Kıyı çizgisine nehir birleşmesi durumu için kıyı çizgisi değişiminin numerik bir modelle incelenmesi
Kıyı çizgisine nehir birleşmesi durumu için kıyı çizgisi değişiminin numerik bir modelle incelenmesi
Dosyalar
Tarih
1997
Yazarlar
Tongur, H. Ferhat
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Özet
Kıyı Çizgisinin dengesini bozucu birçok etkenden dolayı kıyı çizgisi sürekli değişime uğramaktadır. Kıyı çizgisi değişimi, Pelnard Considere'nin geliştirdiği Tek Çizgi Modeli kullanılarak incelenmektedir. Kıyı çizgisine nehir birleşmesi durumunun incelendiği bu çalışmada;kıyı çizgisi değişimini explicit sonlu fark metodu ile hesaplayan Hanson ve Kraus'un Fortran 77 programlama dili ile yazılmış bilgisayar programından yola çıkılarak geliştirilen Basic programdan faydalanılmıştır. Nümerik model herhangibir özel bölge için değil.genel olarak araştırılmıştır.Bu sebeple programın girdileri verilirken dalga özellikleri.kıyı çizgisinin özellikleri ve kıyıya birleşen nehirin özellikleri gerçeğe yakın olarak verilmeye çalışılmıştır. Program gerçek veriler olmadan çalıştırılmasına rağmen, matematik modelin fiziksel modele ters düşmemesi programın amacına ulaştığının göstergesidir. Programda kullanılan surf bölgesindeki kıyı boyu katı madde taşınımı q(i),CERC formülü ile hesaplanmıştır.Kıyı çizgisi için kullanılan.çözümünde explicit model kullanılan denklem, katı madde için süreklilik denklemidir.Sınır şartlan olarak kıyı çizgisinin ve nehirin başlangıç şartları kullanılmış ve kıyı çizgisinin başlangıç durumu y(i)=0 alınmıştır. Kıyı çizgisinin başlangıç durumunun y=0 dan farklı şekilde verilmesi sonuç diagramlarda yalnızca nümerik değişikliklere sebep olmuş bunun yanında diagramları formları aynen korunmuştur. Bu sonuç da programın çalışmasının kıyı çizgisinin başlangıç koordinatlarına bağlı olmadığını kanıtlamıştır. Programda değişik dalga açılan ve dalga yükseklikleri için nehirin kıyı şeridine birleşmesi durumu araştırılmış ve sonuçlar herbir adım için ayrı ayrı incelenmiştir.:Ayrıca incelenen her bir adım için o adımdaki değişikliklerin sistemin tamamına etkisi yorumlanmıştır.
The method of Pelnard Considere has one major strong feature; it makes a hand computation of coastal changes possible.lt can be used for both the accretion and also the erosion on the lee side of a coastal sediment obstruction. Application in such a case will yield a coastal profile that is a mirror image relative to the origin of those found for accretion. The assumptions made in order to get an equation of motion are at best,so restrictive that the approach is primitive.Wave height and direction variations along the coast,tidal influences.and many of the other more sophisticated points of the Bijker formula have had tobe neglected.The assumption about the angle of wave attack,0 then =f 8x <|)-Wave attacking angle After all conditions are determined then y can be calculated. In the program Hanson & Kraus also studied about the form of the shoreline the coordinates of the shoreline can be assumed circular or as if it is a free form line. In this study the shore line is assumed 2000 m. length straight line. Of course to consider the shoreline parallel to x axis provides to show all the developments clearly but on the other hand as the form of the initial conditions differs from the original shape. So we can not get accurate results. Numerical models has been applied in seven different steps: In the first part of the thesis to understand and command on the original program,the original datas and positions are used. In the second step ;the effect of the river was added to the program and the effect of the seawall is decreased step by step.The sand transport ratio of the river is assumed to be a constant value. In the following two steps the only changing variable is the sand transport ratio of the river.In Part 3 The sand transport ratio of the river changes with the sand transport ratio of the current. In Part 4 The sand transport ratio of the river is assumed to be a ampirical value. After determining the sand transport ratio of the river the total sand transport ratio must also be determined. In the first 4 steps the total sand transport ratio is the sum of the sand transport ratio of the river and the sand transport ratio of the current but in the fifth step the total sand transport ratio is the sand transport ratio of the current minus the sand transport ratio of the river.After running these two conditions the differences can easily be marked.ln these two parts,to generate the difference ;. if q(i)=c(i)-r(i) then it means