Rotor Pala Ucu Şeklinin Helikopter Performansına Etkisi
Rotor Pala Ucu Şeklinin Helikopter Performansına Etkisi
Dosyalar
Tarih
Yazarlar
Yağız, Bedri
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Helikopter, döner kanat kullanarak taşıma, itki ve kontrol sağlayan bir hava aracıdır. Döner kanatlar, uçuşu sürdürebilmek için havanın öteleme hızına ihtiyacı olan sabit kanatlı uçakların aksine aracın hızı sıfır olsa dahi kanat yüzeyinin havaya göre olan hareketinden dolayı aerodinamik kuvvetler üretirler. Böylelikle helikopterler dikey uçuş kabiliyetine sahip olurlar. Modern helikopter tasarımında rotor etrafındaki akış alanının öngörümü önem arz eder. CFD analizleri rotor aerodinamik performansının hesaplanmasında çok yönlüdür. Rotor etrafındaki akış lineer olmayan, üç boyutlu ve bir önceki palanın bozuntu oluşturduğu akış alanında hareket eden paladan dolayı artan bir kararsızlığa sahiptir. Gelişmiş rotor teknolojisinde geleneksel olmayan kanat profillerinin kullanılması yönünde yapılan araştırmalar, yeni nesil helikopterlerin ihtiyaçlarını sağlamak için temel ilgi alanını oluşturur. Bu ihtiyaçlar taşıma kabiliyetinin, menzilin ve dayanıklılığın arttırılması, yüksek ileri uçuş hızı, yüksek manevra yeteneği ve çeviklik sağlamak olarak sıralanabilir. Özellikle sivil uygulamalar için gürültü yayılımının azaltılması ilgi alanıdır. Bu çalışmada helikopterin asılı durumundaki rotor palalarının sayısal çözümlemesi yapılmıştır. CFD yazılımı olan Fluent 6.1 programı kullanılarak üç boyutlu helikopter palalarının etrafındaki akış incelenmiştir. Rotor palaları burulmasız, incelme olamayan, altı birim kanat açıklığına sahip ve tek kanat profilinden (NACA0012, VR7) oluşturulmuştur. Hesaplamalar farklı uç hızlarında (Mt=0.439 ve0.877) ve kolektif açılarında (Өc=00 ve 80) değişik akış koşulları için yapılmıştır. Son olarak, kare, daralmalı (tapered) ve geriye süpürmeli (swept), tek NACA2415 profilinden oluşan üç farklı uç şekline sahip pala geometrileri kullanılmıştır. Pala geometrileri CATIA V5R12 programında çizilmiş ve Gridgen V15 programı kullanılaraktan ağ alanı oluşturulmuştur.
The helicopter is an aircraft that uses rotating wings to provide lift, propulsion, and control. The rotary wings can produce aerodynamics’ forces, which are generated by the relative motion of a wing surface with respect to the air, even when the velocity of the vehicle itself is zero, in contrast to fixed-wing aircraft, which needs a translational velocity to maintain flight. Hence, the helicopter has the ability of vertical flight, including vertical take-off and landing. The prediction of the flow field around a rotor has an important part in modern helicopter design. CFD analysis is so versatile to analysis of the rotor aerodynamic performance which can be used to investigate the flow about almost any type of vehicle, including rotorcraft. The flow is non linear highly three dimensional, and unsteadiness is increased due to each blade moving into a fluid which has already been disturbed by a previous blade Research on using unconventional airfoils for advanced rotor technology has been of primary interest to meet the requirements of a next generation rotorcraft. These requirements are increased payload capability, and range and endurance, higher forward flight speed, and greater maneuverability and agility. Reduced noise emission is also of interest, particularly for civilian applications. In this study, first, numerical solutions of the helicopter rotor blades for the hover position have been considered. The flow field is investigated around the three dimensional helicopter rotor blades by using CFD software, FLUENT 6.1. The rotor blades with no twist or taper, aspect ratio six, with a single NACA0012 and VR7 airfoils were chosen. The computations are obtained for various flow conditions with different tip Mach numbers (Mt=0.439 and 0.877) and collective pitch settings (Ө0=00 and 80). Finally, three different blade geometries with different blade tip shapes including square, tapered, and swept, and with a single NACA2415 are used. The blade geometries were drawn by using CATIA V5R12 program and their computational domains were generated by Gridgen grid generation software.
The helicopter is an aircraft that uses rotating wings to provide lift, propulsion, and control. The rotary wings can produce aerodynamics’ forces, which are generated by the relative motion of a wing surface with respect to the air, even when the velocity of the vehicle itself is zero, in contrast to fixed-wing aircraft, which needs a translational velocity to maintain flight. Hence, the helicopter has the ability of vertical flight, including vertical take-off and landing. The prediction of the flow field around a rotor has an important part in modern helicopter design. CFD analysis is so versatile to analysis of the rotor aerodynamic performance which can be used to investigate the flow about almost any type of vehicle, including rotorcraft. The flow is non linear highly three dimensional, and unsteadiness is increased due to each blade moving into a fluid which has already been disturbed by a previous blade Research on using unconventional airfoils for advanced rotor technology has been of primary interest to meet the requirements of a next generation rotorcraft. These requirements are increased payload capability, and range and endurance, higher forward flight speed, and greater maneuverability and agility. Reduced noise emission is also of interest, particularly for civilian applications. In this study, first, numerical solutions of the helicopter rotor blades for the hover position have been considered. The flow field is investigated around the three dimensional helicopter rotor blades by using CFD software, FLUENT 6.1. The rotor blades with no twist or taper, aspect ratio six, with a single NACA0012 and VR7 airfoils were chosen. The computations are obtained for various flow conditions with different tip Mach numbers (Mt=0.439 and 0.877) and collective pitch settings (Ө0=00 and 80). Finally, three different blade geometries with different blade tip shapes including square, tapered, and swept, and with a single NACA2415 are used. The blade geometries were drawn by using CATIA V5R12 program and their computational domains were generated by Gridgen grid generation software.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005
Anahtar kelimeler
Helikopter,
Pala Ucu,
Sweep,
Taper,
Girdap Merkezi,
Helicopter,
Blade Tip,
Sweep,
Taper,
Vortex Core