Yüksek verimli ve ısıl dayanımlı perovskit güneş hücreleri için yeni ftalosiyanin türevi boşluk taşıyıcı malzemelerin geliştirilmesi
Yüksek verimli ve ısıl dayanımlı perovskit güneş hücreleri için yeni ftalosiyanin türevi boşluk taşıyıcı malzemelerin geliştirilmesi
Dosyalar
Tarih
2020
Yazarlar
Dalkılıç, Zeynep
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Özet
Gezegenimizdeki hızlı nüfus artışı ile beraber enerji tüketiminin de artması, enerjiye olan ihtiyacı daha da önemli hale getirmiştir. Fosil yakıtlar gibi geleneksel enerji kaynakları sınırlı olup çevre kirliliğine neden olduğundan, alternatif enerji kaynaklarının seçilmesi ve kullanılması kritik önem taşımaktadır. Geleneksel enerji kaynaklarının aksine, güneş enerjisi temiz, güvenilir ve yenilenebilir bir enerji kaynağı olarak öne çıkmaktadır. Güneş enerjisinden elektrik enerjisi üretimi, yarı iletkenlerin fotovoltaik etkisi ile güneş pilleri veya fotovoltaik hücreler tarafından sağlanmaktadır. Son yıllarda özellikle boyaya duyarlı güneş hücreleri ve yığın heteroeklem güneş hücreleri gibi çok çeşitli güneş hücre teknolojileri araştırılmakta ve geliştirilmektedir. Güneş enerjisinden faydalanan perovskitler de yine son yıllarda en çok ilgi çeken güneş hücrelerindendir. Perovskit güneş hücreleri (PSCs), yüksek verimlilik, kolay üretim ve düşük maliyetleri nedeniyle umut vaat eden yeni tip fotovoltaik teknolojilerden biridir. İlk üretilen perovskit güneş hücrelerinde, güç dönüşüm verimliliği (PCE) ve kararlılık düşük olmasına rağmen, bugün PCE'de % 24'e kadar bir artış gözlenmiştir. PCE'lerde gözlenen bu hızlı artışın nedeni, yeni perovskit malzemelerin ve üretim tekniklerinin geliştirilmesidir. Bununla birlikte, en çok çalışılan perovskit malzemelerin neme ve ısıya maruz kaldıklarında bozulma eğilimi göstermesi hala bir sorundur. Bunu göz önünde bulundurarak, PSC'lerin kararlılığını arttırmak için birçok strateji uygulanmıştır. Bu stratejilerden biri, perovskit/boşluk taşıyıcı tabaka (HTL) arayüz mühendisliğidir. Boşluk taşıyıcı malzeme (HTM) ile oluşturulan katman sadece boşluk taşımada önemli bir rol oynamakla kalmaz, aynı zamanda perovskit katmanını havaya karşı korur ve cihazın stabilitesini artırır. Perovskit güneş pillerinde en sık kullanılan HTM malzemesi 2,2',7,7'-tetrakis-(N,N-di-4-metoksifenilamino)-9,9'-spirobifluoren (Spiro-OMeTAD)'dir. Cihazın mükemmel performansına rağmen, Spiro-OMeTAD'ın hareket kabiliyetinin ve yaşam döngüsünün düşük, fiyatının ise yüksek olması ticarileştirmenin önünde bir engeldir. Bu nedenle, daha kararlı ve düşük maliyetli küçük moleküller, polimerik veya anorganik bileşikler boşluk taşıyıcı malzeme olarak kullanılmaya başlamıştır. Bu yapılardan biri de ftalosiyaninlerdir (Pcs). Son yıllarda, ftalosiyaninlerin HTM olarak kullanıldığı ve umut verici sonuçların elde edildiği pek çok çalışma bulunmaktadır. Ftalosiyaninler, tüm molekül üzerine yayılmış iki boyutlu π–elektron delokalizasyonuna sahip düzlemsel aromatik makrosiklik bileşiklerdir. Pc'ler kimyasal ve ısısal kararlılıkları, yarı iletkenlikleri, yüksek taşıma hareketlilikleri ve düşük maliyetleri nedeniyle, opto-elektronik