Arbitraj Fiyatlandırma Modeli
Arbitraj Fiyatlandırma Modeli
Dosyalar
Tarih
1997
Yazarlar
Büyükkarcı, M. Faik
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Sosyal Bilimler Enstitüsü
Institute of Social Sciences
Institute of Social Sciences
Özet
Sermaye piyasalarının gelişme sürecinin devam etmesi dolayısıyla ülkemizde de yatırımcılar giderek daha fazla bilinçlenmekte ve yatırım yaparken çok çeşitli kriterleri gözönüne almak zorundadırlar. Çünkü piyasaları etkileyen faktörler çok fazladır ve bunların iyi analiz edilmesi gerekmektedir. Bu çalışmada arbitraj fiyatlandırma modelini incelenmeye çalışılmıştır. Yeni bir model olan arbitraj fiyatlandırma modeli, menkul kıymet getirilerinin, çeşitli faktörlerden etkilendiğinden yola çıkan bir modeldir. Birinci bölümde yani giriş bölümünde, çalışmanın amacı ve yapılmak istenenler anlatılmıştır. İkinci bölümde, sermaye piyasası araçları yani yatırımlara konu olan enstrümanlardan bahsedilmiştir. Bu enstrümanların neler olduğu ve özelliklerinden bahsedilmiştir. Üçüncü bölümde, portföy analizi konusu ele alınmıştır. Finansal varlıkların getirilen ve riskleri, riskin çeşitleri, geleneksel portföy yaklaşımı, modern portföy yaklaşımı ve portföy yönetimi konulan ele alınmıştır. Dördüncü bölümde, mekul kıymet fiyatlandırma modeli konusu üzerinde durulmuştur. Modelin varsayımları, pazar portföyü ve sermaye pazarı doğrusu, finansal varlık pazar doğrusu ve beta katsayıları konulan incelenmiştir. Beşinci bölümde, arbitraj fiyatlandırma modeli incelenmiştir. Arbitrajın tanımı, özellikleri, modelin varsayımları, getiriler ve betalar, modelin oluşturulması, finansal varlıkların sayılarının sonsuz ya da sınırlı olduğu durumlarda modelin incelenmesi, modelin daha önce yapılmış deneysel testleri, menkul kıymet fiyatlandırma modeli ile karşılaştırılması ve model yardımıyla portföy performansının ölçülmesi konulan incelenmiştir. Altıncı bölümde, yani uygulama bölümünde İstanbul Menkul Kıymetler Borsası'nda işlem gören şirketler üzerinde modelin geçerli olup olmadığı test edilmeye çalışılmıştır. Uygulama çalışması iki bölümde yürütülmüştür. İlk bölümde seçilen hisse senetleri üzerinde makroekonomik faktörlerin açıklayıcı gücünün olup olmadığı araştırılmıştır. İkinci bölümde ise seçilen hisseler gruplara ayrılmış, bu gruplarda faktör analizi yapılmıştır. Faktör analizi sonrasında elde edilen faktör skorları ile o gruptaki hisseler arasında regresyon analizi yapılmıştır. Bu sayede hisse senedi getirilerini etkileyen faktörler bulunmaya çalışılmıştır. Yedinci bölümde, uygulama sonucunda elde edilen sonuçlar değerlendirilmeye çalışılmış ve önerilerde bulunulmuştur.
he Arbitrage Pricing Theory is based on the law of one price which says that the same asset can't sell for two different prices. If the same asset does sell for different prices, arbitragers will buy the asset where it is cheap, and driving up the low price, and simultaneously sell the asset where its price is higher, thereby driving down the high price. Arbitragers will continue this activity untill all prices for the asset are equal. Let us assume the returns from assets a and b. The return generating equations (1) and (2); ra=E(ra) + e (1) rb=E(rb) + e (2) The random variable e is identical for the two assets in equations (1) and (2); it is assumed to have a mathematical expectation of zero, E(e) = 0. Equations (1) and (2) indicate that assets 1 and 2 have equally risky cashflows and equally risky rates of return. When trying the figure out the equilibrium prices of market assets, the law of one price is interpreted to mean that assets with identical risks are equivalent investments and therefore must have the same expected rates of return; in this case, E (ra ) = E (rb ). As long as the expected returns from assets a and b are equal, arbitrage between them will not be profitable. But, if the two expected rates of return are not equal, for example E(ra ) > E(rb ), in this case an investor can create arbirage profits by taking the proceeds of pb dollars from a short sale of asset b at time t=0 and investing the funds in a long position in asset a; I- pa 1= I pb I. This arbitrage portfolio requires zero initial investment since - pa + pb =0. The portfolio is also perfectly hedged to zero risk because any gains on the long position will be exactly offset by the simultaneous losses on the short position of equal size, and vice versa. The arbitrager can neverthless confidently expect to earn positive profits since {E (ra ) - E (rb )} > 0. Arbitrage opportunities like this are disequilibrium situations that will quickly be corrected by the first arbitrager that discovers them and finds a way to trade on them. Let us assume that one period rates of return for all assets are generated by a single risk factor denoted F in accordance with the linear models of equations (3) and (4). ra = a, + p, F (3) rb = a2 + p2F (4) Let F be a random variable with and expected value of zero, E(F)=0. The variable f might represent the unanticipated changes in inflation ; F=E{L -E(I)}. The Pi slope vm might represent the unanticipated changes in inflation ; F=E{It -E(I)}. The Pi slope coefficients in