LEE- Uçak ve Uzay Mühendisliği-Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Yazar "Doğan, Vedat Ziya" ile LEE- Uçak ve Uzay Mühendisliği-Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeA study on optimization of a wing with fuel sloshing effects(Graduate School, 2022-01-24) Vergün, Tolga ; Doğan, Vedat Ziya ; 511181206 ; Aeronautics and Astronautics Engineering ; Uçak ve Uzay MühendisliğiIn general, sloshing is defined as a phenomenon that corresponds to the free surface elevation in multiphase flows. It is a movement of liquid inside another object. Sloshing has been studied for centuries. The earliest work [48] was carried out in the literature by Euler in 1761 [17]. Lamb [32] theoretically examined sloshing in 1879. Especially with the development of technology, it has become more important. It appears in many different fields such as aviation, automotive, naval, etc. In the aviation industry, it is considered in fuel tanks. Since outcomes of sloshing may cause instability or damage to the structure, it is one of the concerns about aircraft design. To prevent its adverse effect, one of the most popular solutions is adding baffles into the fuel tank. Still, this solution also comes with a disadvantage: an increase in weight. To minimize the effects of added weight, designers optimize the structure by changing its shape, thickness, material, etc. In this study, a NACA 4412 airfoil-shaped composite wing is used and optimized in terms of safety factor and weight. To do so, an initial composite layup is determined from current designs and advice from literature. When the design of the initial system is completed, the system is imported into a transient solver in the Ansys Workbench environment to perform numerical analysis on the time domain. To achieve more realistic cases, the wing with different fuel tank fill levels (25%, 50%, and 75%) is exposed to aerodynamic loads while the aircraft is rolling, yawing, and dutch rolling. The aircraft is assumed to fly with a constant speed of 60 m/s (~120 knots) to apply aerodynamic loads. Resultant force for 60 m/s airspeed is applied onto the wing surface by 1-Way Fluid-Structure Interaction (1-Way FSI) as a distributed pressure. Using this method, only fluid loads are transferred to the structural system, and the effect of wing deformation on the fluid flow field is neglected. Once gravity effects and aerodynamic loads are applied to the wing structure, displacement is defined as the wing is moving 20 deg/s for 3 seconds for all types of movements. On the other hand, fluid properties are described in the Ansys Fluent environment. Fluent defines the fuel level, fluid properties, computational fluid dynamics (CFD) solver, etc. Once both structural and fluid systems are ready, system coupling can perform 2-Way Fluid-Structure Interaction (2-Way FSI). Using this method, fluid loads and structural deformations are transferred simultaneously at each step. In this method, the structural system transfers displacement to the fluid system while the fluid system transfers pressure to the structural system. After nine analyses, the critical case is determined regarding the safety factor. Critical case, in which system has the lowest minimum safety factor, is found as 75% filled fuel tank while aircraft dutch rolling. After the determination of the critical case, the optimization process is started. During the optimization process, 1-Way FSI is used since the computational cost of the 2-Way FSI method is approximately 35 times that of 1-Way FSI. However, taking less time should not be enough to accept 1-Way FSI as a solution method; the deviation of two methods with each other is also investigated. After this investigation, it was found that the variation between the two methods is about 1% in terms of safety factors for our problem. In the light of this information, 1-Way FSI is preferred to apply both sloshing and aerodynamic loads onto the structure to reduce computational time. After method selection, thickness optimization is started. Ansys Workbench creates a design of experiments (DOE) to examine response surface points. Latin Hypercube Sampling Design (LHSD) is preferred as a DOE method since it generates non-collapsing and space-filling points to create a better response surface. After creating the initial response surface using Genetic Aggregation, the optimization process is started using the Multi-Objective Genetic Algorithm (MOGA). Then, optimum values are verified by analyzing the optimum results in Ansys Workbench. When the optimum results are verified, it is realized that there is a notable deviation in results between optimized and verified results. To minimize the variation, refinement points are added to the response surface. This process is kept going until variation comes under 1%. After finding the optimum results, it is noticed that its precision is too high to maintain manufacturability so that it is rounded into 1% of a millimeter. In the end, final thickness values are verified. As a result, optimum values are found. It is found that weight is decreased from 100.64 kg to 94.35 kg, which means a 6.3% gain in terms of weight, while the minimum safety factor of the system is only reduced from 1.56 to 1.54. At the end of the study, it is concluded that a 6.3% reduction in weight would reflect energy saving.
