Feasibility analysis based on advanced deep learning techniques in integrating renewable energy resources into microgrids

dc.contributor.advisor Çağlar, Ramazan
dc.contributor.author Fadoul, Fathi Farah
dc.contributor.authorID 504202026
dc.contributor.department Electrical Engineering
dc.date.accessioned 2025-01-03T06:52:33Z
dc.date.available 2025-01-03T06:52:33Z
dc.date.issued 2024-07-17
dc.description Thesis (Ph.D.) -- Istanbul Technical University, Graduate School, 2024
dc.description.degree Ph.D.
dc.identifier.uri http://hdl.handle.net/11527/26092
dc.language.iso en_US
dc.publisher Graduate School
dc.sdg.type Goal 4: Quality Education
dc.sdg.type Goal 7: Affordable and Clean Energy
dc.subject renewable energy
dc.subject yenilenebilir enerji
dc.subject microgrids
dc.subject mikroşebekeler
dc.subject deep learning
dc.subject derin öğrenme
dc.title Feasibility analysis based on advanced deep learning techniques in integrating renewable energy resources into microgrids
dc.title.alternative Yenilenebilir enerji kaynaklarının mikroşebekelere entegre edilmesinde gelişmiş derin öğrenme tekniklerine dayalı uygulanılabilirlik analizi
dc.type Doctoral Thesis
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
504202026.pdf
Boyut:
14.55 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
1.58 KB
Format:
Item-specific license agreed upon to submission
Açıklama