W sonsuz cebirinin genel bir kuruluşu
W sonsuz cebirinin genel bir kuruluşu
Dosyalar
Tarih
1994
Yazarlar
Güngörmez, Meltem
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Özet
Bu çalışmada, W^ cebirinin doğuraylarmın bir kuruluşu açık olarak gösterilmektedir. Bu doğuraylar, en genel J ve (1-J) konform spinine sahip ghost ve antighost çiftleriyle oluşturulan giydirilmiş bileşik terim lerle ifade edilmektedir. Bu doğurayların birbirleriyle olan komütasyon bağıntıları incelenerek, komut atörlerin genel bir yapıya sahip olduğu ve burada çıkan polhıomlarıu uygun bir formda olduğu gösterilmiştir.Bu genel yapı içinde elde edilen tüm komütatörlerin Jacobi özdeşliklerini sağladığı gösterilerek bu çalışmada elde edilen Woo cebirinin asosyativ olma koşulunu sağladığı da görülmüştür. Bilindiği gibi Virasoro cebirinin genişletilmiş formları olarak elde edi len Wn cebirleri, konform spinleri 2,3,...,N olan doğuraylardan oluşmuş tur. Wn cebirlerinin nonlineer bir yapıya sahip olmaları nedeniyle, bu cebirlerin komütasyon bağıntılarının açık kuruluşları büyük N değerleri için giderek zorlaşmaktadır. Bunun aksine, Woo cebiri konform spin leri 2, 3,...,00 olan sonsuz sayıda doğuray ihtiva etmesi nedeniyle lineer bir yapıya sahip olabilmektedir. Ancak buna karşın, doğuraylar saf-spin doğurayları olarak tanımlanamamaktadır. işte bu çalışmada yapılan, bu lineer yapının mümkün olan en genel bir formda açık olarak ifade edilme sidir. Diğer yandan, kaynaklarda gösterilen bazı çalışmalarda Woo cebir lerinin genel yapısından, belli bazı indirgeme yöntemleri aracılığıyla, Wjv cebirlerine geçmenin mümkün olabileceği iddia edilmektedir. Biz bu Çalışmada, Wn cebirlerinde N=3 durumunda ortaya çıkan (LL) bileşik terimi ile Woo cebirinin spin-4 doğurayı arasında uygun bir seçim altında bir geçiş sağlayarak W3 cebirinin bilinen yapışım tüm olarak elde etmeyi başardık. Umuyoruz ki bu geçişler 3' den daha büyük N değerleri için de benzer şekilde mümkün olacaktır. Bu halde elde ettiğimiz Woo cebirinin Wn cebirlerinin nonlineer yapılanımı aydınlanmasında yardımcı olması beklenebilir.
It is well know that, Wn algebras are extended forms of Virasoro algeb ra enhanced by adjoining generators of conformal spins 2,3,...,N. There is an increasing interest concerning Wjv algebras both in physics and also in mathematics. A prominent property of W^ algebras is the fact that they are nonlinear in character. This is in fact a feature which makes the construction of Wn algebras difficult. On the other hand, Wn algebras can also be extended in the form of Woo having the generators of conformal spins 2, 3,...,00. This gives rise to the fact that Woo algebra is linear. It is therefore worthwhile to study the structure of Woo algebra. We know that, Woo algebra appear in conformal systems which are considered both in high energy physics and in condensed matter physics. We attack in this work the problem of constructing Woo algebra by specifying its commutators between any two of its generators explicitly. We give explicit expressions of polinomials appearing on the right hand side of these commutators. We are able to obtain a general form of the whole algebra commutators. We also give the way of extracting W3 algebra from the structure of Woo algebra. All constructions are carried out in terms of a