the total sand transport ratio decreases.. If q(i)=c(i)+r(i) then it means the total sand transport ratio inreases. xu In the last two steps the sand transport ratio of the river is calculated more detailed. Changing all the datas without only natural values proved that the model theoretically obeys the physical model but as the datas aren't accurate and determined with tests, the solutions can't be said to be true. Infact the aim of this study is to understand the mechanism of the program developped by Hanson & Kraus and to prove if the affect of the river can be joined to this program or not. At the end of the study it can be said that, although there is no data about the original situation the graphics are not so different from the physical model. At the end of the study it was seen that the four groups belove, effects the development of the shore line.. Wave heights. Wave direction. Effective zone of the river. Sediment transport ratio of the river.
The method of Pelnard Considere has one major strong feature; it makes a hand computation of coastal changes possible.lt can be used for both the accretion and also the erosion on the lee side of a coastal sediment obstruction. Application in such a case will yield a coastal profile that is a mirror image relative to the origin of those found for accretion. The assumptions made in order to get an equation of motion are at best,so restrictive that the approach is primitive.Wave height and direction variations along the coast,tidal influences.and many of the other more sophisticated points of the Bijker formula have had tobe neglected.The assumption about the angle of wave attack,0 then =f 8x <|)-Wave attacking angle After all conditions are determined then y can be calculated. In the program Hanson & Kraus also studied about the form of the shoreline the coordinates of the shoreline can be assumed circular or as if it is a free form line. In this study the shore line is assumed 2000 m. length straight line. Of course to consider the shoreline parallel to x axis provides to show all the developments clearly but on the other hand as the form of the initial conditions differs from the original shape. So we can not get accurate results. Numerical models has been applied in seven different steps: In the first part of the thesis to understand and command on the original program,the original datas and positions are used. In the second step ;the effect of the river was added to the program and the effect of the seawall is decreased step by step.The sand transport ratio of the river is assumed to be a constant value. In the following two steps the only changing variable is the sand transport ratio of the river.In Part 3 The sand transport ratio of the river changes with the sand transport ratio of the current. In Part 4 The sand transport ratio of the river is assumed to be a ampirical value. After determining the sand transport ratio of the river the total sand transport ratio must also be determined. In the first 4 steps the total sand transport ratio is the sum of the sand transport ratio of the river and the sand transport ratio of the current but in the fifth step the total sand transport ratio is the sand transport ratio of the current minus the sand transport ratio of the river.After running these two conditions the differences can easily be marked.ln these two parts,to generate the difference ;. if q(i)=c(i)-r(i) then it means the total sand transport ratio decreases.. If q(i)=c(i)+r(i) then it means the total sand transport ratio inreases. xu In the last two steps the sand transport ratio of the river is calculated more detailed. Changing all the datas without only natural values proved that the model theoretically obeys the physical model but as the datas aren't accurate and determined with tests, the solutions can't be said to be true. Infact the aim of this study is to understand the mechanism of the program developped by Hanson & Kraus and to prove if the affect of the river can be joined to this program or not. At the end of the study it can be said that, although there is no data about the original situation the graphics are not so different from the physical model. At the end of the study it was seen that the four groups belove, effects the development of the shore line.. Wave heights. Wave direction. Effective zone of the river. Sediment transport ratio of the river.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, 1997
Anahtar kelimeler
Kıyı şeridi,
Nehirler,
Sonlu farklar yöntemi,
Rivers,
Coastal line,
Finite differences method