Büyük çaplı kelebek vanalarda disk üzerindeki gerilme dağılımının sayısal olarak belirlenmesi ve disk geometrisi tasarımı
Büyük çaplı kelebek vanalarda disk üzerindeki gerilme dağılımının sayısal olarak belirlenmesi ve disk geometrisi tasarımı
Dosyalar
Tarih
2014-08-27
Yazarlar
Tüzüner, Burak
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Bu çalışmada, kelebek vana disk geometrisinin optimizasyonu için akış yapı etkileşimi metodundan faydalanılacaktır. Basit bir disk geometrisi alınarak, kapağın değişik açıklık dereceleri için sayısal çözümleme yapılarak disk üzerine etkiyen hidrodinamik momentin en fazla olduğu, dolayısıyla gerilmenin en tehlikeli olduğu açıklık pozisyonu tespit edilecektir. Disk üzerinde oluşan gerilme dağılımı, sayısal akışkanlar mekaniği yöntemleri ile belirlenecek olarak akış alanı hesaplanması sonucu elde edilen basınç ve kayma gerilmelerinin akış yapı etkileşimi metodu ile disk geometrisi üzerine uygulanması ile elde edilecektir. En tehlikeli disk açıklığının belirlenmesinden sonra, bu açıklık pozisyonu için disk geometrisi üzerinde konstrüktif değişiklikler yapılarak (kafes geometri) disk ağırlığının ve disk üzerine gelen gerilmelerin azaltılması sağlanacaktır. Bu değişiklerin akış alanına ve gerilme dağılımına etkisi irdelenecektir. Ayrıca, Turgut Sarpkaya[6]'nın geliştirdiği ve kelebek vanaların moment ile kavitasyon karakteristiklerini incelediği analitik yöntem kullanılarak sayısal ve analitik çözümlerin sonuçlarının, deney sonuçları ile uyumu irdelenecektir.
Butterfly valves are in use in petroleum, chemical industry, metallurgy, electric power, water supply, etc. There are widely different operating conditions and butterfly valve sizes. Valve diameters vary from 5 centimeters up to 5 meters. In the study, the effects of different parameters on large-diameter (2 m) butterfly valve performance will ve investigated. Important design topics of butterfly valves are torque, cavitation, and heat loss. Torque is a remarkable issue in butterfly valve design. It is important because of disc material, actuator type, disc thickness, disc geometry, and shaft position. There is several torque components such as bearing torque, the center of gravity torque, hydrostatic torque, seating torque, dynamic torque, and packing torque. The most important part of torque is dynamic torque because when the valve is opened, it reaches significant values and affects total torque. There is also a different parameter that affects the torque. Experiments show that if the valve is shafted eccentrically as the shaft centerline is quite above the disc centerline, then total torque is minimum. Therefore, the vertical distance between shaft and disc center is also an important parameter for the design and analysis of butterfly valves. Head loss is another important consideration with respect to energy costs. If the head loss increases, then energy costs increases. The most common two-parameter in head loss calculations are Cv and Kv. There is also a different flow coefficient Cd definition which is advantageous because it always varies from 0 to 1 with different opening positions of the valve and it is easy to show the analysis and modeling results. Cavitation can occur when the local static pressure decreases below the vaporization pressure at operating temperature. The cavitation index σ term is used to predict cavitation. The cavitation index is also a dimensionless parameter. Valve characteristics are determined and shown by using Kv - % opening and Cv - % opening curves, so to obtain valve characteristics, Kv and Cv values must be calculated for different opening positions. To calculate the flow coefficient and valve resistance coefficient, ΔP and Q or V values must be measured. These values can be also obtained by using CFD analysis. There is another method that was firstly used by Sarpkaya, Helmholtz's free streamline theory. The theory gives also satisfactory results. In this study, experimental, theoretical, and CFD results were compared and discussed.
Butterfly valves are in use in petroleum, chemical industry, metallurgy, electric power, water supply, etc. There are widely different operating conditions and butterfly valve sizes. Valve diameters vary from 5 centimeters up to 5 meters. In the study, the effects of different parameters on large-diameter (2 m) butterfly valve performance will ve investigated. Important design topics of butterfly valves are torque, cavitation, and heat loss. Torque is a remarkable issue in butterfly valve design. It is important because of disc material, actuator type, disc thickness, disc geometry, and shaft position. There is several torque components such as bearing torque, the center of gravity torque, hydrostatic torque, seating torque, dynamic torque, and packing torque. The most important part of torque is dynamic torque because when the valve is opened, it reaches significant values and affects total torque. There is also a different parameter that affects the torque. Experiments show that if the valve is shafted eccentrically as the shaft centerline is quite above the disc centerline, then total torque is minimum. Therefore, the vertical distance between shaft and disc center is also an important parameter for the design and analysis of butterfly valves. Head loss is another important consideration with respect to energy costs. If the head loss increases, then energy costs increases. The most common two-parameter in head loss calculations are Cv and Kv. There is also a different flow coefficient Cd definition which is advantageous because it always varies from 0 to 1 with different opening positions of the valve and it is easy to show the analysis and modeling results. Cavitation can occur when the local static pressure decreases below the vaporization pressure at operating temperature. The cavitation index σ term is used to predict cavitation. The cavitation index is also a dimensionless parameter. Valve characteristics are determined and shown by using Kv - % opening and Cv - % opening curves, so to obtain valve characteristics, Kv and Cv values must be calculated for different opening positions. To calculate the flow coefficient and valve resistance coefficient, ΔP and Q or V values must be measured. These values can be also obtained by using CFD analysis. There is another method that was firstly used by Sarpkaya, Helmholtz's free streamline theory. The theory gives also satisfactory results. In this study, experimental, theoretical, and CFD results were compared and discussed.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Anahtar kelimeler
Kelebek vana,
Butterfly valve