checking wind speed, air pressure and precipitation data on the Bosphorus Strait during that time. In the second study, the originality is that the most popular artificial intelligence (AI) techniques, such as the Artificial Neural Networks (ANN) and the Support Vector Machines (SVM) methods are employed to predict seawater level in the Bosphorus Strait by using the wind speed, atmospheric pressure, water level, water surface salinity, and temperature data, which were measured between September 2004 and January 2006 by TAISEI Corporation. 70% of the data is used to train the model and the remaining 30% data is utilized for test purposes. As a result, ANN has better performance than SVM for predicting sea level in the Bosphorus by R= 0.76 and RMSE= 0.059. Besides, the influence of river Danube discharge in prediction is investigated in the present study. The discharge of the Danube River by the lag time of 70 days yields the highest performance on ANN by R= 0.82 and RMSE= 0.048. The model performances are compared with the root mean square error (RMSE) and the coefficient of correlation (R). Turkish Straits System (TSS) is formed by the Bosphorus and the Dardanelles Straits, and the Marmara Sea, which exchange sea-water of the Black Sea and the Mediterranean. The objective of the third study is to find a lag time between Bosphorus and Dardanelles Straits for upper layer flow and to predict the Dardanelles upper layer discharge by using Bosphorus upper layer discharge. There is not enough study on these issues in the literature. The observed hourly upper layer discharge data of the Bosphorus and Dardanelles are decomposed into sub-series by using continuous wavelet transform (CWT) as a pre-processing tool to remove the noise of data. The cross wavelet transform (XWT) and wavelet coherence (WTC) are employed to find a lag time of Bosphorus upper layer flow to Dardanelles. It is estimated that the lag time of Bosphorus upper layer flow to Dardanelles is around 5 days. In the fourth study, the stand-alone ANN and wavelet-ANN (WANN) methods are used to forecast the Dardanelles upper layer discharges from Bosphorus observations. The model performances are compared with the root mean square error (RMSE) and determination coefficient (R2). 70% of the data is used to train the model and the remaining 30% data is utilized for test purposes The ANN and WANN models are developed to perform discharge predictions up to 168 hours (7 days) lead time. The use of wavelet transform as a pre-processing technique improved the predicitions remarkably compared to stand-alone ANN model. The WANN model is able to make accurate predictions of upper layer discharges of the Dardanelles up to 72 hours (3 days) whereas, stand-alone ANN is not able to predict well for any lead times. To get more sensible and high accuracy on Bosphorus models, there will be need detailed long-term and continuous observed data in Bosphorus Strait and adjacent seas. The detailed observed data will provide better analysis of the water flow in the Bosphorus Strait and making more reliable decisions for the future project planning in the region.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2021
Anahtar kelimeler
Su seviyesi,
Water levels,
Nörol ağları,
Neural networks