equations (3) and (4) are measures of undiversifiable risk-they indicate how sensitive the asset returns are to the common source of variations F. It can be thought that equations (3) and (4) as being simplified characteristic lines that have no unexplained residual error terms so that the total risk is undiversifiable systematic risk. Since independent variable F was constructed so that it averages to zero, E(F)=0, it follows that equations (3) and (4) should have P E(F)= E(PF)=0. By taking this logic a step farther, we see that the two expected rates of return must also be equal to their intercept terms, as shown in equations (5) and (6). E(ra)=oti (5) E(rb)=a2 (6) Equqtions (5) and (6) show that E(rj)=a;. In addition, the law of one price tells us that since assets a and b are equally risky, they should have identical expected rates of return, E(ra)=E(rb). From these facts we can conclude that the two assets' expected rates of return and intercept terms should all be equal, E(ra)=ai=E(rb)=a2. Let x represent the weight of a two asset portfolio's total wealth that is invested in asset one,
he Arbitrage Pricing Theory is based on the law of one price which says that the same asset can't sell for two different prices. If the same asset does sell for different prices, arbitragers will buy the asset where it is cheap, and driving up the low price, and simultaneously sell the asset where its price is higher, thereby driving down the high price. Arbitragers will continue this activity untill all prices for the asset are equal. Let us assume the returns from assets a and b. The return generating equations (1) and (2); ra=E(ra) + e (1) rb=E(rb) + e (2) The random variable e is identical for the two assets in equations (1) and (2); it is assumed to have a mathematical expectation of zero, E(e) = 0. Equations (1) and (2) indicate that assets 1 and 2 have equally risky cashflows and equally risky rates of return. When trying the figure out the equilibrium prices of market assets, the law of one price is interpreted to mean that assets with identical risks are equivalent investments and therefore must have the same expected rates of return; in this case, E (ra ) = E (rb ). As long as the expected returns from assets a and b are equal, arbitrage between them will not be profitable. But, if the two expected rates of return are not equal, for example E(ra ) > E(rb ), in this case an investor can create arbirage profits by taking the proceeds of pb dollars from a short sale of asset b at time t=0 and investing the funds in a long position in asset a; I- pa 1= I pb I. This arbitrage portfolio requires zero initial investment since - pa + pb =0. The portfolio is also perfectly hedged to zero risk because any gains on the long position will be exactly offset by the simultaneous losses on the short position of equal size, and vice versa. The arbitrager can neverthless confidently expect to earn positive profits since {E (ra ) - E (rb )} > 0. Arbitrage opportunities like this are disequilibrium situations that will quickly be corrected by the first arbitrager that discovers them and finds a way to trade on them. Let us assume that one period rates of return for all assets are generated by a single risk factor denoted F in accordance with the linear models of equations (3) and (4). ra = a, + p, F (3) rb = a2 + p2F (4) Let F be a random variable with and expected value of zero, E(F)=0. The variable f might represent the unanticipated changes in inflation ; F=E{L -E(I)}. The Pi slope vm might represent the unanticipated changes in inflation ; F=E{It -E(I)}. The Pi slope coefficients in equations (3) and (4) are measures of undiversifiable risk-they indicate how sensitive the asset returns are to the common source of variations F. It can be thought that equations (3) and (4) as being simplified characteristic lines that have no unexplained residual error terms so that the total risk is undiversifiable systematic risk. Since independent variable F was constructed so that it averages to zero, E(F)=0, it follows that equations (3) and (4) should have P E(F)= E(PF)=0. By taking this logic a step farther, we see that the two expected rates of return must also be equal to their intercept terms, as shown in equations (5) and (6). E(ra)=oti (5) E(rb)=a2 (6) Equqtions (5) and (6) show that E(rj)=a;. In addition, the law of one price tells us that since assets a and b are equally risky, they should have identical expected rates of return, E(ra)=E(rb). From these facts we can conclude that the two assets' expected rates of return and intercept terms should all be equal, E(ra)=ai=E(rb)=a2. Let x represent the weight of a two asset portfolio's total wealth that is invested in asset one,
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, 1997
Thesis (M.A.) -- İstanbul Technical University, Institute of Social Sciences, 1997
Thesis (M.A.) -- İstanbul Technical University, Institute of Social Sciences, 1997
Anahtar kelimeler
Ekonomi,
işletme,
Arbitraj fiyatlama model,
Portföy analizi,
Sermaye piyasası,
Economics,
Business Administration,
Arbitrage pircing mode,
Portfolio analysis,
Capital market