ghost and an antighost system having respectively the conformal spins J and (1-J). Let us take ghost and antighost fields 4>(z), ip(z) to be in the following form of holomorphic fields: +00 Hz) = J2 «« zU~J +00 ^(z) = £ hnZn~{X- J) V The coefficients an and bn here are quantized as in the following: {an,bm} = S(n + rn,0) {an,o,m} = {bn,bm} = 0 Any conformal field Wn having conformaJ spin-i can then be expressed in the form Wil)= 53 d(s,n-s)(QAB(i-hn,s,J)aa bn-, + s= - oo QBA(i -l,n,s,J) bs an-s) This is in fact, a composite of ghost pair having totally the conformal spin-1 and therefore the polinomials QAB(i-l,n,s,J) and QBA(i-l,n,s,J) must be of degree (i-1). Due to appearance of such polinomials in a composite generator we also call them ' dressed generators '. The function 6(i,j) above is the well known ordering function and hence defined as in the following 1 i < j 0 i > j This gives rise to the following ordering operation between any two fields a,i and bj which are subject to auticornmutator quantizations as above: a, bj = < ' ai bj i < j \ ai bj - \ bj ai + \ {a,i,bj} i = j k -bj ai + {ai, bj} i > j Now one can construct a spin-2 generator of W& VI Ln = Wn2) = ]T e(s>n~s) {QAB{l,n,s,J)a, bn-s + s= - oo QBA(l,n,s,J) bs an-s ) By an appropriate determination of polinomials ' QAB(l,n,s,J) ' and 'QBA(l,n,s,J) ', we can show that ghost, antighost fields have conformal spins J and (1- J) being in line with the result of general expression £». W£] = ((i - 1) n - m) W®m n,meZ We stress here that the expression [AB,C] = A {B,C} - {A,C} B would be needed here because ghosts are quantized with anticommuta- tors. It must be emphasized on the other hand that the rule given above for Wn specifies a ' pure i-spin ' generator. But it will be seen in the course of our work that this is not the case for W», algebra. It turns out that the generators Wn have commutators with Ln as in the following forms: t-2 [Ln, Wfi>] = ((» - 1) n - m) WİJm + X) Q>(s + L ". m> J) Wn+m 3=1 This means that generators of Woo algebra can't be made pure spin generators. Having this in mind we study all the generators [Wn, Wn3 '} in the following forms: vn [ WW, Wff] =(n - m) a W&J^ + 2 i-4 (u-m) J] P(*,u1m)J)Wiiir2-) + «=i C(2 »-!)(«»«/) <*>(" + "»,0) 3=1 All the poliuomials appearing on the right hand sides would then be de termined by the use of Jacobi identities. This gives a general structure of polinomials which are expressed in terms of a number of free parameters ri. As another result of our work it is seen that the extraction of W3 algebra from Woo algebra is also possible. To this end, one must con sider spin-4 generator W" as a double composite term (LL) which is constructed to be ordered pair of Virasoro generators Ln. (LL)n = E 0(s,n- s) (KAB(3,n,s,l) as bn-a + s= - 00 KBA(3,n,s,l) b3 an-a) KAB(3,n,s, 1) = -- {s - n) (4 s2 - 4 s n + n2 - t[n}) 8 KBA(3,n,s, 1) = -I s (4 s2 - 4 s n + n2 - t[n]) 8 and [Ln, W£] = (3 n - m) W$m + Q'2(3, n, m, 1) WTn vni QAB(3,n,5,l) = {n-s) (c4 + c3 n + cl n2 + (cl + ci) n s - (cl + c2) s2 + c5 <[n]) QBil(3,n,a,l) = -s (c4 + c3 n + cl n2 + (cl + c2) us- (cl + cl) s2 + ch t[n\) This hence gives us the hope that the procedure which is presented in this work proves useful also to find an explicit way of constructing any Wn algebra from Woo algebra.
