Stark potansiyelli kuvantum sistemlerde baz operaörü gösterilimi ve dinamik uygulamalar
Yükleniyor...
Dosyalar
Tarih
item.page.authors
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Özet
Bu çalışmada dış etkileşimlerin olmadığı, merkezi kuvvetler altında hareket eden iki parçacığın kuvantum dinamiği için, dalga fonksiyonu kullanılarak bir yaklaşım yapılmıştır. Koordinatları («1,01,21), (£2, 021*2) olan birbirinden bağımsız hareket eden mı, n»2 parçacıklarının, kinetik ve potansiyel enerjilerinin varlığından dolayı sisteme ait bir Hamiltonyen' den söz edilebilir. Bu Hamiltonyen kinetik enerji ve potansiyel enerjinin toplamı şeklinde yazılabilir. Böylece sistemin S ile gösterilen Schrödinger operatörü olarak gösterilir. Amacımız bu sistemin ile gösterilen dalga fonksiyonunu bulmaktır. Bu nedenle küresel ve merkezi koordinatlar kullanılarak gerekli dönüşümler yapılmıştır. Potansiyel olarak Stark Potansiyeli seçilmiştir. Bu potansiyel değeri kullanılarak oluşan H operatörü' nü oluşturan diferansiyel denklemi çözmek yerine, basitçe bazı Q operatörlerinin beklenen değerleri olarak tanımlanan, sonsuz sayıda geçici büyüklüklerin değişimlerinin belirlenmesinden oluşan, adi diferansiyel denklemlerin sonsuz kümesi alınabilir. ilk aşamada Q olarak her defasında farklı bir operatör alınmıştır. Ancak yapılan genelleme ile elde bulunan veriler arasında bir uyuşmazlık olduğu için ve sistemimiz harmonik asilatör olmadığından dolayı bu yöntemden vazgeçilmiş ve baz operatörleri yöntemi kullanılmıştır. ikinci aşamada, P ile gösterilen baz operatörlerinin, beklenen değerleride bu baz takımı cinsinden ifade edilebilir. Baz operatörlerinin lineer bileşimi bizi sonsuz boyutlu, lineer diferansiyel denklem sistemine götürecektir. Bu diferansiyel denklem sisteminden oluşan matrisi, çözebilmek için bir takım integraller vasıtası ile başlangıç değerleri hesaplanmıştır. Elde edilen veriler, Runge-Kutta yöntemi yardımıyla hesaplanmış ve istenilen diferansiyel denklem sisteminin yaklaşık çözümü bulunmuştur.
In this work, a novel approach to the quantum dynamics of two particles which mutually interact through Coulomb potential is presented. The system under consideration is assumed to be isolated. The stark potential atomic systems have the following type of kinetic energy term. Where mi, w»2 denote the masses of the particles while V\ and V2 stand for the velocities. The symbols Pmi1 Pyi, PZl and P».,, Pya, PZ2 represent the momento of the particles, the expectation values of certain desired entities which can be related to some observables. To this end, we may start with the simplification of the eq (6) via seperation of the variables. The Hamiltonian of this system can be written as follows H(f,q) = E(f) + V(q,t). *b c-> + p?> + *& + *b {p-> + p» + ^ + "('' i] (2) VI where q denotus the distance between two particles. The quantum mechani cal equivalent of this Hamiltonian can be obtained via the following operator definitions '.?-4 p. = -a± (8) The Schrödinger operator which characterizes the quantum motion of the sys tem, can be defined as S = E - H. The insertion of the following definition to this structure gives the Schrödinger operator's explicit for E = fci (4) Thus we can write the Schrödinger operator as below: dt 2mi / d2 d2 d2\ _ (JP_ j?_ JP_\ \dxl + dv\ + dzl) \dxi + dyl + dzl) + V{r12,t) (5) Where r^ is used for the position operator q All the properties such as position, momentum and energy can be defined via wave function, tp, which satisfies the below equation Sty = 0 => ih^Z- = fty (6) at vü Our aim is to find the necessary equations for the evaluation of the expectation value of certain desired eutities which can be related to some observables. To this end, we may start with the simplification of the eq(6) via seperation of the variables. If we denote center-of- mass-coordinates by (jcm, j/m, zm) and relative coordinates as (», y, J), then, the system Hamiltonian takes the following form h mi + ro2 / d2 d2 d2 a = - 2 »I*ifl*2 h2 2(n»i + ni2) / ö2 d2 s2 \ \dx2m + dv2m + dzi) (7) If we use the symbols JET, and Hm to characterize the center-of-mass-coordina- te dependent part and the relative coordinate dependent part of Hamiltonian then we can claim that if> = F(»,y, z). G(*m>îfm, 2m><)> which gives ihW -ffF = Q (8) ihjt + HmG = 0 (9) The solutions of the eq(8) can be obtained via spherical coordinates x = rcosB y = rsinOcos This permits us to seperate out the angular dependencies by asumming the following structure vui F(r,M,i) = Fl{ttr).F*($).FB(4) (11) This produces the following individual equations for Fi(tt r), i^OO and Fa() 2tmıro2 r2 ÖFX 2*> 8Fı r2 ö2*ı ft (mi + m2) Ft (i, r) öf JFİ Ör i^ ör2 + ^Tİ^"') = C <12> i iö2f8 ı_ö2Jf2,£2^i_££k = r rıa^ sin2 6 Fa 6 (20) These functions /m»(<) are written as a lineer combination of the expectation value of Pmn base operators. This leads us to the following infinite system of ordinary differential equations / = Af (21) The left uppermost square truncations from the infinite matrix A serve to approximate the equations set. Thus, certain approximate structures can be genereted for the solution. But we had to do give some first values to the programme.