-
ÖgeA study on static and dynamic buckling analysis of thin walled composite cylindrical shells(Graduate School, 2022-01-24) Özgen, Cansu ; Doğan, Vedat Ziya ; 511171148 ; Aeronautics and Astronautics Engineering ; Uçak ve Uzay MühendisliğiThin-walled structures have many useage in many industries. Examples of these fields include: aircraft, spacecraft and rockets can be given. The reason for the use of thin-walled structures is that they have a high strength weight ratio. In order to define a cylinder as thin-walled, the ratio of radius to thickness must be more than 20, and one of the problems encountered in the use of such structures is the problem of buckling. It is possible to define the buckling as a state of instability in the structure under compressive loads. This state of instability can be seen in the load displacement graph as the curve follows two different paths. The possible behaviors; snap through or bifurcation behavior. Compressive loading that cause buckling; there may be an axial load, torsional load, bending load, external pressure. In addition to these loads, buckling may occur due to temperature change. Within the scope of this thesis, the buckling behavior of thin-walled cylinders under axial compression was examined. The cylinder under the axial load indicates some displacement. When the amount of load applied reaches critical level, the structure moves from one state of equilibrium to another. After some point, the structure shows high displacement behavior and loses stiffness. The amount of load that the structure will carry decreases considerably, but the structure continues to carry loads. The behavior of the structure after this point is called post-buckling behavior. The critical load level for the structure can be determined by using finite elements method. Linear eigenvalue analysis can be performed to determine the static buckling load. However, it should be noted here that eigenvalue-eigenvector analysis can only be used to make an approximate estimate of the buckling load and input the resulting buckling shape into nonlinear analyses as a form of imperfection. In addition, it can be preferred to change parameters and compare them, since they are cheaper than other types of analysis. Since the buckling load is highly affected by the imperfection, nonlinear methods with geometric imperfection should be used to estimate a more precise buckling load. It is not possible to identify geometric imperfection in linear eigenvalue analysis. Therefore, a different type of analysis should be selected in order to add imperfection. For example, an analysis model which includes imperfection can be established with the Riks method as a nonlinear static analysis type. Unlike the Newton-Rapson method, the Riks method is capable of backtracking in curves. Thus, it is suitable for use in buckling analysis. In Riks analysis, it is recommended to add imperfection in contrast to linear eigenvalue analysis. Because if the imperfection is added, the problem will be bifurcation problem instead of limit load problem and sharp turns in the graph can cause divergence in analysis. Another nonlinear method of static phenomena is called quasi-static analysis which is used dynamic solver. The important thing to note here is that the inertial effects should be too small to be neglected in the analysis. For this purpose, kinetic energy and internal energy should be compared at the end of the analysis and kinetic energy should be ensured to be negligible levels besides internal energy. Also, if the event is solved in the actual time length, this analysis will be quite expensive. Therefore, the time must be scaled. In order to scale the time correctly, frequency analysis can be performed first and the analysis time can be determined longer than the period corresponding to the first natural frequency. For three analysis methods mentioned within this study, validation studies were carried out with the examples in the literature. As a result of each type of analysis giving consistent results, the effect of parameters on static buckling load was examined, while linear eigenvalue analysis method was used because it was also sufficient for cheaper analysis method and comparison studies. While displacement-controlled analyses were carried out in the static buckling analyses mentioned, load-controlled analyses were performed