Feasibility analysis based on advanced deep learning techniques in integrating renewable energy resources into microgrids
Feasibility analysis based on advanced deep learning techniques in integrating renewable energy resources into microgrids
dc.contributor.advisor | Çağlar, Ramazan | |
dc.contributor.author | Fadoul, Fathi Farah | |
dc.contributor.authorID | 504202026 | |
dc.contributor.department | Electrical Engineering | |
dc.date.accessioned | 2025-01-03T06:52:33Z | |
dc.date.available | 2025-01-03T06:52:33Z | |
dc.date.issued | 2024-07-17 | |
dc.description | Thesis (Ph.D.) -- Istanbul Technical University, Graduate School, 2024 | |
dc.description.degree | Ph.D. | |
dc.identifier.uri | http://hdl.handle.net/11527/26092 | |
dc.language.iso | en_US | |
dc.publisher | Graduate School | |
dc.sdg.type | Goal 4: Quality Education | |
dc.sdg.type | Goal 7: Affordable and Clean Energy | |
dc.subject | renewable energy | |
dc.subject | yenilenebilir enerji | |
dc.subject | microgrids | |
dc.subject | mikroşebekeler | |
dc.subject | deep learning | |
dc.subject | derin öğrenme | |
dc.title | Feasibility analysis based on advanced deep learning techniques in integrating renewable energy resources into microgrids | |
dc.title.alternative | Yenilenebilir enerji kaynaklarının mikroşebekelere entegre edilmesinde gelişmiş derin öğrenme tekniklerine dayalı uygulanılabilirlik analizi | |
dc.type | Doctoral Thesis |