It is well know that, Wn algebras are extended forms of Virasoro algeb ra enhanced by adjoining generators of conformal spins 2,3,...,N. There is an increasing interest concerning Wjv algebras both in physics and also in mathematics. A prominent property of W^ algebras is the fact that they are nonlinear in character. This is in fact a feature which makes the construction of Wn algebras difficult. On the other hand, Wn algebras can also be extended in the form of Woo having the generators of conformal spins 2, 3,...,00. This gives rise to the fact that Woo algebra is linear. It is therefore worthwhile to study the structure of Woo algebra. We know that, Woo algebra appear in conformal systems which are considered both in high energy physics and in condensed matter physics. We attack in this work the problem of constructing Woo algebra by specifying its commutators between any two of its generators explicitly. We give explicit expressions of polinomials appearing on the right hand side of these commutators. We are able to obtain a general form of the whole algebra commutators. We also give the way of extracting W3 algebra from the structure of Woo algebra. All constructions are carried out in terms of a ghost and an antighost system having respectively the conformal spins J and (1-J). Let us take ghost and antighost fields 4>(z), ip(z) to be in the following form of holomorphic fields: +00 Hz) = J2 «« zU~J +00 ^(z) = £ hnZn~{X- J) V The coefficients an and bn here are quantized as in the following: {an,bm} = S(n + rn,0) {an,o,m} = {bn,bm} = 0 Any conformal field Wn having conformaJ spin-i can then be expressed in the form Wil)= 53 d(s,n-s)(QAB(i-hn,s,J)aa bn-, + s= - oo QBA(i -l,n,s,J) bs an-s) This is in fact, a composite of ghost pair having totally the conformal spin-1 and therefore the polinomials QAB(i-l,n,s,J) and QBA(i-l,n,s,J) must be of degree (i-1). Due to appearance of such polinomials in a composite generator we also call them ' dressed generators '. The function 6(i,j) above is the well known ordering function and hence defined as in the following 1 i < j 0 i > j This gives rise to the following ordering operation between any two fields a,i and bj which are subject to auticornmutator quantizations as above: a, bj = < ' ai bj i < j \ ai bj - \ bj ai + \ {a,i,bj} i = j k -bj ai + {ai, bj} i > j Now one can construct a spin-2 generator of W& VI Ln = Wn2) = ]T e(s>n~s) {QAB{l,n,s,J)a, bn-s + s= - oo QBA(l,n,s,J) bs an-s ) By an appropriate determination of polinomials ' QAB(l,n,s,J) ' and 'QBA(l,n,s,J) ', we can show that ghost, antighost fields have conformal spins J and (1- J) being in line with the result of general expression £». W£] = ((i - 1) n - m) W®m n,meZ We stress here that the expression [AB,C] = A {B,C} - {A,C} B would be needed here because ghosts are quantized with anticommuta- tors. It must be emphasized on the other hand that the rule given above for Wn specifies a ' pure i-spin ' generator. But it will be seen in the course of our work that this is not the case for W», algebra. It turns out that the generators Wn have commutators with Ln as in the following forms: t-2 [Ln, Wfi>] = ((» - 1) n - m) WİJm + X) Q>(s + L ". m> J) Wn+m 3=1 This means that generators of Woo algebra can't be made pure spin generators. Having this in mind we study all the generators [Wn, Wn3 '} in the following forms: vn [ WW, Wff] =(n - m) a W&J^ + 2 i-4 (u-m) J] P(*,u1m)J)Wiiir2-) + «=i C(2 »-!)(«»«/) <*>(" + "»,0) 3=1 All the poliuomials appearing on the right hand sides would then be de termined by the use of Jacobi identities. This gives a general structure of polinomials which are expressed in terms of a number of free parameters ri. As another result of our work it is seen that the extraction of W3 algebra from Woo algebra is also possible. To this end, one must con sider spin-4 generator W" as a double composite term (LL) which is constructed to be ordered pair of Virasoro generators Ln. (LL)n = E 0(s,n- s) (KAB(3,n,s,l) as bn-a + s= - 00 KBA(3,n,s,l) b3 an-a) KAB(3,n,s, 1) = -- {s - n) (4 s2 - 4 s n + n2 - t[n}) 8 KBA(3,n,s, 1) = -I s (4 s2 - 4 s n + n2 - t[n]) 8 and [Ln, W£] = (3 n - m) W$m + Q'2(3, n, m, 1) WTn vni QAB(3,n,5,l) = {n-s) (c4 + c3 n + cl n2 + (cl + ci) n s - (cl + c2) s2 + c5 <[n]) QBil(3,n,a,l) = -s (c4 + c3 n + cl n2 + (cl + c2) us- (cl + cl) s2 + ch t[n\) This hence gives us the hope that the procedure which is presented in this work proves useful also to find an explicit way of constructing any Wn algebra from Woo algebra.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1994
Anahtar kelimeler
Virasoro cebirleri,
W cebirleri,
Virasoro algebras,
W algebras