cihazlarda, transistörlerde, ışık yayan diyotlarda ve boyaya duyarlı güneş hücrelerinde kullanılmaktadırlar. Buna dayanarak bu tez kapsamında diklorobenzentiyol grupları taşıyan periferal okta ve tetra sübstitüe çinko ve bakır ftalosiyaninler ile non-periferal okta sübstitüe bakır ftalosiyanin sentezlenmiştir. Sentezlenen ftalosiyaninlerin elektrokimyasal ölçümleri gerçekleştirilmiş ve güneş hücrelerinde HTM olarak uygulama çalışmaları yapılmıştır. Sentezlenen tüm bileşiklerin yapıları spektroskopik yöntemler (IR, 1H-NMR, GC-MS ve UV-Vis) kullanılarak aydınlatılmıştır. Tez çalışmasının ilk kısmında, 4,5-bis[(2,4-dikloro)feniltiyo]ftalonitril (2), 4-[(2,4-diklorofenil)tiyo]ftalonitril (6) ve 3,6-bis[(2,4-dikloro)feniltiyo]ftalonitril (10) bileşikleri başlangıç maddesi olarak hazırlanmıştır. 4,5-bis[(2,4-dikloro)feniltiyo]ftalonitril (2) bileşiği 4,5-dikloroftalonitrilin, 4-[(2,4-diklorofenil)tiyo]ftalonitril (6) bileşiği ise 4-nitroftalonitrilin, 2,4-diklorobenzentiyol ile nükleofilik aromatik sübstitüsyon reaksiyonundan sentezlenmiştir. Bir diğer başlangıç maddesi olan 3,6-bis[(2,4-dikloro)feniltiyo]ftalonitril (10) bileşiği ise 3,6- dihidroksiftalonitrilden başlanarak iki kademede sentezlenmiştir. Hazırlanan ftalonitril bileşiklerinin (2, 6, 10) çinko asetat (Zn(CH3COO)2) veya bakır (II) klorür (CuCl2) tuzlarının 1-pentanol içerisinde ve 1,8-Diazabisiklo[5.4.0]undek-7-ene (DBU) varlığında siklomerizasyonu sonucu hedeflenen ftalosiyanin bileşiklerine (3, 4, 7, 8, 11) geçilmiştir. Tez çalışmasının ikinci kısmında periferal okta ve tetra sübstitüe çinko ve bakır ftalosiyaninlerin (3, 4, 7, 8) uygun HOMO ve LUMO seviyelerine sahip olup olmadığını belirlemek için döngüsel voltametri (CV) ölçümleri yapılmıştır. Elde edilen değerler ftalosiyaninlerin boşlukların perovskitten çıkarılması ve taşınmasında uygun olacağını göstermiştir. Tez çalışmasının son kısmında ise periferal okta ve tetra sübstitüe çinko ve bakır ftalosiyaninlerin (3, 4, 7, 8) dopant içermeyen tersine çevrilmiş perovskit güneş hücrelerinde boşluk taşıyıcı malzeme olarak uygulama çalışmaları yapılmıştır. Ftalosiyanin-temelli PSC'ler, vakumla buharlaştırılan altın (Au) veya alüminyum (Al) elektrotlar haricinde tamamen çözelti ile işlenmiş oldukları için üretim maliyetleri düşüktür. Hazırlanan cihazların fotovoltaik performansları, aynı koşullarda hazırlanan referans poli(3,4-etilendioksitiyofen):polistiren sülfonat (PEDOT:PSS) hücrenin değeri ile karşılaştırılmıştır. Tetra sübstitüe ZnPc'nin (7) HTM olarak kullanıldığı p-i-n tipi perovskit güneş hücresi için PCE % 3,16, tetra sübstitüe bakır ftalosiyanin (8) için ise % 3,53 olarak ölçülmüştür. Okta sübstitüe çinko ve bakır ftalosiyaninlerin (3, 4) klorobenzendeki çözünürlüğünün düşük olması nedeniyle pil performansları tetra sübstitüe Pcs'den daha düşük tespit edilmiştir. Hem merkezi metallerin hem de çevresel ikame maddelerinin PSC'lerin performansını etkilediği gösterilmiştir. Tez kapsamında elde edilen sonuçlar, uygun modifikasyonlar yapıldığında ftalosiyaninlerin düşük maliyetli perovskit güneş pillerinin üretiminde boşluk taşıyıcı malzeme olarak potansiyelleri olduğunu göstermektedir.
