LEE- Mimari Tasarımda Bilişim-Yüksek Lisans

Bu koleksiyon için kalıcı URI

Gözat

Son Başvurular

Şimdi gösteriliyor 1 - 4 / 4
  • Öge
    Rizobot: Collective form finding through swarm robotics
    (Graduate School, 2022-12-16) Balcı, Ozan ; Alaçam, Sema ; 523201010 ; Architectural Design Computing
    This study proposes a framework for performing form-finding studies using a swarm of mobile robots. During the development process of the proposed framework, 3 different case studies consisting of 5 experiments were conducted in order to observe the effect of different features on the capability of the swarm system. The term RIZOBot is proposed by the author. Two types of robots named RIZOBot-Mini and RIZOBot were used as agents in the case studies. Both of these robots are low-fidelity differential-drive mobile robots developed as part of this research. RIZOBot-Mini is a wheeled robot which is smaller and faster compared to RIZOBot, while RIZOBot is a tracked robot, consisting of a larger body and more powerful motors. The robots in question have a hardware and software infrastructure that can be equipped and operated with different actuators to conduct various research on swarm systems. In the first case study of the research, the potential of swarm robotics in experimental artwork was examined. In this context, 4 RIZOBot-Minis equipped with different coloured inks to perform drip painting were used as agents. Operating with a semi-central system, the robots took a predefined trigonometric equation as a defined route and manipulated that route by interacting with each other. Robots moving on a bordered white canvas, left their traces on the canvas by drip painting during the experiment. At the end of the experiment, the effect of the robot-robot interaction feature on the swarm was observed through these traces. In the second case study, form studies were carried out by drawing action on a swarm of zone-sensitive mobile robots. In the proposed system, 4 RIZOBot-Minis equipped with different coloured markers were used as agents. The robots sensed the light intensity at their location with the light sensor they have and exhibited different movement behaviors depending on the measurement results. In the study consisting of two experiments, the first experiment focused on the robot-environment feature, while the second experiment proceeded through robot-robot communication. In the first experiment, robots moving in an area with light and dark zones demonstrated two different movement patterns according to the area they were in. In the second experiment, the swarm aims to find the brightest spot in the area by communicating with each other. Robots constantly perform light sensing and compare their measurements with each other. The robot with the highest reading oscillates around itself in the same location, while the rest of the swarm continues to search for a brighter spot. Thus, agents which do not have any localization feature, collectively find the brightest spot in the given area. In both experiments, the robots drew their traces on a white canvas with markers. After the experiments, these traces were examined and the behavior of the swarm of RIZOBot-Minis was observed and analyzed. In the last case study of the research, form-finding studies were carried out in an outdoor environment using a swarm of 4 robots which perform adding/pouring action. In the study, 4 RIZOBots, each of them having a tank full of granulated sugar and anozzle that can be opened and closed, were used as robots. The study consists of two experiments. In the first experiment, the robots aim to find one light source placed on the sand floor in the given area and gather around it. The first RIZOBot that finds the light source terminates its movement, broadcasts infrared signals from its transmitter unit and calls the rest of the swarm. Learning that the light source is found by another robot, the rest of the swarm follow the transmitted signals with their receiver unit by using the localization feature and aim to reach the light source. Meanwhile, the RIZOBots following the signal open their nozzles and pour sugar on the ground during their movements. Each RIZOBot that reaches the light source imitates the first robot that finds the light and amplifies the emitted signal. In the experiment focusing on the robot localization feature, the experiment ends when the entire swarm reaches the light source. In the second study, two light sources are placed on the sand floor and RIZOBots seek these light sources. After the 2 robots from the swarm find these sources, they emit infrared signals as in the first experiment. The rest of the swarm randomly selects one of the two robots that find the light and follows its signals to reach it. RIZOBots, reaching one of the robots that find the light, takes the other robot as a new target, and moves towards it by pouring sugar on the sand. Changing their destination with the other robot as they arrive at each one, RIZOBots constantly move between the two light sources and leave their traces on the ground. The experiment ends when the sugar in the tank of the robots runs out. Robots, which distinguish two different signals with the robot-robot recognition feature, create a 2.5-dimensional form on the sandy ground with the movement traces they leave between two light sources. At the end of the two experiments, the forms created on the sandy ground were documented and analyzed. In the proof-of-concept study, which consists of the aforementioned 3 case studies, the form-finding potential of a swarm of mobile robots is examined through certain features with both swarm and hybrid control architectures, and a framework is proposed in line with these examinations. Preliminary results show that the proposed framework enables indirect user-swarm interaction and has the potential to act as a co-designer rather than just a tool in the early phases of architectural design.