in the analyses for the determination of dynamic buckling force. As a result of these analyses, they were evaluated according to different dynamic buckling criteria. There are some of the dynamic buckling criteria; Volmir criterion, Budiansky-Roth criterion, Hoff-Bruce criterion, etc. When Budiansky-Roth criterion is used, the first estimated buckling load is applied to the structure and displacement - time graph is drawn. If a major change in displacement is observed, it can be assumed that the structure is dynamically buckled. For Hoff-Bruce criterion, the speed - displacement graph should be drawn. If this graph is not focused in a single area and is drawn in a scattered way, it is considered that the structure has moved to the unstable area. As in static buckling analyses, dynamic buckling analyses were primarily validated with a sample study in the literature. After the analysis methods, the numerical studies were carried out on the effect of some parameters on the buckling load. First, the effect of the stacking sequence of composite layers on the buckling load was examined. In this context, a comprehensive study was carried out, both from which layer has the greatest effect of changing the angle and which angle has the highest buckling load. In addition, the some angle combinations are obtained in accordance with the angle stacking rules found in the literature. For those stacking sequences, buckling forces are calculated with both finite element analyses and analytically. In addition, comparisons were made with different materials. Here, the buckling load is calculated both for cylinders with different masses of the same thickness and for cylinders with different thicknesses with the same mass. Here, the highest force value for cylinders with the same mass is obtained for a uniform composite. In addition, although the highest buckling force was obtained for steel material in the analysis of cylinders of the same thickness, when we look at the ratio of buckling load to mass, the highest value was obtained for composite material. In addition, the ratio of length to diameter and the effect of thickness were also examined. Here, as the length to diameter ratio increases, the buckling load decreases. As the thickness increases, the buckling load increases with the square of the thickness. In addition to the effect of the length to diameter ratio and the effect of thickness, the loading time and the shape of the loading profile are also known in dynamic buckling analysis. In addition, the critical buckling force is affected by imperfections in the structure, which usually occur during the production of the structure. How sensitive the structures are to the imperfection may vary depending on the different parameters. The imperfection can be divided into three different groups as geometric, material and loading. Cylinders under axial load are particularly affected by geometric imperfection. The geometric imperfection can be defined as how far the structure is from a perfect cylindrical structure. It is possible to determine the specified amount of deviation by different measurement methods. Although it is not possible to measure the amount of imperfection for all structures, an idea can be gained about how much imperfection is expected from the studies found in the literature. Both the change in the buckling load on the measured cylinders and the imperfection effect of the buckling load can be measured by adding the measured amount of imperfection to the buckling load calculations. In cases where the amount of imperfection cannot be measured, the finite element can be included in the analysis model as an eigenvector imperfection obtained from linear buckling analysis and the critical buckling load can be calculated for the imperfect structure using nonlinear analysis methods. In this study, studies were carried out on how imperfection sensitivity changes under both static and dynamic loading with different parameters. These parameters are the the length-to-diameter ratio, the effect of the stacking sequence of the composite layers and the added imperfection shape. The most important result obtained in the study on imperfection sensitivity is that the effect of the imperfection on the buckling load is quite high. Even geometric imperfection equal to thickness can cause the buckling load to drop by up to half.
