Analyzing spatial design patterns of third-person shooter video games
Analyzing spatial design patterns of third-person shooter video games
Dosyalar
Tarih
2024-06-26
Yazarlar
Akşahin Metin, Ayça
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
The rapid growth and financial dominance of the video game industry have driven the development of procedural content generation (PCG) to meet the demand for fast production and diverse game environments. While PCG offers significant advantages, such as player customization, endless content creation, and unpredictability, it also faces notable challenges. These include time-consuming generator design, lack of quality assurance, difficulty in balancing gameplay, and the production of repetitive and uninspired content. Moreover, existing PCG studies often focus on 2D environments, leaving a significant gap in understanding and formalizing the design of complex 3D spaces. This research addresses these challenges by developing a model framework to analyze and extract spatial design patterns from Metacritics-validated successful third-person shooter video games, which can further be used as an input for PCG algorithms. By borrowing insights from architectural and urban design patterns, particularly inspired by Christopher Alexander's "A Pattern Language," the study aims to provide guidelines that enhance video game level design. Six games - Max Payne 3, Mass Effect 3, Gears of War 4, Dead Space, Control, and Tom Clancy's Splinter Cell Conviction - were selected for their high Metacritic scores and relevance to the genre. The research method involves a detailed spatial analysis and decoding of the selected games. 3D game levels are translated into 2D layouts, labeling each space by gameplay content attributes, vertical complexity, challenge level, and layout categorization. A structured grammar is developed to represent the dynamic gameplay order, transforming gameplay sequences into readable sentences using a linguistic framework, and formalizing a spatial language for PCG algorithms. The analysis reveals commonalities in room types and their impact on gameplay. Despite diverse settings, the analyzed games exhibit enclosed boundaries and layouts, categorizing their environments as 'rooms.' Common room types are identified based on content: narrative, quest, combat, puzzle, resource, and tutorial. Spatial layouts include square, rectangle, semicircle, L-shape, and circle. Rooms are further analyzed by their third dimension and scale, correlating to challenge levels and time spent. Unique rooms, featuring customized designs and high challenge levels, often include multi-level structures that enhance gameplay complexity and vertical navigation. Patterns regarding the rooms reveal that dominant mechanics influence the layout, verticality offers tactical advantages, and prop placement affects player navigation. Decoded rooms follow Frank Ching's architectural principles, emphasizing symmetry, hierarchy, rhythm, and repetition to guide player movement and maintain spatial coherence. Additionally, aesthetic elements such as color, texture, light, and sound shape the atmosphere and immersion, guiding the player's attention and setting the emotional tone. Traversal spaces between rooms, defined as connections, are categorized into three groups based on their verticality. Horizontal connections facilitate movement across the same plane, ranging from simple directional routes to more complex U-shaped and L-shaped paths. Vertical connections, including various stair designs and elevators, enable traversal between different levels, offering unique experiences such as rest spaces or cinematic interactions. Complex connections, which combine multiple simple connections, are strategically designed to link high-challenge combat rooms, providing rest periods and optimizing game performance by preventing simultaneous rendering of large-scale rooms. By symbolically representing rooms and connections and converting them into sentence-like sequences, the analysis uncovers recurrent spatial design rules. Using BNF notation and standardized grammar, the study examines fundamental structures across the selected games, revealing the relationship between spatial organization and gameplay experience. The study exemplifies two primary types of level progression in the analyzed games: linear and hub-and-spoke. Linear progression, seen in action-packed games like Max Payne 3 and Mass Effect 3, involves a predetermined order of rooms, restricting backtracking. Conversely, the hub-and-spoke progression in games like Dead Space and Control allows players to unlock and revisit interconnected areas. These progression types significantly influence spatial arrangement and overall player experience. This study contributes to the scholarly discourse on video game spatial design, emphasizing its importance in structuring player experience and progression. Furthermore, it presents an interdisciplinary approach, combining level design and architecture, and highlights the relevance of architectural theories in understanding video game space. In conclusion, this study provides insights that advance the understanding of spatial design in third-person shooters and offers guidelines that can inform the development of more sophisticated PCG algorithms. It opens avenues for future research aimed at improving PCG algorithms by integrating sophisticated spatial design principles derived from existing games.
Açıklama
Thesis (M.Sc.) -- Istanbul Technical University, Graduate School, 2024
Anahtar kelimeler
Video games,
Video Oyunları,
Spatial design,
Mekansal tasarım