  • Öge
    Modeling brick surfaces in historic buildings with design computation methods
    (Graduate School, 2023-01-16) Altun, Sevgi ; Özkar K, Mine ; 52319112 ; Architectural Design Computing
    Studies in computational design have increasingly turned to architectural heritage in recent years, and this interest has helped the advancement of both disciplines. This thesis aims to contribute to the field by exploring examples of brickwork from Medieval Anatolia and modeling the correlation between the material construction of brick surfaces and the design geometry. Medieval Anatolia saw a flourishing of brick-built structures with the effect of Iranian bricklaying tradition, a testament to the skill and artistry of the craftsmen who built them. However, the preservation and restoration of these historic buildings present challenges. Traditional methods and techniques for building with bricks are insufficiently documented or existing documentation is not shared in a common platform. The lack of documentation combined with the difficulty of access to information makes it challenging to restore architectural heritage elements accurately, and the know-how gets lost through time. This thesis proposes a method for bridging the knowledge from the disciplines of architectural history and building technology by developing grammars that enable the production of selected samples of brick elements in monumental architecture in Anatolia. The design reasoning behind historical brick structures is externalized and transferred to the digital environment. This approach intends to preserve and transfer the construction techniques and materials used in these historic buildings while utilizing contemporary tools and fabrication technology. We aim to use computational design tools as a medium to assist architectural heritage studies by providing a common ground for studies that understand the architectural design process as a whole with making. The first chapter of the thesis presents a discussion of the use of digital tools in heritage studies for surveying and modeling purposes, heritage building information models (HBIM), and the importance of preserving the know-how in heritage studies, relating construction techniques and materials to the design process. We use shape and making grammars as computational approaches for our formalization. Shape grammars are developed to formalize the visual thinking and reasoning of design as well as generative processes with shapes. Their extension, making grammars that formalize the design and making process, are discussed with their applications. Making grammars have the potential to contribute to heritage studies by providing a more comprehensive understanding of historical buildings and structures by documenting not just the geometry and form but also the know-how and intangible qualities of the construction process. However, there is still a need for further research and development to integrate these methods into the architectural heritage field and make them more accessible and useful to historians and conservation specialists. In the second chapter, the literature review addresses the importance of geometry in architectural design in the early Islamic period, with a particular focus on Medieval Anatolia, and provides an overview of the use of digital tools to analyze, design, and produce brick surfaces. The first step of the method of the research involves modeling, analyzing, and reconstructing selected cases of brickworks with complex geometric patterns, aesthetic appeal, and different curvatures that are also used as decorations in addition to their structural function (single-curved surfaces, domes, and corniches below minaret balconies). The cases were chosen due to their unique characteristics and the challenges they present in terms of analysis and documentation. The similarity in the period, geographical region, function, and materialization of abstract geometric patterns through the bricklaying is considered. The analysis includes the examination of historical documents and archival sources, as well as the physical analysis of brickwork samples from medieval buildings in Anatolia. Through this multi-faceted approach, we combine information from various sources to model the parts and wholes of the sample cases. The formal features of the selected cases are analyzed using digital modeling tools to uncover the underlying geometrical compositions. The second step is the synthesis of the information, which will involve the definition of parameters and the development of grammars that capture the know-how of traditional design and construction techniques, formalizing information on the tectonics of existing surfaces. A modular approach has been used that takes into account the types of bricks used, their sizes, and the sequential and spatial stages followed in the traditional construction of brick surfaces. The potential use of practical geometry is discussed and demonstrated through the method. The research focuses on the flexibility in the perceiving of parts and wholes and the analysis of patterns as a result of constructional relations between three-dimensional units rather than two-dimensional arrangements. The parts of these compositions are obtained through a specific material application and bricklaying technique. The production parameters can change the visual characteristics of the results without altering the overall order. Different surface types are associated with each other through analysis based on the geometrical layout and the units. The constructional logic and order of bricklaying behind complex patterns on different surfaces are examined, as are the three-dimensional qualities of brick muqarnas on corniches below minaret balconies. The third step involves the definition of the least number of rules required for the recreation of the analyzed surfaces. There are two types of bricklaying rules namely, the brick rules and the pattern rules. Brick rules define the three-dimensional relation between two adjacent bricks and the shapes and dimensions of the bricks through the use of parameters. Pattern rules define the geometrical order of the emerging pattern due to bricklaying. The final step is the conversion of the bricklaying generated with the grammars into robotic fabrication codes and fabrication using a 6-axis robotic arm, KUKA KRC2, to lay bricks in a specific pattern. The KUKA PRC programming language is used in Grasshopper in Rhinoceros to generate G-code commands and toolpaths for the robotic arm. The process involves picking up individual bricks with specialized gripping equipment, called an end-effector, and placing them in the desired layout. Robotic fabrication can potentially complete tasks more quickly and accurately than human workers. However, it also has several limitations, including restricted working space, the selection of stand-in materials for the bricks, the age of the software and hardware, and the differences between manual and robotic bricklaying processes. Despite these limitations, the research suggests that robotic fabrication can be part of the workflow used to document and transfer knowledge about historical bricklaying techniques and can be integrated with conservation and restoration efforts. Although the pick-and-place application of a brick with a robotic arm mimics the movements of a craftsman, the construction parameters are different from analog production methods. Through the production trials, the importance of material properties, tools, and the actions of the maker and their differences with robotic production are discussed. We suggest that the proposed method can assist in the documentation of architectural heritage and can be integrated with conservation and restoration efforts through the use of heritage building information models (HBIM). Further studies include the improvement of the grammar with more examples, the robotic fabrication process with the use of different materials, and the implementation of different brick designs.
  • Öge
    Yeni fenomen algoritmalar: çekişmeli üretken ağların mimarlıktaki potansiyelleri üzerine bir araştırma
    (Lisansüstü Eğitim Enstitüsü, 2021-07-13) Eroğlu, Ruşen ; Gül, Leman Figen ; 523171010 ; Mimari Tasarımda Bilişim ; Informatics in Architectural Design
    Gün geçtikçe gelişen yapay zeka, hızla geniş bir araştırma alanına dönüşmektedir. Yapılan tez çalışması, işte tam bu noktada; son yıllarda oldukça gündemde olan yapay zeka yöntemlerini kullanarak mimari görsel üretim özelinde potansiyelleri araştıracaktır. Bununla birlikte, çalışmanın bir diğer vurgusu üretken modelleri eğitme sürecinde bilgisayarın görüntüleri nasıl anladığı ve oluşturduğunu anlamamızı sağlayacağıdır. Bilgisayarın nasıl gördüğünü anlamak, bunun potansiyellerini keşfetmek; bizi imaj üretiminin bir adım ötesine taşıyacaktır. Bu şekilde bu sistemlerin gelişmesinde rol alma olanağı verecektir. Tez, sırasıyla; veri biliminin Çekişmeli Üretken Ağlara kadar olan gelişimini açıklamakla birlikte bu gelişmelerin mimarlık disiplinindeki etkilerini anlatmaktadır. Çekişmeli Üretken Ağlar ile mimarlık alanında yapılmış çalışmaların açıklandığı literatürde kullanılan modellerden çeşitli Çekişmeli Üretken Ağların deney için seçilmesine karar verilmiştir. Farklı derecede özniteliklere sahip veri setlerinin, yapısal ve üretim döngüleri ile seçilen dört Çekişmeli Üretken Ağ, tezin ana bölümünü oluşturmaktadır. Bu ağlar ile yapılacak deneyler için kullanılan araçlar; Google Colab bulut ortamı ve Anaconda uygulamasındaki Jupyter Notebook arayüzünde Python programlama dili olarak seçilmiştir. Seçimde kullanılan modellerin bu programlama diline uygunluğu göz önüne alınmıştır. Sonuç olarak; deneyler sonucu üretilen imajların görsel potansiyelleri mimari perspektifte irdelenmiş, bulunan keşiflerden potansiyeller çıkarılmıştır. Bu bakımdan tezin yürütülmesi, denetimsiz bir derin öğrenme modelini andırmaktadır. Çalışma; açık kaynak paylaşımlı olan DCGAN, Pix2Pix, CycleGAN ve StyleGAN algoritmaları ile yine açık kaynak alınmış üç veri kümesi olan Ahameniş, Bauhaus ve Paladyan tarzı veri setleri çalıştırılarak başlamıştır. Deneylerde ortaya çıkan geri dönüşler ile yeni veri setleri oluşturulmuştur. Böylece deneylerde çeşitlilik sağlanmış, kontrollü değişkenler ile toplam 9 deney organize edilmiştir. Bu dokuz deneyde veri setleri öznitelik farklılıklarına ya da modelin ihtiyaçlarına göre değiştirilmiştir. Çıkan sonuçlar sezgisel olarak dolaylı nitel yöntemle değerlendirilmiştir. Mimarlık disiplinindeki tasarım ve üretim potansiyellerini arayan çalışma, bu gözlemler sonucu mimari görsel üretim anlamında hem stil transferi hem de form üretimi konularında keşifler ve bu keşiflerden potansiyeller açığa çıkarmaktadır. Sonuç olarak; araç olarak seçilen yapay zeka algoritmaları, mimarlık için yeni ilkeler, kurallar ve yollar oluşturma fırsatı vermektedir. Yapay zeka alanında bu algoritmalar gelişirken; buna açık olmak ve kullanım alanlarını ölçmek yeni bir düşünsel bakış açısı getirebilir.