Due to the rapid growth of the planet's population and the increase in energy consumption, the need for energy has become more important. Since the traditional energy sources such as fossil fuels are limited and cause environmental pollution; alternative energy sources are critical. Unlike traditional energy sources, solar energy stands out as a clean, reliable and renewable energy supply. The production of electrical energy from solar energy is provided by solar cells or photovoltaic cells by the photovoltaic effect of semiconductors. A wide range of solar cell technologies are being investigated and developed in the recent years, which includes dye-sensitized solar cells, bulk heterojunction solar cells, hybrid organic–inorganic solidstate solar cells. One of the most attractive solar cells in recent years is perovskites that use solar energy. Perovskite solar cells (PSCs) appear to be promising new generation photovoltaic technology due to high efficiency, easy fabrication and low cost. Although the low power conversion efficiency (PCE) and poor stability of the first produced perovskite solar cells, today an increase of up to 25 % has been achieved in PCE. This rapid increase in PCEs is due to the development of new perovskite materials and production techniques. However, it is still a problem that the most studied perovskite materials tend to degrade when exposed to moisture and heat. In view of this, many strategies have been applied to enhance the stability of PSCs. One of these strategies is the perovskite/hole transfer layer (HTL) interface engineering. Hole transfer material (HTM) used as a layer not only plays an important role in hole extraction, but also shields the perovskite layer against air and improves the device stability. 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) is the most commonly used HTM in PCSs. Despite the excellent performance of device, Spiro-OMeTAD's low mobility, low life-cycle and high price of is an obstacle to commercialization. For this reason, stability of the device can be achieved by designing more stable and low cost HTMs such as small molecules, polymeric or inorganic compounds. Recently, phthalocyanines (Pcs) have been used as HTM and promising results have been achieved. Pcs are aromatic planar macrocycles with 2D π–electron delocalization over the whole molecule. Due to their chemical and thermal stability, semiconductivity, high carrier mobility and low-cost, Pcs are used in opto-electronic devices, transistors, light emitting diodes and dye-sensitized solar cells. Phthalocyanines offer good alternatives as HTMs based on thermal, optical and electrochemical properties. The proper peripheral groups and core metal could boost the performance and stability of phthalocyanines-based perovskite solar cells. On the basis of this thesis, novel tetra and octa substituted zinc and copper phthalocyanines (Zn, Cu) and non-peripherally octa-substituted copper phthalocyanines bearing dichlorobenzentiol groups were synthesized. Electrochemical measurements were performed to determine the HOMO-LUMO energy levels of newly synthesized metallo phthalocyanines. Then, thin films were prepared and their properties as HTM were examined. All synthesized compounds were characterized using spectroscopic methods (IR, 1H-NMR, GC-MS and UV-Vis). In the first part of the thesis, 4,5-bis[(2,4-dichlorophenyl)thio]phthalonitrile (2), 4-[(2,4-dichlorophenyl)thio]phthalonitrile (6) and 3,6-bis[(2,4-dichlorophenyl)thio] phthalonitrile (10) were prepared as starting material. Compound 2 was synthesized from the nucleophilic aromatic substitution reaction of 2,4-dichlorobenzenethiol with 4,5-dichlorophthalonitrile. Compound 6 was synthesized from 2,4-dichlorobenzene thiol and 4-nitroftalonitrile by a similar method. Another starting material, 3,6-bis [(2,4-dichloro)phenylthio]phthalonitrile (10), was synthesized in two steps starting from 3,6-dihydroxyphthalonitrile. The targeted phthalocyanine complexes (3, 4, 7, 8, 11) were synthesized from the cyclotetramerization of the phthalonitrile compounds (2, 6, 10) with the appropriate zinc acetate (Zn(CH3COO)2) or copper chloride (CuCl2) in the presence of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol. In the second part of the thesis, cyclic voltammetry (CV) measurements were performed to determine whether the peripheral octa and tetra substituted zinc and copper phthalocyanines (3, 4, 7, 8) have appropriate HOMO and LUMO levels. The obtained values indicating that phthalocyanines would be suitable for extracting of hole and transporting from perovskite. In the last part of the thesis, octa and tetra substituted zinc and copper phthalocyanines (3, 4, 7, 8) were performed as dopant-free hole transfer material in inverted type perovskite solar cell. Phthalocyanine based PCSs were prepared by using the solution process except Al electrode was obtained by vacuum evaporation. Thus, the fabrication costs were greatly reduced. The photovoltaic performance of the prepared zinc and copper Pcs was quite comparable