-
ÖgeExperimental and numerical studies on low velocity impact behavior of Glare panels(Graduate School, 2022) Mazı, Oğuzhan ; Doğan, Vedat Ziya ; 775917 ; Aeronautical and Astronautical Engineering ProgrammeThe aerospace industry is always striving to improve aircraft efficiency and strength capacities. New materials are constantly being researched in order to produce more durable and lighter structural parts. Glare materials, which are obtained by laying glass fiber resins in certain directions between thin aluminum sheet metal parts, are very promising, especially in terms of fatigue and impact damage resistance. Glare, which was used in the fuselage panels of the Airbus A380 aircraft, has provided many advantages to the aircraft in many respects. It is known that aircraft are subjected to many low-speed impact damages during their manufacturing and service life such as tool drop, impact of foreign objects on the runway. These damages are also a design criteria to be considered during aircraft design. In this thesis, low velocity impact tests were performed on test specimens made of Glare 4A-2/1-0.3 material in accordance with the standards. Calibration tests were performed to determine the critical damage level and then verification tests were performed to examine the critical energy level. At the same time, a numerical model was prepared with the finite element method to verify the tests in Abaqus/Explicit program. In the model, three-dimensional solid elements were used and the interlaminar behavior was created using cohesive surfaces. The solution algorithm of the Abaqus/explicit program was created with the help of a VUMAT code and the damage criterion for composite plates was embedded in this code. The results of the simulation studies were compared with the results of the experimental studies and consistent results were observed within certain error rates. After the numerical results were verified, the finite element models were updated and the effects of various parameters such as plate thickness, energy level, metal thickness and impact angle on low velocity impact damage were investigated. As a result of the studies carried out, the parameters examined were evaluated and preliminary evaluations were made regarding the use of Glare 4A-2/1-0.3 material for aircraft structure in terms of low-velocity impact resistance. Considering the low velocity impact damage, it was concluded that Glare 4A materials can be evaluated in addition to traditional metallic structures and composite structures at the material selection stage for aircraft structural design. The studies concluded that increasing laminate thickness results in more lightweight structures than increasing outer Al thickness. Moreover, considering oblique impact conditions, it was seen that dent depth and panel failure is proportional to the impact perpendicularity. Finally, it was stated that there are many research areas that need to be examined regarding Glare materials. Some suggestions for the future research and studies were mentioned.
-
ÖgeFonksiyonel derecelendirilmiş malzemeden üretilen plakların mekanik ve ısıl yükler altındaki burkulma analizi(Lisansüstü Eğitim Enstitüsü, 2022-01-27) Aktaş, İbrahim Utku ; Doğan, Vedat Ziya ; 511171115 ; Uçak ve Uzay MühendisliğiMalzeme seçimi bütün mühendislik uygulamalarında çok önemli rol oynamaktadır. Neredeyse bütün mühendislik uygulamalarının gelişmesi ve ilerlemesi o alanda kullanılan malzemelerin gelişmişliği ile doğrudan ilişkilidir. Malzemelerin monolitik malzemeden alaşımlı malzemelere evrimi ve kompozit malzemelerin gelişimi, bir malzeme sınıfının çağın ihtiyaçlarına artık cevap veremiyor oluşundan