Metalurji ve Malzeme Mühendisliği-Doktora

Bu koleksiyon için kalıcı URI

Gözat

Son Başvurular

Şimdi gösteriliyor 1 - 4 / 4
  • Öge
    Taban malzeme ile emaye kaplama arasındaki difüzyon mekanizmasının araştırılması ve düşük metal migrasyonuna sahip emaye geliştirilmesi
    (Fen Bilimleri Enstitüsü, 2020) Işıksaçan, Özge ; Yücel, Onuralp ; 650302 ; Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı
    Emaye, atmosfer koşullarına karşı dirençli, korozyon dayanımı yüksek, camsı bir kaplama türüdür. Emaye kaplanmış metaller, kimyasal etkilere ve atmosfer şartlarına karşı direnç gereken, renk ve dış görünüşün önemli olduğu birçok uygulamada kendine yer bulmaktadır. Özellikle ısıl ve termal şok dayanımlarının yüksek olması ile toksik olmama özellikleri, emayelere pişirici cihazlarda, fırın tepsileri gibi pişirme kaplarında yaygın olarak kullanım fırsatı sağlamaktadır. Emaye kalitesini etkileyen en önemli özellik, emayenin taban malzemeye tutunma yeteneğidir. Emayenin kimyasal kompozisyonu, kaplamanın uygulanacağı metal yüzeyin pürüzlülüğü, çelik taban malzemenin sınıfı, emaye kaplamanın pişirileceği fırın atmosferi ve pişirim sıcaklığı gibi faktörler emaye kaplama ile metal arasındaki tutunma mekanizmalarını ve ara yüzey reaksiyonlarını doğrudan etkilemektedir. Emaye kaplamanın taban malzemeye tutunması birbiriyle ilişkili çok sayıda teoriye göre gerçekleşmektedir. Bu teorilerden en önemlileri mekanik ve kimyasal teorilerdir. Kaplama uygulaması sırasında, taban malzeme ve emaye tozlarının temas ettiği noktalar arasında elektrostatik bir çekim oluşur. Bu durum, mekanik tutunmanın temelidir. Emaye kaplama camsı faz kompozisyonunda, Ellingham Diagramı ile açıklanabilen, taban malzemedeki Fe ile reaksiyona girdiğinde indirgenerek metal hale geçen ve elektrokimyasal korozyon meydana gelmesini sağlayan CoO ve NiO gibi oksitler yer almaktadır. Pişirim sıcaklıklarında oluşan bu elektrokimyasal korozyon, taban malzeme yüzeyinden camsı faza doğru dendritler oluşturarak yüzeyin pürüzlü hale gelmesine sebep olur. Pişirme sırasında ergiyen emaye bu dendritlere dolmaya başlar, pişirim sonrası soğuma ile de emaye kaplama taban malzemeye fiziksel olarak kilitlenmiş olur. Kimyasal teoride ise metal ile camsı faz arayüzeyinde oluşan metal oksit tabakaları önemli rol oynar. Emayenin pişme sıcaklığında Fe'nin yükseltgenmesi sonucu FeO oluşması ve emaye kompozisyonunda bulunan tutunmayı destekleyici CoO ve NiO'in indirgenerek metalik Co ve Ni meydana getirmesiyle oluşan Fe-Co-Ni yapılar mekanik bağlanmayı sağlayan kimyasal reaksiyonlardandır. Emaye kaplamanın sıklıkla kullanıldığı pişirme kapları, fırın tepsileri ve sofra eşyaları, kullanım alanları ve şartları sebebiyle farklı gıda maddeleriyle sürekli temas halindedir. Bu temas sırasında, gıda maddesinin içeriğine göre emaye kaplama yüzeyinden bir takım kimyasal çözülmeler meydana gelir. Çözülmeler sonunda kaplama yüzeyinden temasta olduğu gıda maddesine metal migrasyonu adı verilen elementel geçişler gerçekleşir. Gıdalarla temas eden malzemeler için kullanıma uygunluk ve metal migrasyon limitleri, uluslararası regülasyonlar ve standartlar ile belirlenmiştir. Bu limitler ve uygunluklar 1935/2004 EC & EDQM Metals and Alloys Guidelines & 84/500 EC'de yer alan testlere göre elde edilen sonuçlar ışığında yorumlanır. 2013 yılına kadar emaye kaplamalardan gerçekleşen metal migrasyonu için sadece Pb ve Cd ölçülürken, 2013 yılından sonra yapılan regülasyon güncellemesi ile artık eser element olarak adlandırılan Ag, Al, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Sn, Ti, V, Zn, As, Be, Cd, Li, Pb, Hg, Sb gibi 21 elementin migrasyonu takip edilmektedir. Emayenin de içinde bulunduğu camsı kaplamalar grubunda migrasyon, gıda-emaye kaplama temas yüzeyinde gerçekleşmektedir. Kaplamaların gıda ile temas halinde bulundukları yüzey alanı, gıda maddelerinin özellikleri, temas süresi ve ortam sıcaklığı metal migrasyon oranını doğrudan etkilemektedir. 