In this work, a novel approach to the quantum dynamics of two particles which mutually interact through Coulomb potential is presented. The system under consideration is assumed to be isolated. The stark potential atomic systems have the following type of kinetic energy term. Where mi, w»2 denote the masses of the particles while V\ and V2 stand for the velocities. The symbols Pmi1 Pyi, PZl and P».,, Pya, PZ2 represent the momento of the particles, the expectation values of certain desired entities which can be related to some observables. To this end, we may start with the simplification of the eq (6) via seperation of the variables. The Hamiltonian of this system can be written as follows H(f,q) = E(f) + V(q,t). *b c-> + p?> + *& + *b {p-> + p» + ^ + "('' i] (2) VI where q denotus the distance between two particles. The quantum mechani cal equivalent of this Hamiltonian can be obtained via the following operator definitions '.?-4 p. = -a± (8) The Schrödinger operator which characterizes the quantum motion of the sys tem, can be defined as S = E - H. The insertion of the following definition to this structure gives the Schrödinger operator's explicit for E = fci (4) Thus we can write the Schrödinger operator as below: dt 2mi / d2 d2 d2\ _ (JP_ j?_ JP_\ \dxl + dv\ + dzl) \dxi + dyl + dzl) + V{r12,t) (5) Where r^ is used for the position operator q All the properties such as position, momentum and energy can be defined via wave function, tp, which satisfies the below equation Sty = 0 => ih^Z- = fty (6) at vü Our aim is to find the necessary equations for the evaluation of the expectation value of certain desired eutities which can be related to some observables. To this end, we may start with the simplification of the eq(6) via seperation of the variables. If we denote center-of- mass-coordinates by (jcm, j/m, zm) and relative coordinates as (», y, J), then, the system Hamiltonian takes the following form h mi + ro2 / d2 d2 d2 a = - 2 »I*ifl*2 h2 2(n»i + ni2) / ö2 d2 s2 \ \dx2m + dv2m + dzi) (7) If we use the symbols JET, and Hm to characterize the center-of-mass-coordina- te dependent part and the relative coordinate dependent part of Hamiltonian then we can claim that if> = F(»,y, z). G(*m>îfm, 2m><)> which gives ihW -ffF = Q (8) ihjt + HmG = 0 (9) The solutions of the eq(8) can be obtained via spherical coordinates x = rcosB y = rsinOcos This permits us to seperate out the angular dependencies by asumming the following structure vui F(r,M,i) = Fl{ttr).F*($).FB(4) (11) This produces the following individual equations for Fi(tt r), i^OO and Fa() 2tmıro2 r2 ÖFX 2*> 8Fı r2 ö2*ı ft (mi + m2) Ft (i, r) öf JFİ Ör i^ ör2 + ^Tİ^"') = C <12> i iö2f8 ı_ö2Jf2,£2^i_££k = r rıa^ sin2 6 Fa 6 (20) These functions /m»(<) are written as a lineer combination of the expectation value of Pmn base operators. This leads us to the following infinite system of ordinary differential equations / = Af (21) The left uppermost square truncations from the infinite matrix A serve to approximate the equations set. Thus, certain approximate structures can be genereted for the solution. But we had to do give some first values to the programme.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1995
Konusu
Matematik, Dalga fonksiyonu, Kuantum dinamiği, Mathematics, Wave function, Quantum dynamics