doğmuştur. Çoğu mühendislik uygulamasında, monolitik bir malzemede bulunması imkânsız olan birbirleriyle çelişen özelliklere sahip malzemelerin kullanımına ihtiyaç duyulmaktadır. Ayrıca, farklı malzemelerin alaşımlanması, bileşen malzemelerin termodinamik davranışı ve bir malzemenin diğer malzemelerle karıştırılma derecesindeki kıstaslar ile sınırlıdır. Fonksiyonel derecelendirilmiş malzeme, iki malzemenin bir araya getirilmesi ve zorlu çalışma ortamlarına maruz kaldıktan sonra dahi işlevlerini yerine getirebilmesi ve özelliklerini koruyabilmesi gerekliliğinden doğmuştur. İşlevsel olarak derecelendirilmiş malzeme başlangıçta bir ısıl bariyer uygulaması ihtiyacı için geliştirilmiş olsa da, bu önemli gelişmiş malzemenin uygulaması artırılmış ve aşırı aşınma direnci ve korozyon direnci uygulamaları gibi mühendislik uygulamalarında bir dizi sorunu çözmek için kullanılmıştır. Bu yeni malzeme türünden havacılık, otomobil ve biyomedikal gibi uygulamalarda yararlanılmaktadır. Fonksiyonel derecelendirilmiş malzemeler, geleneksel kompozit malzemelerin zorlu çalışma ortamlarında kullanıldığında başarısız uygulamalara neden olmasının sonucunda ortaya çıkmıştır. Geleneksel kompozit malzemelerin mühendislik uygulamalarındaki başarısızlığı kompozit malzemeyi oluşturan katmanlar arasındaki belirgin bir şekilde tanımlanmış olan arayüzden kaynaklanmaktadır. Arayüz, bu bölgede yüksek bir gerilme yığılmasına sebebiyet vermekte ve kompozitin nihai başarısızlığına neden olan çatlak başlangıcını ve yayılmasını teşvik etmektedir. Bu çatlak oluşma ve ilerleme sürecine "delaminasyon" adı verilmektedir. Japonya' da bir uzay mekiği projesinde karşılaşılan ve fonksiyonel derecelendirilmiş malzemelerin ortaya çıkmasına ortam hazırlayan sorun, geleneksel kompozit malzemelerdeki bu belirgin arayüzün nasıl ortadan kaldırılabileceğini ve kompozitin istenen ısıl bariyer görevini nasıl yerine getirebileceği problemini ortaya koymuştur. Araştırmacılar, kademeli olarak değişen bir arayüz ile geleneksel kompozit malzemedeki keskin arayüzü sistematik olarak ortadan kaldırabildiler, böylece bu arayüzdeki gerilme yığılmasını azalttılar ve geliştirilen fonksiyonel derecelendirilmiş malzeme, zorlu çalışma koşullarında kırıma uğramadan ayakta kalabildi. Sonuç olarak malzemenin asıl geliştirilme amacı olan yapıya ısıl kalkan olması dışında çeşitli mühendislik uygulamaları için de fonksiyonel derecelendirilmiş malzemeler kullanılmıştır. Fonksiyonel derecelendirilmiş malzemeler, malzemenin hacmi boyunca değişen özelliklerle birlikte değişen bileşime sahip gelişmiş kompozit malzemelerdir. Havacılıkta kullanılan araçlar başta aerodinamik yükler olmak üzere birçok mekanik ve ısıl yüklere maruz kalmaktadır. Bu yükler hava aracının yapısallarının boyutlandırılmasında kullanılmaktadır. Güvenli bir hava aracı maruz kaldığı yükleri yapı içerisinde taşırken kırıma uğramayacak şekilde tasarlanmaktadır. Hava aracının yapısalları birçok farklı şekilde kırıma ya da hasara uğrayabilmektedir. Bunları öngörebilmek ve yapıyı ona göre tasarlamak hayati öneme sahiptir. Bununla beraber, yapıları kırıma uğratmayan fakat yapılarda yapısal kararsızlığa yol açan burkulma problemi havacılıkta çok önemli bir konudur. Örneğin bir uçağa gelen yükler kanat üzerindeki kabukların düzlem içi basma ya da çekme yüklerine maruz kalmasına sebep olabilmektedir. Kabuk elemanlarının basma yüküne maruz kaldığı durumlarda burkulma olayı gerçekleşebilir. Bu da hem kanat üzerindeki aerodinamik akışı bozabilmekte hem de yapının kararsız hale gelmesine sebep olabilmektedir. Bu gibi durumlarda yapının yük taşıma kapasitesi değişmekte ve burkulma sonrası hesaplamaların yapılması gerekmektedir. Bundan dolayı yapısal elemanların ne zaman burkulmaya uğrayabileceğini öngörebilmek büyük önem taşımaktadır. Bu tezde fonksiyonel derecelendirilmiş malzemeden üretilen plakların ısıl ve mekanik yüklemeler altındaki burkulma davranışları sistematik olarak ele alınacaktır. 