84/500/EEC regülasyonuna göre gıda maddelerini simüle edebilecek en yakın kimyasallar hacimce %4 asetik asit ve %0,5 sitrik asit içeren çözeltiler olarak belirlenmiştir. Tez kapsamında gerçekleştirilen tüm deneysel çalışmalarda, 100x100x8 mm ebatlarında, Arçelik A.Ş. Bolu Pişirici Cihazlar İşletmesi'nden temin edilen DC 04 EK emaye kalite saclar kullanılmış olup, kaplama uygulamalarında kullanılan tüm emaye fritleri ticari kuruluşlardan kullanıma hazır olarak satın alınmıştır. Emaye kaplamalar 810°C-850°C arası sıcaklıklarda ve 1-6 dakika arası sürelerde pişirilmiş, sonuçlar karşılaştırılarak yorumlanmıştır. Migrasyon testleri için istenilen kalitede kaplamalar elde edilene kadar denemelere devam edilmiştir. Standartlara uygun kaplamaların eldesi ile de emaye kaplamadan gıda benzeri sıvıya geçen eser elementlerin ölçüm testleri gerçekleştirilmiştir. Çalışmalara taban malzeme olarak kullanılacak çelik yüzeylerin temizlenmesi ile başlanmış olup, emaye kaplamaya uygunluğunun tespiti için de kimyasal bileşimi, yüzey pürüzlülüğü, sertlik ve ıslatma açısı ölçümleri gerçekleştirilmiştir. Kaplamalar, taban malzeme yüzey karakterizasyon işlemlerinin tamamlanmasının ardından, emaye toz karışımlarının metal altlıklara elektrostatik toz püskürtme yöntemi ile uygulanması yoluyla üretilmiştir. Çift kat tek pişirim (2K1P) olarak gerçekleştirilen ilk çalışmalarda astar kat daldırma yöntemi ile, üst kat ise elektrostatik toz püskürtme yöntemi ile tatbik edilmiştir. Bu deneyler sonucunda standartlara uygun yüzey kalitesi elde edilememesi nedeniyle kaplama işlemi tek kat tek pişirim olarak revize edilmiştir. Tek kat tek pişirim (1K1P) uygulamalarında öncelikle kaplama kalınlığının endüstriyel üretimlerde de tercih edilen 150±10 µm mertebesinde sabitlenmesi üzerine çalışılmıştır. Daha sonra emaye kaplamaların pişirme süresi ve sıcaklığı optimize edilerek, arayüzdeki mikroyapılar ve bu mikroyapıların kaplamanın tutunma kalitesi üzerindeki etkisi incelenmiştir. Bu incelemelerde, tutunma kalitesi önce darbe testi ile ölçülmüş, ASTM B916-01(2007) standardına göre tutunması 5. derece olan numunelerin arayüzlerinde meydana gelen FeO oluşumu ve Fe-Co-Ni metalik dendritik yapıları SEM-EDS analizleri ile incelenerek yorumlanmıştır. Taban malzemeden emaye kaplamaya doğru gerçekleştirilen çizgisel analizde, Fe konsantrasyonunun düştüğü, Si konsantrasyonunun ise arttığı görülmüştür. Emayenin pişirilme sıcaklığında, emayede bulunan CoO ve NiO'in, taban malzeme yüzeyine doğru difüze olduğu ve burada Fe tarafından indirgenerek arayüz bölgesinde Fe-Co-Ni metalik yapılarını oluştururken oksitlenen demirin de emayeye doğru ilerlediği belirlenmiştir. Parametre optimizasyonu için gerçekleştirilen mavi, yeşil ve siyah 1K1P kaplamalarda tutunma ve arayüz mikroyapı kalitesi açısından en iyi kaplamalar siyah frit kullanılan, 840°C'de 6 dk pişirilen numunelerde elde edilmiştir. Bu nedenle migrasyon testlerinde kullanılacak kaplamaların bu frit ve karışımları ile hazırlanması kararlaştırılmıştır. Migrasyon testlerinde, 84/500/EEC regülasyonuna uygun olarak, hem asidik hem alkali ortamı simule edebilmesi açısından %0,5'lik sitrik asit çözeltileri kullanılmıştır. Testler, 100°C sıcaklıkta gerçekleştirilmiştir. Deney süresi 2 saat olarak belirlenmiştir. Tutunma ve arayüz karakterizasyon sonuçları olumlu çıkan kaplama numuneleri kullanılarak hazırlanan çözeltiler ICP-MS cihazı kullanılarak analiz edilmiş, emaye bileşiminden asit çözeltisine migrasyona uğrayan eser metal miktarları ölçülmüştür. Migrasyon testlerinde kullanılan kaplamaların hazırlanması için Mini Tab programında hazırlanan deney tasarımı kullanılmıştır. Değişkenler olarak pişirim sıcaklığı, pişirim süresi ve siyah emaye fritine katılacak beyaz emaye toz (bet) oranı seçilmiştir. Taban malzemeye tutunması en iyi olan %100 siyah emaye firiti ile hazırlanan numuneler kullanılarak yürütülen migrasyon testlerinde, regülasyonların sınırladığı eser element miktarlarının çok üzerinde değerler elde edilmiştir. Metal migrasyon değerlerinin limitlerin altında çıktığı beyaz emaye tozu ile gerçekleştirilen çalışmalarda ise kaliteli tutunmalar elde edilememiştir. Bu nedenle deney tasarımı kullanılarak siyah ve beyaz emaye tozları programın belirttiği oranlarda karıştırılmış %100 siyah, %20 bet katkılı siyah ve %40 bet katkılı siyah emaye tozları kullanılarak hazırlanan numuneler, 810°C, 830°C ve 850°C'lerde, 2, 4 ve 6 dk sürelerince pişirilmiştir. %40 bet içeren karışım ile hazırlanan, 850°C'de 6 dk pişirilen 52 numaralı numunenin migrasyon test sonuçlarında, incelenen tüm Ag, Al, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Sn, Ti, V, Zn, As, Be, Cd, Li, Pb, Hg, Sb elementlerinin migrasyon değerleri regülasyon sınırlarının altında kalmıştır. Bu sonuçlar, gıda ile temasa uygun yeni nesil emayelerin üretiminin yeni emaye formülasyonları ile mümkün olduğunu göstermiş ve endüstriyel çalışmalar için veri sağlamıştır.
  • Öge
    Cold sintering process on molybdenum disilicide and graphite composite electrodes
    ( 2020) Nayir, Selda ; Arslan, Cüneyt ; 635746 ; Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı
    Sintering is a compaction process of particulate matters with a diffusional process that minimizes surface energy to densify particles against the competitive force of coarsening (Dejonghe and Rahaman 2003; German 1996; S.-J L Kang 2005). In a conventional aspect, effective consolidation is usually accomplished at 50-75% of melting temperatures of sintered materials and with an occasional aid of pressure. The primary driving force behind the consolidation process is a reduction of surface free energy. In order to improve the effect of sintering, some of the processing techniques, such as hot isostatic pressing, field-assisted sintering (FAST), utilize pressure up to 200 MPa (German 1996; S.-J L Kang 2005; Li, Liao, and Hermansson 1996; Stanciu, Kodash, and Groza 2001). Although, the application of pressure improves the performance of densification in the particle-particle level, densification is still highly dependent on high temperature, due to the slow solid-state diffusional process. Cold sintering process (CSP) is a densification process at a low-temperature provides an opportunity to sinter a wide range of ceramic materials at extremely low temperatures (<300˚C) with the aid of transient acidic or basic aqueous solutions. As it is reported on many occasions, the aid of liquid media, preferentially water, amplifies consolidation during the sintering process (H. Guo, Baker, et al. 2016b, 2016a; H. Guo, Guo, et al. 2016; J. Guo et al. 2016; Hirano and Somiya 1976). The other advantage of cold sintering is bringing together the materials that have different melting temperatures during the sintering process, which used to be a challenge. Since densifications happen at very low temperatures, co-sintering of the different types of materials is possible such as polymer and ceramic (PET and PC with Li2MoO4 to produce a capacitor) is co-sintered with this method as reported earlier (Baker et al. 2016; de Beauvoir et al. 2019; Guo et al. 2017; J. Guo et al. 2016). The successful implementation of CSP in different types of materials provided an opportunity to shift its focus to a covalently bonded structure, which is studied within this thesis context. The covalently bonded structures, Molybdenum disulfide, and graphite are cold sintered with the aid of water, and a slurry at very low temperatures. The slurry able to produce micron size MoS2 flakes that grow onto the surface of the pristine MoS2 flakes and enables the bonding of the mixed constituents. The approach provides the fabrication of highly dense and electrochemically active MoS2/Graphite (MG) composites at an extremely low processing temperature of ~140˚C. The process offers an opportunity to sinter covalently bonded materials effectively to produce either dense or near dense pellets or thick films. The composites that include up to 20 wt% graphite, as well as a solid electrolyte, could be easily integrated and densified using this method. The composites with varying weight proportions of Graphite and the solid electrolytes