  • Öge
    Tarihi yapılarda yapı bilgi modeli uygulamalarının sistematik literatür tarama yöntemiyle değerlendirilmesi
    (Lisansüstü Eğitim Enstitüsü, 2021-08-25) Bastem, Sümeyye Sena ; Kanan, Çekmiş, Aslı ; 523181016 ; Mimari Tasarımda Bilişim ; Informatics in Architectural Design
    Yapı bilgi modeli (YBM) mimari, mühendislik ve inşaat (MMİ) uzmanlarının bir tesisi verimli bir şekilde planlamasını, tasarlamasını, inşa etmesini ve yönetmesini sağlayan akıllı bir üç boyutlu (3B) modelleme sürecidir. YBM'nin yeni yapıların inşasında MMİ ve şantiye yönetimi alanlarına sağladığı katkılar paydaşların ilgilisini artırmış, mevcut ve tarihi binalardaki kullanımı üzerine çalışmalar yapılmaya başlamıştır. Böylece yeni binalar için kullanılan bu süreç, 2008 yılından itibaren mevcut ve miras binalarda kullanımı yaygınlaşmıştır. Tarihi yapı bilgi modeli (TYBM), miras binalarının korunması, projelendirilmesi, inşası ve yönetimi gibi aşamalarına katkıda bulunmanın yanısıra bu aşamalarda zamandan ve işçilikten tasarruf, verimliliğin ve doğruluğun artırması gibi faydalar sağlamaktadır. Miras yapılarının korunması sırasında veri eksikliği, belge ve arşivleme sorunları gibi sorunlarla karşılaşılmaktadır. Araştırmacılar, bu sorunları çözmek için TYBM'i geliştirmeyi ve böylece karmaşık ve kültürel açıdan önemli miras binalarını akıllıca belgelemeyi, yorumlamayı ve yönetmeyi amaçlamaktadır.YBM'nin miras yapılarına uygulanmasında kullanıcıların, yeni eğitim becerileri edinmeleri ve YBM ile TYBM arasındaki farklılıktan kaynaklanan temel zorlukları çözmeleri gerekmektedir. Bu zorluklar, TYBM'in uygulanmasında yeni araştırma alanları oluşturmaktadır. TYBM kavramı ve süreci ile ilgili son 12 yılda (2009-2020) yayınlanan çalışmalara ilişkin sistematik bir literatür taraması yapılmıştır. Sistematik derlemenin sonucunda TYBM süreci ve aşamaları hakkında toplam 194 birincil çalışma belirlenmiştir. TYBM'nin kullanım alanları ve faydaları; TYBM uygulaması sırasında gerekli olabilecek araçlar, yöntemler ve yazılımlar ve ayrıca karşılaşılabilecek olası zorluklar açıklanmaktadır. Bu derleme, TYBM sürecini kullanan araştırmacı ve uygulayıcılar için bir rehber niteliği taşımayı amaçlamaktadır. Tezin birinci bölümünde problem tanımlanmış, amaç ve kapsam açıklanmıştır. Aynı zamanda tezde kullanılan yöntemden bahsedilmiştir. Tezin ikinci bölümünde TYBM sürecinin daha iyi anlaşılabilinmesi için YBM süreci, mevcut yapılarda uygulanan YBM süreçleri açıklanmıştır. YBM sürecinde kullanılan yazılımlar ve karşılaşılan kavramlarda detaylandırılmıştır. Ayrıca TYBM sürecinin tanımlanması yapılarak bu süreçte karşılaşılan kavramlardan bahsedilmiştir. Tezin üçüncü bölümünde tezde kullanılan sistematik literatür tarama (SLT) yöntemi ve bu yöntemin aşamaları açıklanmıştır. Yöntemin açıklanmasından sonra TYBM için uygulanan SLT yöntemi aşamalı olarak detaylandırılmıştır. Tezin dördüncü bölümünde, yapılan SLT sonucunda elde edilen birincil çalışmalar referans alınarak TYBM süreci ve aşamaları açıklanmıştır. Bu başlık aynı zamanda süreç boyunca kullanılacak araçlar, yazılımlar, sonuç ürünün kullanım alanları, kullanım şekillerini açıklamaktadır. Tezin son bölümünde ise incelenen çalışma ve değerlendirin sonuçları tarıtışılmıştır. Sonuç olarak tezde TYBM sürecinin koruma ve restorasyon alanlarına süre, maliyet ve nitelik açılarından birçok katkı sağladığına ulaşılmıştır. TYBM sürecinin kullanımının yaygınlaştırılması, mimar, mühendis, arkeolog, tarihçi gibi bu alanda çalışanlara, mekan yönetimini sağlayıcılara, kullanıcılara birçok farklı faydalar sağlamaktadır. Uygulayıcı ve kullanıcıların yanı sıra TYBM, yapının yaşam döngüsünün uzaması ve bu süreyi verimli geçirmesi açısından önemlidir. Ayrıca bu süreçle birlikte kültürel miras yapılarının korunması üzerine bilincin artırması sağlanacaktır.