1. Kısım' da yapılan çalışmadan genel olarak bahsedilip çalışmanın amacından ve isteğinden söz edilmiştir. 2. Kısım' da ise geçmişte fonksiyonel derecelendirilmiş plaklar üzerine yapılmış çalışmalar okuyucuya aktarılmıştır. Bu çalışmaları ifade etmeden önce temel burkulma probleminin tanımı yapılmıştır. Burkulma olayını tanımlamaya ilk olarak kolon ve kiriş elemanlarının burkulmasından başlanmış daha sonra plakların burkulması anlatılmıştır. Burkulma teorisinin alt yapısının okuyucuya bu şekilde verilmesi amaçlanmıştır. Ardından fonksiyonel derecelendirilmiş malzemelere kısa bir giriş yapılmış ve tarihçesinden bahsedilmiştir. Bu kısımda aynı zamanda fonksiyonel derecelendirilmiş malzemelerin burkulması üzerine yapılan akademik çalışmalardan da bahsedilmiştir. 3. Kısım' da fonksiyonel derecelendirilmiş malzemeden üretilen plakların mekaniğini anlamak adına geleneksel kompozit malzemeden üretilen plakların mekaniği okuyucuya aktarılmıştır. İlk olarak katmanlı kompozit plak teorilerinden kısaca bahsedilmiş ve sonra Klasik Kompozit Plaka Teorisi (KPT) ve Birinci Dereceden Kayma Şekil Değiştirme Teorisi (BKT) detaylı bir şekilde anlatılmıştır. Çünkü fonksiyonel derecelendirilmiş malzemeden üretilen plakların mekaniğini anlamak için geleneksel kompozit plakların mekaniğini iyice anlamak büyük önem taşımaktadır. 4. Kısım' da fonksiyonel derecelendirilmiş malzemelerin üretim yöntemlerinden kısaca bahsedilmiş ve etkin malzeme özelliklerinin nasıl modellendiği gösterilmiştir. 5. Kısım' a gelindiğinde daha önceden kısaca bahsedilen plakların burkulma problemi üzerinde durulmuş ve bu problemin belirli sınır koşulları altında analitik çözüm yöntemlerinden bahsedilmiştir. İlk olarak izotropik plakların burkulma probleminin çözümü, Navier ve Levy sınır koşullarını ayrı ayrı sağlayacak şekilde oluşturulan sınır koşulları altında çözülmüştür. Ardından Fonksiyonel derecelendirilmiş malzemeden üretilen plakların burkulma problemini çözebilmek için KPT kullanılarak analitik model oluşturulmuştur. Sonrasında oluşturulan analitik model her bir kenarından basit mesnetli kabul edilen fonksiyonel derecelendirilmiş plaklar için farklı yüklemeler altında MATLAB programında yazılan kod yardımı ile çözülmüştür. Bu yüklemeler mekanik ve ısıl yüklemeler olmak üzere ikiye ayrılmaktadır. Mekanik yüklemeler için üç farklı durum göz önüne alınmıştır. Bunlar: tek eksenli basma yükü, iki eksenli basma yükü ve iki eksenli basma – çekme yükü altındaki burkulma analizleridir. Isıl yükleme koşulları ise sıcaklığın kalınlık boyunca farklı şekillerde dağılımları göz önüne alınarak yine üç farklı şekilde yapıya uygulanacak ve burkulma analizi yapılmıştır. İlk olarak kalınlık boyunca sabit sıcaklık dağılımı için kritik burkulma sıcaklık farkı bulunmuştur. Ardından kalınlık boyunca doğrusal değişen sıcaklık dağılımı için burkulma analizi yapılıp kritik burkulma sıcaklık farkı elde edilmiş ve sonrasında ise kalınlık boyunca doğrusal olmayan sıcaklık dağılımı için bu analizler tekrarlanmıştır. Elde edilen tüm sonuçlar daha önceki çalışmalarla kıyaslanmış ve ince FD plaklar için KPT' nin oldukça başarılı sonuçlar verdiği görülmüştür. 6. Kısım' da ise sonlu elemanlar paket programı, PATRAN, NASTRAN yardımıyla burkulma analizleri gerçekleştirilmiş ve KPT ile elde edilen analitik sonuçlarla kıyaslanmıştır. Sonraki kısımlarda yapılan tüm çalışmalar kısaca değerlendirilmiş ve gelecekte bu konu üzerine yapılabilecek çalışmalardan bahsedilmiştir.