are cold sintered under 520 MPa pressure at 140°C for 60 min to achieve dense pellets. The densification of the pellets is tested with calculating their relative densities based on theoretical densities for MoS2, Graphite AHM, and Thiourea, which are 5.06, 2.26, 2.49, and 1.43 g/cm3, respectively. Production of electrode film is started after achieving ~88% relatively dense pellets, with following general production procedure of the pellet. The electrode film production differentiates from the pellets where at tape casting of the prepared slurry. The slurry, which includes the principle constituents (MoS2, Graphite) besides of binder materials, is used to produce a flexible tape that can endure the subsequent processes. The binder mixture was tape cast on a copper foil with 2.5 mg/cm2 active material loading and binders removed from the system with a heat treatment in a tube furnace at 180˚C. Afterward, a transient liquid (water), is included in the system with humidifying the films, and they were cold sintered with under a uniaxial pressure of 90 MPa at 120°C. The microstructural characterization of both pellet and film of MoS2 composites conducted with, X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Electron backscatter diffraction (EBSD), Thermal gravimetric analysis and mass spectroscopy (TGA-MS), and Raman spectroscopy. The XRD results revealed that cold sintered film and pellet showed consistent peaks of hexagonal structure that matched with reference ICDS card. In addition, pellets and film showed a strong (002) basal plane reflection, which is a strong indication of stacked planes along the loading direction. The results also showed a strong textural intensity along <001> direction in both produced pellets and films. Microscopy analysis with SEM showed that the sintered constituents were incorporated with the structure and small MoS2 flakes formed on the surface of the constituents and enabled their bonding. The chemistry information acquired with EDS also supports the incorporation with homogeneous dispersion of LAGP and graphite flakes in the structure. The EBSD analysis of both pellet and films were conducted to reveal the anisotropic feature of the samples. The pellets were scanned in both directions (c- and a-axis) while the film was only investigated on the surface, due to lack of thickness on the cross-section. The pole figure for {0001} planes of the pellets, which is measured perpendicular to the pressure loading, had shown a strong intensity along the <0001> direction, which is a strong basal orientation with ~24x randomly distributed intensity. The measurements parallel to applied pressure had a texture mainly orientated along the a-axis with ~15x randomly distributed intensity that shows an anisotropy between the two directions of cold sintered pellets. The findings are also in a consensus with the XRD results showing proof of stacked platelets along the c-axis that are arranged by applied uniaxial force. In order to evaluate the impact of Graphite in the system, electrical resistivities of the pellets were measured by a four-probe method. The resistivity measurements of samples in different graphite contents are conducted with respect to the temperature. The directional dependencies seen in the previous results were also investigated with this electrical testing with measuring samples in both directions, which are a, and c-axes. According to the results, the resistivities of a pure MoS2 pellet in a- and c-directions are 400 ohm.m and 120 ohm.m while MoS2-Graphite pellet (containing 20 wt.% Graphite) had 5 ohm.m and 1.5 ohm.m, respectively. It is believed that the preferential stacking of MoS2 planes along c-direction induced a higher resistivity along this direction. The results also suggest that the preferred orientation of the planes can create a barrier during current flow that increases the resistivity. The ratio of the resistivities between the two axes is found as~ 4.1, which is lower than the reported values (~1000) (El Beqqali et al. 1997; Hermann et al. 1973; Hippalgaonkar et al. 2017; Kam 1982; Souder and Brodie 1971). The testing of the electrodes in terms of electrochemical capabilities was conducted after preparing a half-cell in the argon-filled glove box. The results were displayed as Cyclic voltammetry (CV), and charge, and discharge profiles. The CV graphs of the MG electrode showed cathodic peaks at 0.28, 1.1, and 1.8V and anodic peaks at 0.29, and 2.5V, which are consistent with reported redox peaks of MoS2 electrodes. The cathodic peaks are signatures of Li+ insertion into MoS2 galleries and phase transformation of the structures. The first encountered anodic peak represents the lithium de-intercalation, graphite oxidation, and Mo oxidation to MoS2. The charge and discharge profiles have an agreement with CV curves, and the discharge curve depicts two visible plateaus at 1V vs. Li+/Li, the indicative formation of LixMoS2 and 0.5V vs. Li+/Li, the reduction of Mo4+ to Mo metal with Li2S formation. Cycling capability and capacity retention of the composites were significantly improved with the addition of solid electrolyte during the cold sintering process. The modified electrodes showed a first cycle capacity retention as 85.7%, and specific capacity as ~ 1000 mAh/g between 0 to 2.5 V vs. Li+/Li, after the 10th cycle. In summary, the thesis investigated the cold sintering of MoS2/Graphite composite structures, and results showed that consolidation of the composites was accomplished at low-temperatures with the aid of transient liquid-slurry, which includes AHM/Thiourea. The slurry provides a facile production of MoS2 flakes that can act as if cement between the pristine MoS2 and Graphite constituent and enables their bonding during the cold sintering process. It is believed that the uniaxial pressure, which is applied during the process, is amplified the anisotropy of the composite structure. The argument is supported by EBSD pole figures and electrical resistivity measurements, which are showed discrepancies between the a and c-directions. Another important finding is that increased graphite ratio improved both electrical conductivity electrochemical performance due to increased electron transfer during charge and discharge. The obtained charge and discharge profile in ~20-30wt% of graphite contents showed a typical plateau of MoS2 with increased capacity and cycling performance. The electrochemical performance was further increased by introducing a solid electrolyte, Li1.5Al0.5Ge1.5(PO4 )3(LAGP), to the system, which is improved Li+ ion intercalation capabilities of the electrodes. As a result, electrochemically active MoS2 and Graphite electrodes are produced with ~1000 mAh/g specific capacity using the cold sintering method.
  • Öge
    Katodik ark fbb yöntemi kullanılarak çelik yüzeylerin alüminyumlanması
    ( 2020) Çelikel, Tuğba ; Ürgen, Mustafa Kamil ; 625454 ; Metalurji Mühendisliği ; Metallurgical Engineering
    Fe-Al alaşımları, çeliğe göre hafif olmaları, yer kabuğunda en çok bulunan iki elementten oluşmaları, alüminyumun demir içerisindeki yüksek çözünürlüğü ve düzenli yapılar oluşturabilmeleri nedenleri ile çok ilgi çekmiş bir alaşım grubudur. Ayrıca yapılarında bulunan yüksek alüminyum içeriği, bu alaşımları özellikle kükürtlü gazlar içeren ortamda gerçekleşen yüksek sıcaklık oksidasyonuna karşı dirençli kılmaktadır. Ancak bu alaşımların söz konusu avantajları göz önüne alınarak yapılan geliştirme çalışmaları (1980'li yıllardan itibaren) ne yazık ki bu alaşımların yeterli sürünme direnci göstermemeleri, şekil alma kabiliyetlerinin iyi olmaması ve hidrojen gevrekliğine çok hassas olmaları nedenleri ile başarılı olamamış ve bu alaşımların kitlesel halde kullanımı yaygınlaşamamıştır. Hâlihazırda bu malzeme döküm yolu ile üretilmekte ve değişik yüksek sıcaklık uygulamalarında (kömür gazlaştırma sistemleri, ısıtma elemanları, sıcak gaz filtreleri, gibi ) alanlarda kullanılmaktadır. Kitlesel olarak üretimleri sınırlı olan bu alaşımların, değişik