to the reference poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) cells under the same conditions. PCE for p-i-n type perovskite solar cell, where tetra substituted ZnPc (7) was used as hole transfer mateial, was found to be 3.16 %. The best performing device based on T-CuPc (8) was found to have a PCE of 3.53 % with VOC of 0.83 V, JSC of 6.79 mA cm−2 and FF of 63 %. Octa substituted phthalocyanines (3, 4) showed lower performance than tetra substituted Pcs because of low solubility in chlorobenzene. Both metals in the macrocyclic cavity and substitutients at the peripheral positions affect the performance of PSCs. As a result, high-performance HTMs play a critical role in improving the performance of PSCs. They can not only transport holes and block electrons to retard charge recombination, but also act as an encapsulation layer to protect the perovskite from degradation by moisture and oxygen within a conventional device architecture. A large number of HTMs have been reported in the past few years, among these HTMs, phthalocyanines have excellent hole-transport properties and are attractive because of their high thermal and chemical stability, easy synthesis and purification, and low cost. Here, for the first time, both tetra and octa substituted zinc and copper phthalocyanines have been studied as hole transporting materials in the inverted-type (p-i-n) PSCs without using any dopant material. The developed tetra substituted ZnPc and CuPc possess four dichlorophenylthio groups, and the octa-substituted Pcs have eight dichlorophenylthio groups in their peripheral position which enhance their solubility in perovskite-friendly solvent and improved thin film quality. In the inverted solar cell (ITO/HTM/CH3NH3Pbl3/PCBM/Al), methylammonium lead iodide (MAPI) was used as the active layer and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as the electron transport material. Devices based on tetra substituted zinc and copper Pcs, as dopant-free HTMs, indicated significant efficiency enhancement and cell stability compared to similar octa substituted Pcs. While the open-circuit voltage (Voc) for the reference PEDOT:PSS was measured 0.77 V, for tetra substituted CuPc was found to be 0.83 V. Due to higher Voc value, tetra substituted CuPc is an appropriate candidate that can replace expensive and unstable HTMs that are currently used in PSCs.
Due to the rapid growth of the planet's population and the increase in energy consumption, the need for energy has become more important. Since the traditional energy sources such as fossil fuels are limited and cause environmental pollution; alternative energy sources are critical. Unlike traditional energy sources, solar energy stands out as a clean, reliable and renewable energy supply. The production of electrical energy from solar energy is provided by solar cells or photovoltaic cells by the photovoltaic effect of semiconductors. A wide range of solar cell technologies are being investigated and developed in the recent years, which includes dye-sensitized solar cells, bulk heterojunction solar cells, hybrid organic–inorganic solidstate solar cells. One of the most attractive solar cells in recent years is perovskites that use solar energy. Perovskite solar cells (PSCs) appear to be promising new generation photovoltaic technology due to high efficiency, easy fabrication and low cost. Although the low power conversion efficiency (PCE) and poor stability of the first produced perovskite solar cells, today an increase of up to 25 % has been achieved in PCE. This rapid increase in PCEs is due to the development of new perovskite materials and production techniques. However, it is still a problem that the most studied perovskite materials tend to degrade when exposed to moisture and heat. In view of this, many strategies have been applied to enhance the stability of PSCs. One of these strategies is the perovskite/hole transfer layer (HTL) interface engineering. Hole transfer material (HTM) used as a layer not only plays an important role in hole extraction, but also shields the perovskite layer against air and improves the device stability. 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) is the most commonly used HTM in PCSs. Despite the excellent performance of device, Spiro-OMeTAD's low mobility, low life-cycle and high price of is an obstacle to commercialization. For this reason, stability of the device can be achieved by designing more stable and low cost HTMs such as small molecules, polymeric or inorganic compounds. Recently, phthalocyanines (Pcs) have been used as HTM and promising results have been achieved. Pcs are aromatic planar macrocycles with 2D π–electron delocalization over the whole molecule. Due to their chemical and thermal stability, semiconductivity, high carrier mobility and low-cost, Pcs are used in opto-electronic devices, transistors, light emitting diodes and dye-sensitized solar cells. Phthalocyanines offer good alternatives as HTMs based on thermal, optical and electrochemical properties. The proper