-
ÖgeGaz türbinli havacılık motorlarında sincap kafes yapısının eksenel yük kapasitesi hesaplarının gerçekleştirilmesi ve yükleme testi ile sonuçların doğrulanması(Lisansüstü Eğitim Enstitüsü, 2022-06-28) Parlak, Gökhan ; Doğan, Vedat Ziya ; 511181119 ; Uçak ve Uzay MühendisliğiHavacılık platformlarında güç veya itki üretme amacıyla gaz türbinli motorlar yaygın olarak kullanılmaktadır. Havacılık platformlarında kullanılan gaz türbinli motorlar turbojet, turbofan, turboprop ve turboşaft olmak üzere dört farklı ana başlığa ayrılmaktadır. Gaz türbinli turbojet motorlar temelde kompresör, yanma odası ve türbin alt modüllerinden oluşan çekirdek motor olarak adlandırılan yapıyı içermektedir. Turbofan motorlarında bu çekirdek motora ilave olarak fan ve düşük basınç türbini, turboşaft motorlarında düşük basınç türbinleri ve turboprop motorlarında düşük basınç türbini, pervane ile pervane dişli kutusu yapıları bulunmaktadır. Bir havacılık motoru ise temelde sabit ve döner parça gruplarından oluşmaktadır. Döner parça grubuna ait olan kompresör ve türbin modüllerinin şaftlar aracılığıyla bütünlüğü sağlanmakta ve bu şaft parçaları da ana şaft rulmanları tarafından mesnetlenmektedir. Gaz türbinli motorlar gibi mekanik yapılarda yapının doğal frekansı ile yapıda oluşan harmonik yüklerin tahrik frekanslarında çakışma gözlemlenebilir ve yapının rezonansa girmesi sonucu şaftlar kırılabilmekte ve tüm yapıyı etkileyen boyutta hasarlar oluşabilmektedir. Yapıda oluşan harmonik yüklerin frekansı tamamen şaftın dönüş hızı ile ilişkilidir ve bu şaftın hızı performans isterlerinden dolayı değiştirilemeyeceği için oluşan yüklerin tahrik frekansı değiştirilememektedir. Doğal frekans ile tahrik frekansının çakışmasını önlemek için ise geriye yapının doğal frekansını değiştirme yöntemi kalmaktadır. Bir yapının doğal frekansı temelde yapının ağırlığına ve direngenliğine bağlıdır. Havacılık yapılarında ağırlık hem platform hem de motor için çok önemli bir tasarım kriteri olduğu için yapının doğal frekansının değiştirilmesi için en uygun çözüm yöntemi yapının direngenliğini değiştirmek olarak belirlenmiştir. Havacılık motorlarında yapının direngenliğini değiştirmek için rulman mesnet noktalarında yüksek esnekliğe sahip sincap kafes parçaları kullanılmaktadır. Yüksek esnekliğe yani düşük radyal katılık değerine sahip bu sincap kafes parçaları sayesinde şaftların mesnet noktalarındaki radyal katılık değeri kolaylıkla ayarlanabilmekte ve rotor dinamik analizleri sonucu yapının çalışma aralığında rezonansın oluşumunun engellenmesi amacıyla belirlenen radyal katılık değeri bu parça ile kolaylıkla yapıya yansıtılabilmektedir. Sincap kafes parçaları radyal katılık isterini kiriş adı verilen boşluklu yapıdaki tasarımları ile sağlamaktadır. Tasarlanan kiriş unsurları yapının geneline kıyasla düşük kesit alanına sahiptir. Sincap kafes parçaları aynı zamanda rulman yataklama elemanları oldukları için rulmana etkiyen tüm eksenel ve radyal yükleri taşıyıcı yapıya aktarmaktadır. Bu sebeple normal operasyon yüklerinin yanında kanatçık kopması gibi hasar senaryolarındaki yüksek yüklere de maruz kalmaktadır. Bu tez