yöntemler kullanılarak çeliklerin üzerine kaplanması yaygın bir uygulamadır. Kaplama yöntemleri ise iki grup altında toplanabilir. Bunlar; difüzyon gerçekleşmeyen doğrudan kaplama ve difüzyon yoluyla yapılan kaplamalardır. Doğrudan kaplama yöntemleri, fiziksel buhar biriktirme, manyetik alanda sıçratma yöntemleridir. Bu yöntemlerin ortak yönü, belli bir bileşimde olan Fe-Al fazların taban malzeme üzerinde biriktirilmesidir. Difüzyon gerçekleşerek fazların oluşturulması aşamaları gerçekleşmediğinden elde edilen kaplamanın yüzeye adezyonu da nispeten düşük olmaktadır. Difüzyon yolu ile gerçekleştirilen kaplama yöntemleri ise giydirme, sıcak daldırma, paket sementasyonu, şlam (çamur) füzyonu, kimyasal buhar biriktirme ve katodik ark fiziksel buhar biriktirme temelli difüzyon yöntemleridir. Sıcak daldırma uygulama kolaylığı sebebiyle endüstride en yaygın kullanılan yöntemdir. Çamur füzyonu kaplama için bir hazne gerektirmediğinden büyük ve karmaşık parçaların kaplanmasına olanak sağlamaktadır. Paket sementasyonu ve kimyasal buhar biriktirme yöntemlerinin çalışma prensipleri benzerdir. Katodik ark metal iyon prosesi (KA-EMIT) bu tezin konusunu oluşturan bir fiziksel buhar biriktirme yöntemidir. Yöntemde oluşturulan iyonların taban malzeme yüzeyine doğru hızlandırılması amacıyla altlık malzemeye bir hızlandırma potansiyeli (bias, HızV) uygulanır. Altlığa uygulanan bu akım doğru akım veya darbeli akım gibi çeşitlerde olabilmektedir. Ancak bu çevrimler esnasında taban malzemenin sıcaklığı sürekli olamamaktadır. Bu sebeple taban malzemeye doğru akım (DC) yerine alternatif akım uygulanması yöntemi geliştirilmiş ve bu sayede alternatif akımın (AC) pozitif çevriminde tabanı sürekli olarak ısıtılırken negatif çevrimde kaplama gerçekleştirilmiştir. Hızlandırma potansiyeline uygulanan akımın büyüklüğü ilexxii malzemenin yüzey sıcaklığının kontrolü sağlanmaktadır. Öncel ve Ürgen, bu yöntemi katodik ark elektron metal iyonu prosesi (KA-EMİT) olarak adlandırmıştır [59,60]. Yöntemin en önemli avantajı, geri sıçratma etkisinin ortadan kaldırılarak istenilen kaplamaların yapılabilmesine olanak sağlamasıdır. Bu tez çalışmasında da KA-EMİT yöntemi kullanılarak Fe-Al fazların taban malzeme üzerinde difüzyon yoluyla oluşturulması amaçlanmıştır. Çalışmanın bu konuda yapılan diğer çalışmalardan farkı, bu yöntemin düşük karbonlu çelik (Fe)-Al sistemine ilk defa uygulanacak olmasının yanında geniş bir sıcaklık aralığında Fe ve Al arasındaki difüzyon süreçlerinin kontrollü olarak gerçekleştirme olanağını sağlamasıdır. Bu tez çalışmasında düşük sıcaklıklardan başlayarak yüksek sıcaklıklara kadar farklı sürelerde difüzyon işlemleri yapılarak katodik ark FBB yöntemi ile elde edilen fazların şeması çıkarılmıştır. Seçilen sıcaklıklar oluşturduğu fazlara bağlı olarak, düşük sıcaklıklarda uygulanan alüminyumlama işlemleri (600, 700, 800, 900⁰C) ve yüksek sıcaklıkta uygulanan alüminyumlama işlemleri (1000, 1100, 1200⁰C ) olarak iki başlıkta incelenmiştir. Elde edilen kaplamaların özellikleri XRD, SEM, EDS ve sertlik ölçümü ile karakterize edilmiştir. Kaplamada oluşan ikili faz bölgelerindeki fazları ayrıştırmak amacıyla FIB analizi kullanılmıştır. 900⁰C'ye kadar yapılan tüm düşük sıcaklık difüzyon (yayındırma) işlemleri 30 dk boyunca uygulanmış ve elde edilen kaplama yapısı esas olarak Fe2Al5 fazından oluşmuştur. Bu sıcaklıklarda oluşan yapıların üzerinde metalik alüminyuma da rastlanmaktadır, ancak işlem sıcaklığının artışı ile alüminyum katmanının kalınlığı azalmakta ve 1000⁰C sıcaklıkta oluşmamaktadır. Demir alüminit fazların oluşumunda difüzyon çiftinin fiziksel hali anahtar rol oynamaktadır. Difüzyon çifti her durumda katı olan IF çeliğinin yüzey sıcaklığına göre alüminyumun katı, sıvı ve gaz halde olmasına göre açıklanmıştır. Literatür çalışmaları incelendiğinde katı-katı ve katı-sıvı sistemlerinde ısınma ve sıcaklıkta tutma esnasında ilk olarak Fe2Al5 fazı oluşmaktayken, katı-gaz sisteminde demirce zengin fazlar elde edilmektedir. Katı-katı ve katı-sıvı sistemlerinde ısınma esnasında Fe2Al5 fazının oluşması parmaksı olarak çeliğin içerisine doğru büyümesi şeklindedir. Bu faz parmaksı şekilde oluşmaya devam ederken demir-alüminyum arayüzeyinde Fe2Al5 fazının tamamen oluşup birleştiği andan itibaren difüzyon sınırlanmaktadır. Soğuma esnasında alüminyum tabakası varlığında difüzyon yön değiştirir ve Fe2Al5 fazı alüminyuma doğru çözünerek FeAl3 oluşturur. Bu tez çalışmasında yapılan deneylerde, düşük sıcaklık numunelerinde difüzyon sınırlandığı için oluşan kaplamanın kalınlığı artırılamamıştır. Ancak arayüzey varlığında oluşması beklenen FeAl3 fazları bu tez çalışmasında 800⁰C ve 900⁰C sıcaklıklarında noktacıklar halinde yapının içerisine dağılmıştır. Elde edilen katmanların sertlik değerleri düşük sıcaklık numuneleri için karşılaştırıldığında Fe2Al5 fazı üzerinden ortalama 1280 HV sertlik değeri ölçülürken, yapıya dağılmış halde FeAl3 fazı içeren Fe2Al5 fazının sertliği ortalama 1050 HV olmuştur. Dağılmış halde bulunan FeAl3 fazının, daha sert olan Fe2Al5 fazının sertliğini düşürdüğü görülmektedir. 1000⁰C'de 30 dakika boyunca yapılan difüzyon işlemi sonrası difüzyon sistemi katı- gaz olmuştur. En üst katman olarak boşluklu FeAl+FeAl2 ikili faz bölgesi elde edilmiştir. Bu katmanın altında sırası ile kimyasal bileşim olarak Fe3Al, Fe3Al+α-Fe ve α-Fe fazlarına tekabül eden katmanlar gözlenmiştir. Toplam katman kalınlığı ortalama 15µm'dir. Katmanların kalınlığı ortalama birkaç μm mertebesindedir. Ancak süre 60 dakikaya çıkarıldığında en üstte oluşan kalın (30 μm) birxxiii Fe2Al5+FeAl3 katmanın altında α-Fe yapısı gözlenmiştir. Süre 90 dakikaya çıkarıldığında ise 45 μm kalınlığında Fe2Al5+FeAl3'den oluşan üst katmanın altında Fe3Al+α-Fe ve α-Fe katmanları oluşmuştur. Toplam kalınlıkta artış olmuş ve bununla beraber Fe3Al+α-Fe katmanı görülebilir olmuştur. Difüzyon sıcaklığı 1100⁰C'ye çıkarıldığında yapıda 30 dakikada birkaç μm kalınlığında FeAl fazını takiben Fe3Al, Fe3Al+α-Fe ve α-Fe katmanları oluşmuştur. Toplamda 1000/60 numunesi ile benzer kalınlıkta (40-45 µm) kaplama elde edilmiş ancak, farklı olarak Fe2Al5 yapıda yer almamıştır. Süre 60 dakikaya çıkarıldığında toplam kalınlık ~80 µm olmuş, fazlar sırasıyla FeAl, FeAl+Fe3Al, Fe3Al+ α-Fe, α-Fe olmuştur. FeAl fazının kalınlığı artarken FeAl+Fe3Al ikili faz bölgesi de kalın bir katman oluşturmuştur. 90 dakika tutma süresinde ise yapıda kalınlığı 55 µm'yi bulan Fe2Al5+ FeAl3 fazı oluşmuştur. Ardından sırasıyla Fe3Al+α-Fe, α-Fe oluşmuştur. 1200⁰C sıcaklık Fe2Al5 ergime sıcaklığı üzerindedir. Yapılan deneylerde FeAl+FeAl2 faz bölgeleri ve FeAl fazı elde edilmiştir. Bu nedenle, 1200⁰C sıcaklık demirce zengin FeAl ve Fe3Al fazlarının oluşturulabilmesini daha mümkün kılmıştır. 30 dakika boyunca yapılan deneylerde toplamda 65 µm derinliğinde sırasıyla FeAl2+FeAl, FeAl, FeAl+Fe3Al, Fe3Al+α-Fe, α-Fe fazları oluşmuştur. Alüminyumlama süresi 60 dakikaya çıkarıldığında toplam 100 µm derinliğinde olan kaplamanın en üstünde yer alan FeAl2+FeAl tabakasının kalınlığı birkaç mikrometre artarken altındaki FeAl tabakası kaybolmuş ve FeAl+Fe3Al tabakasının kalınlığı artmıştır. Sırasıyla yer alan diğer fazlar Fe3Al+α-Fe, α-Fe olmuştur. 90 dakika boyunca yapılan deneyde ise en üstteki tabaka çok ince bir FeAl tabakası olmuştur. Toplamda elde edilen kaplama kalınlığı 150 µm olmuştur. FeAl tabakasının altında FeAl+Fe3Al tabakası yer almış, altındaki Fe3Al+α-Fe bölgesinin genişlediği görülmüştür. Dağlama yapılarak incelenen numunelerde kimyasal kompozisyon olarak bakıldığında tek fazlı olması gereken bölgelerde yapıda çift fazlı bölgeler oluşmuştur. Faz diyagramına göre, soğuma sırasında FeAl fazından dönüşerek oluşan Fe3Al fazına dönüşüm yavaş olduğu için yapıda FeAl kalmaktadır. Yapıda oluşan Fe3Al fazı ise düzenli olarak elde edilememiştir. Bu sebeplerle Fe3Al fazını hem ayrıştırarak kararlı hale getirmek hem de düzenli yapıya dönüştürmek amacıyla ısıl işlem uygulanmıştır. Isıl işlem Fe3Al dönüşümüne uygun olarak 500⁰C sıcaklık ve 15 saat sürede yapılmıştır. Isıl işlem sonrası yapının düzenli hale getirildiği ve