peripheral groups and core metal could boost the performance and stability of phthalocyanines-based perovskite solar cells. On the basis of this thesis, novel tetra and octa substituted zinc and copper phthalocyanines (Zn, Cu) and non-peripherally octa-substituted copper phthalocyanines bearing dichlorobenzentiol groups were synthesized. Electrochemical measurements were performed to determine the HOMO-LUMO energy levels of newly synthesized metallo phthalocyanines. Then, thin films were prepared and their properties as HTM were examined. All synthesized compounds were characterized using spectroscopic methods (IR, 1H-NMR, GC-MS and UV-Vis). In the first part of the thesis, 4,5-bis[(2,4-dichlorophenyl)thio]phthalonitrile (2), 4-[(2,4-dichlorophenyl)thio]phthalonitrile (6) and 3,6-bis[(2,4-dichlorophenyl)thio] phthalonitrile (10) were prepared as starting material. Compound 2 was synthesized from the nucleophilic aromatic substitution reaction of 2,4-dichlorobenzenethiol with 4,5-dichlorophthalonitrile. Compound 6 was synthesized from 2,4-dichlorobenzene thiol and 4-nitroftalonitrile by a similar method. Another starting material, 3,6-bis [(2,4-dichloro)phenylthio]phthalonitrile (10), was synthesized in two steps starting from 3,6-dihydroxyphthalonitrile. The targeted phthalocyanine complexes (3, 4, 7, 8, 11) were synthesized from the cyclotetramerization of the phthalonitrile compounds (2, 6, 10) with the appropriate zinc acetate (Zn(CH3COO)2) or copper chloride (CuCl2) in the presence of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol. In the second part of the thesis, cyclic voltammetry (CV) measurements were performed to determine whether the peripheral octa and tetra substituted zinc and copper phthalocyanines (3, 4, 7, 8) have appropriate HOMO and LUMO levels. The obtained values indicating that phthalocyanines would be suitable for extracting of hole and transporting from perovskite. In the last part of the thesis, octa and tetra substituted zinc and copper phthalocyanines (3, 4, 7, 8) were performed as dopant-free hole transfer material in inverted type perovskite solar cell. Phthalocyanine based PCSs were prepared by using the solution process except Al electrode was obtained by vacuum evaporation. Thus, the fabrication costs were greatly reduced. The photovoltaic performance of the prepared zinc and copper Pcs was quite comparable to the reference poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) cells under the same conditions. PCE for p-i-n type perovskite solar cell, where tetra substituted ZnPc (7) was used as hole transfer mateial, was found to be 3.16 %. The best performing device based on T-CuPc (8) was found to have a PCE of 3.53 % with VOC of 0.83 V, JSC of 6.79 mA cm−2 and FF of 63 %. Octa substituted phthalocyanines (3, 4) showed lower performance than tetra substituted Pcs because of low solubility in chlorobenzene. Both metals in the macrocyclic cavity and substitutients at the peripheral positions affect the performance of PSCs. As a result, high-performance HTMs play a critical role in improving the performance of PSCs. They can not only transport holes and block electrons to retard charge recombination, but also act as an encapsulation layer to protect the perovskite from degradation by moisture and oxygen within a conventional device architecture. A large number of HTMs have been reported in the past few years, among these HTMs, phthalocyanines have excellent hole-transport properties and are attractive because of their high thermal and chemical stability, easy synthesis and purification, and low cost. Here, for the first time, both tetra and octa substituted zinc and copper phthalocyanines have been studied as hole transporting materials in the inverted-type (p-i-n) PSCs without using any dopant material. The developed tetra substituted ZnPc and CuPc possess four dichlorophenylthio groups, and the octa-substituted Pcs have eight dichlorophenylthio groups in their peripheral position which enhance their solubility in perovskite-friendly solvent and improved thin film quality. In the inverted solar cell (ITO/HTM/CH3NH3Pbl3/PCBM/Al), methylammonium lead iodide (MAPI) was used as the active layer and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as the electron transport material. Devices based on tetra substituted zinc and copper Pcs, as dopant-free HTMs, indicated significant efficiency enhancement and cell stability compared to similar octa substituted Pcs. While the open-circuit voltage (Voc) for the reference PEDOT:PSS was measured 0.77 V, for tetra substituted CuPc was found to be 0.83 V. Due to higher Voc value, tetra substituted CuPc is an appropriate candidate that can replace expensive and unstable HTMs that are currently used in PSCs.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2020
Anahtar kelimeler
Metaloftalosiyaninler,
Metallopthalocyanines,
Güç kaynakları,
Power resources,
Yenilenebilir enerji kaynakları,
Renewable energy sources,
Güneş enerjisi,
Solar energy,
Perovskit,
Perovskite,
Ftalosiyaninler,
Phthalocyanines