Pmma-ppp Ve Ps-ppp Blok Kopolimerlerindeki Moleküler Organizasyonların Malzemenin Morfolojik, Optik, Elektronik Ve Mekanik Özelliklere Olan Etkisi
Yükleniyor...
Dosyalar
Tarih
item.page.authors
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Önemli bir iletken polimer olan PPP’nin PS ve PMMA ile oluşturduğu diblok kopolimerler teorik yöntemlerle incelenmiştir. Deneysel olarak sentezlenmiş, farklı özellikler gösterdiği bilinen ancak özellikleri kontrol eden etkileşimlerin ne olduğunun açıklanamadığı bu poli-para-fenilen bazlı diblok kopolimerlerinin deneyleri tamamlayıcı, deneycilerin sorularına cevap verecek noktaları aydınlatıcı ve mekanizmayı açıklayıcı teorik hesapları ve bilgisayar simülasyonları yapılmıştır. PPP-PS ve PPP-PMMA kopolimerlerinde uyumun ya da uyumsuzluğun derecesi karışma enerjileri ve Flory-Huggins χ parametresi istatistiksel mekanik yöntemlerle hesaplanmıştır. Bu hesaplamalarda kullanılan monomerler ve oligomerler kuantum mekaniksel olarak optimize edilmiş, elektronik özellikleri ve atomik yükleri belirlenmiştir. Bu etkileşim parametreleri mezo boyutta simülasyonların yapıldığı DPD giriş değerlerinin hazırlanmasında kullanılmıştır. Sonuçta elde edilen çeşitli morfolojiler deneysel AFM morfolojileri ile karşılaştırılmıştır. Bunun yanında periyodik amorf kopolimer hücreleri hazırlanarak NVT topluluğunda simülasyonlar yapılarak elde edilen yapılar deneysel yapılarla karşılaştırılmıştır. Özet olarak, PPP’nin diblok kopolimerleri teorik yöntemler kullanılarak incelenmiş, moleküler dinamik ve mezo boyutta yöntemlerle belirlenen morfolojiler deneysel AFM resimlerinin açıklanmasında kullanılmıştır.
Poly(para-phenylene)s (PPP) are important members of the conducting polymers. PPP–PMMA and PPP-PS diblock copolymers are modelled and electronic, optical, structural and morphological properties have been studied by quantum mechanical, molecular dynamics and mesoscale dynamics simulation methods. Oligomers have been modelled according to the experimental results. Geometry optimizations and atomic charges of the monomers were carried out quantum mechanically. The mixing energies and the interaction parameters between the monomers of diblock copolymers are calculated by statistical mechanical methods cooperated with extended Flory-Huggins equation. These parameters were then used to prepare input parameters for the Dissipative Particle Dynamics (DPD) simulations which are also called as mesoscale (coarse grained) simulations. We showed that the experimentally observed phase separations between side chains were due to increasing mixing energy as a result of polarity mismatch between counterparts. In addition, amorphous cell models are used to simulate polymer diblocks in NVT ensemble. The theoretical structures of the studied systems were then compared to the experimental results. In summary, the molecular organizations of PPP diblock copolymers were studied by means of the theoretical tools. Experimental morphologies determined by AFM photographs in the microscopic scale were enlightened by mesoscale simulations combined with the molecular dynamics simulations.
Poly(para-phenylene)s (PPP) are important members of the conducting polymers. PPP–PMMA and PPP-PS diblock copolymers are modelled and electronic, optical, structural and morphological properties have been studied by quantum mechanical, molecular dynamics and mesoscale dynamics simulation methods. Oligomers have been modelled according to the experimental results. Geometry optimizations and atomic charges of the monomers were carried out quantum mechanically. The mixing energies and the interaction parameters between the monomers of diblock copolymers are calculated by statistical mechanical methods cooperated with extended Flory-Huggins equation. These parameters were then used to prepare input parameters for the Dissipative Particle Dynamics (DPD) simulations which are also called as mesoscale (coarse grained) simulations. We showed that the experimentally observed phase separations between side chains were due to increasing mixing energy as a result of polarity mismatch between counterparts. In addition, amorphous cell models are used to simulate polymer diblocks in NVT ensemble. The theoretical structures of the studied systems were then compared to the experimental results. In summary, the molecular organizations of PPP diblock copolymers were studied by means of the theoretical tools. Experimental morphologies determined by AFM photographs in the microscopic scale were enlightened by mesoscale simulations combined with the molecular dynamics simulations.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2009
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2009
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2009
Konusu
Blok kopolimerler, moleküler dinamik, konjuge polimerler., Block copolymers, molecular dynamics, conjugated polymers.