homojen olarak elde edilebildiği XRD deseni ve dağlama sonrası SEM görüntüleri ile belirlenmiştir. Elde edilen fazlar neticesinde oluşum mekanizması değerlendirildiğinde, alüminyumun fiziksel halinin difüzyon ve oluşan fazlar üzerinde önemli etkisi olduğu görülmüştür. Demir katı haldeyken alüminyum katı veya sıvı halde olduğunda demirin alüminyuma doğru difüzyonu yüksek olmakta bu sebeple alüminyumca zengin fazlar oluşmaktadır. Alüminyum gaz olduğunda ise demire difüzyonu kolaylaştığından difüzyon yönü değişerek demire doğru difüzyon gerçekleşir. Bu sayede demirce zengin fazların oluşumu mümkün olabilmektedir. Vakum ortamda yüzeye gelen alüminyum 600⁰C sıcaklıkta katı olmuş 700,800 ve 900⁰C sıcaklıklarında sıvı olmuştur. Deney koşullarında 10-4 Torr basınç ile 1000⁰C seviyelerinde alüminyum gaz haldedir. Bu sebeple 1000, 1100 ve 1200⁰C sıcaklıklarda katı-gaz difüzyonu gerçekleşmiştir.
  • Öge
    Nanocomposite scaffolds containing metal nanoparticles
    (Graduate School, 2020-09-23) Aktürk, Ayşen ; Göller, Gültekin ; 506112413 ; Metallurgical and Materials Engineering ; Metalurji ve Malzeme Mühendisliği
    Nowadays metal–polymer nanocomposites are the subject of increased interest due to their potential to combine the features of polymers with inorganic materials. Specifically, the combination of a natural polymer (biopolymer) and metal nanoparticles is highly appealing because of the individual antibacterial activity of the metal nanoparticle components, and the possibility to generate a biodegradable and biocompatible composite. The bioactivity of composites can be achieved by using bioactive inorganics such as hydroxyapatite, bioactive glasses. This study aims to combine metal-polymer-bioactive glass to fabricate new nanocomposite materials by using electrospinning method. For this purpose, polymer solutions containing bioactive glass (45S5) particles and/or metal nanoparticles (silver and copper nanoparticles) were prepared and then, they were electrospun into nanofibers under the relevant process conditions (i.e., solution concentration, applied voltage, tip-to-collector distance, flow rate, and etc.). Gelatin as a natural polymer and poly (Ɛ-caprolactone) (PCL) and polyvinyl alcohol (PVA) as synthetic polymers were employed in the experimental studies. Bioactive glass used in this study was fabricated by classical melt-derived method, while copper and silver nanoparticles were prepared by using biopolymers (soluble starch and sodium alginate) as the capping agents. Membranes were produced with a certain fiber diameter by using Box-Behnken design, which is a statistical experimental design method and characterization studies of these membranes were carried out.The crystalline structure of the produced bioactive glasses and metal nanoparticles were analyzed by X-ray diffraction (XRD) technique. Moreover, the surface morphology and the crystalline structure of the electrospun nanofibrous scaffolds were examined by the help of a scanning electron microscope (SEM) and X-ray diffractometer (XRD). Changes in the structures of the obtained nanoparticles and membranes were detected by using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA) was performed to determine the thermal behavior of nanofiber membranes and copper nanoparticles. Furthermore, the in vitro degradation behavior of the scaffolds were investigated by using simulated body fluid (SBF). In addition, the bioactivity and the biocompatibility of the nanofibrous scaffolds were also investigated through in-vitro bioactivity tests and cell culture studies. Moreover, the antibacterial or antifungal effects of the obtained nanoparticles and membranes were determined. Finally, therapeutic ions release from the nanofibrous scaffolds were investigated by using inductively coupled plasma optical emission spectrometry (ICP-OES). As a result of all these characterization studies, it was concluded that the nanofiber membranes obtained in this study have a potential for tissue engineering applications.