Akışkanlar Mekaniği Problemlerinin Sonlu Elemanlar Yöntemi İle İncelenmesi

dc.contributor.advisorEdis, F. Oğuz
dc.contributor.authorGüngör, Ayşe Gül
dc.contributor.departmentUzay Mühendisliği ve Teknolojisi
dc.contributor.departmentSpace Sciences and Technology
dc.date2004
dc.date.accessioned2008-02-28
dc.date.accessioned2015-12-10T10:20:43Z
dc.date.available2015-12-10T10:20:43Z
dc.descriptionTez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2004
dc.descriptionThesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2004
dc.description.abstractÜç boyutlu viskoz akış problemlerinin modellenmesinde prizmatik elemanların kullanılmasi literatürde gelişmekte olan bir konudur. Bu çalışmada, sınır tabaka bölgesinin prizmatik elemanlar geri kalan çözüm bölgesinin tetrahedral elemanlar ile modellendigi, üç boyutlu sıkıştırılamaz, viskoz akış problemlerinin çözümünde kullanılacak bir sonlu elemanlar uyarlaması gerçekleştirilmiştir. Daimi olmayan akış problemlerini, birçok mühendislik problemleri ile çözme isteği geometrik olarak kompleks problemlere uygun algoritmalarin geliştirilemesine neden olmaktadir. Bu tip problemleri çözmek için kullanılan yöntemler dört ana başlık altında sınıflandırılabilir: Sonlu Farklar Yöntemi, Sonlu Hacimler Yöntemi, Sonlu Elemanlar Yöntemi ve Sınır Eleman Yöntemi. Bu calışmada bu tip problemleri çözmek için Sonlu Elemanlar yöntemi kullanılacaktır. Sonlu Elemanlar yöntemi akış alanının sonlu küçük elemanlar ile modellenmesi prensibine dayanır. Bu çalışmada sağlıklı bir insana ait üç boyutlu burun geometrisi olusturularak, burun içindeki akış Sonlu Elemanlar yöntemi ile incelenmiştir.
dc.description.abstractUsing prismatic elements for the simulations of three dimensional flows is a developing subject in literature. In this study, a finite element adaptation is carried out for the solution of three dimensional incompressible viscous flows which is modeled with prismatic elements in the boundary layer region and tetrahedral elements for the rest of the computational domain. The need to solve unsteady flows for several engineering problems causes to develop new algorithms. The methods for the solutions of this kind of problems can be classified into four branches: Finite Difference Method, Finite Volume Method, Finite Element Method and Boundary Element Method. Finite Element Method is used in this study for the solutions of this kind of problems. Finite Element Method depends on the discritization of the solution domain in to the small pieces, elements. A three dimensional, anatomically accurate representation of a healthy adult human nasal cavity is constructed to simulate the nasal airflow profiles numerically in this study.
dc.description.degreeYüksek Lisans
dc.description.degreeM.Sc.
dc.identifier.urihttp://hdl.handle.net/11527/11259
dc.publisherFen Bilimleri Enstitüsü
dc.publisherInstitute of Science and Technology
dc.rightsİTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır.
dc.rightsİTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectPrizmatik eleman
dc.subjectSEY
dc.subject3B’ lu akıs
dc.subjectBurun içindeki akış
dc.subjectPrismatic elements
dc.subjectFEM
dc.subject3D Flow
dc.subjectNasal Airflow
dc.titleAkışkanlar Mekaniği Problemlerinin Sonlu Elemanlar Yöntemi İle İncelenmesi
dc.title.alternativeAnalysis Of Fluid Mechanic Problems With Finite Element Method
dc.typeMaster Thesis

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
8027.pdf
Boyut:
6.7 MB
Format:
Adobe Portable Document Format

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama