Evaluation of dielectric performance of high-temperature vulcanizing silicone rubber samples

thumbnail.default.alt
Tarih
2023-01-19
Yazarlar
Bilgiç, Taylan Özgür
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
Electricity has become a must-have rather than a need in our current times. In addition to holding a very important place in people's daily lives, it is also a great need in industrial facilities. An unplanned power outage causes huge financial losses for industrial facilities. Therefore, it is necessary to minimize power outages and to ensure a continuous generation, transmission and distribution of electricity. One of the reasons for power cuts is due to the material used. Interruptions occur due to faults in the distribution and transmission networks of electricity from the generation stage until it reaches more users. In the selection of the materials used here, it is necessary to choose according to the place and conditions where they will be used, and attention should be paid to their lifetime. In addition, when the materials used have better properties, these new materials should be used to prevent future failures. Insulators are used in transmission lines to provide insulation between the energy part and the ground. If there is a problem in one of the insulators in a transmission line, high short-circuit current will be drawn as there will be a short-circuit and a malfunction will occur in the system. This brings about the necessity to pay attention to the lifetime of the insulators and to be aware of the innovations. For this reason, traditional insulators, which are ceramic and glass ones, are replaced by silicone insulators. Silicone insulators are preferred because of their hydrophobic properties, their lightness, their resistance to impacts, their cheapness, ease of installation, protection of their properties at wide temperatures and electrical resistance. Malfunctions in insulators are generally caused by short-circuit currents due to environmental conditions, namely weather conditions such as rain, fog and snow. The reason for this is that the dirt accumulated on the surfaces of the insulators creates a conductive path together with the water formed on the surface due to these weather conditions. When this conductive path is created, a short circuit occurs and short circuit currents occur. Silicone insulators can help prevent this thanks to their hydrophobic properties. The flow of water from the surface of a silicone insulator that has not lost its hydrophobic feature does not form a path, it flows drop by drop. In this way, the formation of short-circuit current is prevented. In this study, high temperature vulcanizing (HTV) silicone rubber samples were investigated in 3 different experimental setups. The first experiment is the Inclined Plane Experiment. With this experiment, the trace and erosion resistance of HTV silicone samples are examined. The experiment was carried out in 3 different voltage types as AC, –DC and +DC and they were compared. For AC, –DC and +DC voltages, 4.5, 3.15 and 2.45 kV voltage values were tested, respectively. According to these voltage levels, the pre-resistances and the contaminant liquid flow rate were determined. A total of 5 samples has been used simultaneously in the experiment. In addition, the temperature measurements of the samples for 6 hours were taken with the help of a thermal camera. In the same way, leakage current data were obtained using the labview program. The second test was the corona discharge test. In this test, the hydrophobicity properties of HTV silicone samples were investigated. In this test, AC, –DC and +DC voltage types were tested in the same way. The voltage level required to create a corona discharge has been found through trials. 5 kV in AC voltage, 21 kV in –DC and +DC voltage was applied. In addition, tests were carried out at different temperatures and different pressures to examine the effect of ambient conditions on hydrophobicity. For each test, 2 samples were used and corona discharge was applied with needle electrodes at 3 points determined on each sample surface. As long as the discharge was applied to these 6 points and afterwards during the recovery of hydrophobicity, the roofs were photographed by dripping water drops at different times. In these photographs, the change of hydrophobicity was examined by finding the angles between the drop and the surface with the help of the program. This change was examined first as loss and then as recovery. As the third test, the dynamic drop test was performed. In this test, the hydrophobicity properties of HTV silicone samples were also investigated. In this test, AC, –DC and +DC voltage types were tested in the same way. A voltage level of 6 kV has been applied in 3 voltage types. Five samples were used for each test. In this test, samples are subjected to electrical stress with the help of 2 electrodes. A liquid is run over the surface of the samples. As a result of electrical stresses, samples lose their hydrophobic properties over time. While at first no accumulation or water path is formed on the surface of the samples during the liquid flow without losing the hydrophobic properties of the samples. As time passes and they start to lose their hydrophobicity, water drops form on the sample surface. Then, when they completely lose their hydrophobicity, a water path is formed. The innovative approach of this study is to use 3 different tests to examine the properties of HTV silicone rubber samples and to perform these 3 different tests at AC, –DC and +DC voltage types. But as a more important innovation, testing at different temperatures and different humidity is performed to examine the effect of ambient conditions in the corona discharge test. Insulators in transmission and distribution lines are located in the open air and are affected by the changes in air conditions. By performing tests at different temperatures and different humidity values and examining the hydrophobic behavior of the samples, information can be obtained about the hydrophobicity properties of silicone insulators under various climate environments including the characteristics of seasons such as summer and winter. When the inclined plane test was performed at 4.5 kV AC voltage, all 5 samples lasted 6 hours and passed the test. In the inclined plane test performed at AC voltage, the average temperature of the 5 samples was measured as 81.5 ˚C and the average of the maximum temperatures of the 5 samples was found to be 113 ˚C. At most, the 2nd sample reached a temperature of 133 ˚C. The average mass loss of 5 samples is 0.0496 grams. In the inclined plane test performed at 3.15 kV negative DC voltage, all 5 samples survived for 6 hours and passed the test. The average temperature of the 5 samples was found to be 242.81 ˚C and the average of the maximum temperatures of the 5 samples was found to be 549.45 ˚C. The 3rd and 4th samples reached a temperature of 670.09 ˚C, which is the highest temperature that can be measured. The average mass loss of 5 samples is 0.0828 grams. In the inclined plane test performed at 2.45 positive DC voltage, only the first sample survived for 6 hours and passed the test. The other 4 samples failed in less than two and a half hours because their erosion length exceeded the value specified in the standard. The first sample, on the other hand, did not cross the erosion length limit of 2.5 cm at the tip of 2.45 cm. But the greatest mass loss is in the 1st sample. The reason for this is that it has been dealing with a great erosion both transversely as well as longitudinally. The average mass loss of 5 samples is 0.85 grams. The mass loss of the 1st sample is also the highest with 1.23 grams. The average temperature value of 5 samples was found to be 98.95 ˚C. The average of the maximum temperatures of the 5 samples is 648.37 ˚C and the 1st sample has the smallest maximum temperature with 602.64 ˚C. As can be seen from these results, the best results were found at AC voltage and the worst results were found at +DC voltage. Recovery of hydrophobicity for HTV SIR samples in CDT for all 3 voltage types is best in high temperature, ie 30 °C temperature and 54% humidity ambient conditions. In the recovery of hydrophobicity, the worst case in all three voltage types is at low temperature, that is, at 18 °C and 54% humidity. In hydrophobicity loss, the worst ambient condition was found to be high temperature in all three voltage types. The best condition for loss of Hydrophobicity in AC and positive DC voltage is low humidity, ie 24 ˚C temperature and 45% humidity. The best condition for loss of hydrophobicity at negative DC voltage is low temperature. Although the samples tested at high temperature gave the worst results in terms of hydrophobicity loss, the hydrophobicity loss rate is lower than the recovery rate. So the loss is more, but the recovery is even more. In the dynamic drop test, the lowest time for the 2nd sample at AC voltage is 116 minutes, the highest time is 212 minutes for the 4th sample, and the average of the 5 samples losing their hydrophobicity is 157.4 minutes. The lowest time at negative DC voltage is 45 minutes for the 2nd sample, the highest time is 239 minutes for the 4th sample, and the average of the 5 samples losing their hydrophobic properties is 124.2 minutes. At positive DC voltage, the lowest time for the 5th sample is 75 minutes, the highest time for the 2nd and 3rd samples is more than 720 minutes, and the average of the 5 samples losing their hydrophobic properties is 387.2 minutes. As can be seen from these results, the best results were found at +DC voltage and the worst results were found at –DC voltage. The time for the samples to lose their hydrophobic properties at AC voltage is close to each other and the standard deviation is the lowest with 42.34. Although the best results are obtained at +DC voltage, there is a great difference between the loss of hydrophobic properties of the samples.
Açıklama
Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2023
Anahtar kelimeler
Anisotropic dielectric layer, Anizotrop dielektrik tabaka, rubber, kauçuk, silicones, silikonlar, high temperature, yüksek sıcaklık
Alıntı