çalışması kapsamında maksimum 3250 N/mm radyal katılık isterine göre tasarlanmış bir sincap kafes parçasının katılık doğrulama ve elastik plastik analizleriyle beraber doğrusal olmayan öz değer burkulma analizleri gerçekleştirilmiş ve elde edilen sonuçlar parça seviyesi yapılan yükleme test sonuçları ile kıyaslanmıştır. Yapının ilk boyutlandırması el hesaplarına göre gerçekleştirildiği için basit bir statik analiz modeli ile yapının radyal katılık değeri doğrulanmıştır. Ardından elastik plastik dayanım analizleri ile yapıda kopma veya kırılmaların gerçekleşeceği eksenel yük limiti elde edilmiştir. Kiriş yapıları radyal katılık isterini sağlamak amacıyla ince ve uzun yapıda tasarlandığı için yapıda kırılma limitine ulaşılmadan burkulma hata modunun gerçekleşme ihtimali de bulunmaktadır. Bu sebepten dolayı statik elastik plastik analizlerinin ardından tasarlanmış olan parça için sincap kafes özelinde öz değer burkulma analizi gerçekleştirilmiştir. Yapılan çalışmalarda 3250 N/mm veya daha düşük radyal katılık değerine sahip sincap kafesi için gerçekleştirilen elastik plastik dayanım analizleri sonucu parçada 51,47 kN ve öz değer burkulma analizleri sonucunda 135,15 kN eksenel yük kapasitesi tespit edilmiştir. Sonlu elemanlar yöntemi ile gerçekleştirilen analiz sonuçlarına göre öz değer burkulma analizinden elde edilen değer, elastik plastik analizinden elde edilen değerden yüksek olduğu için parça burkulma hata moduna girmeyecek ve 51,47 kN eksenel yüke maruz kaldığında parça malzemesinin maksimum çekme dayanım sınırı aşılacağı için parça kırılacaktır. Parça seviyesi gerçekleştirilen eksenel yük taşıma kapasitesi testleri iki benzer numune ile gerçekleştirilmiş ve iki numunede 62,88 kN ve 60,87 kN mertebelerinde eksenel yük taşıma kapasitesi tespit edilmiştir. İki numune arasında eksenel yük taşıma kapasitesi arasında yaklaşık olarak %3,19 mertebesinde fark bulunmaktadır. Aynı ham malzeme kullanılarak üretilen bu sincap kafes test numuneleri arasında oluşan farkın ana sebebi parçaların imalat toleransları olduğu düşünülmektedir. Analizlerden elde edilen eksenel dayanım limiti ile testlerden elde edilen eksenel yük taşıma kapasitesi arasında yaklaşık olarak %15,4 fark bulunmaktadır. Testlerde elde edilen sonuçların analiz sonuçlarından belirtilen oranda yüksek çıkmasının iki ana sebebi bulunmaktadır. Bunlardan birincisi analizlerde minimum dayanım özelliklerine sahip malzeme verilerinin kullanılmasıdır. Potansiyel ikinci sebep ise analiz modellerinde nominal boyutlara sahip sincap kafes modelinin kullanılması fakat testlerde imalat toleransları sebebiyle bir miktar daha kalın kiriş geometrilerinin kullanılabilmiş olma durumudur. Bu iki potansiyel sebep göz önünde bulundurulduğunda testlerde daha yüksek dayanım sonuçlarının elde edilmesi temellendirilebilmektedir. Gelecekte ihtiyaç duyulabilecek tasarım iterasyonları veya yeni tasarımlar için dayanım analizleri sonuçlarının güvenlik katsayısının yüksek güvenilirliği olduğu sonucuna varılmış olup yapılacak tasarımlar için gerçekleştirilecek analizlerin bir test ile tekrardan doğrulama ihtiyacı olmadığı sonucuna varılmıştır.