Analysis and design of cryogenic bulk-driven analog integrated circuits
Analysis and design of cryogenic bulk-driven analog integrated circuits
Dosyalar
Tarih
2022
Yazarlar
Ormancı, Mehmet Aytuğ
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
Today, exponentially increasing studies such as quantum electronics, asteroid and planet observations, and even space mining have increased the need for electronic circuits that can operate under extreme conditions without error. Circuits that can operate without consuming much power, especially in space conditions, allow for more or uninterrupted observations and measurements. The operating conditions for circuits operating in space are extreme. It is essential that the designs made for these circuits, which must operate in both high radiation and very cold conditions, produce accurate results because space is still a very costly environment in terms of research and observation costs. In this case, it is important to correct the errors in the designs at the simulation stage. The concept of a cryogenic environment defines the temperature values of 120 K (−153 ℃) and below, although the exact limits are not clear. This is because this temperature includes the boiling points of the main atmospheric gases. The design at cryogenic temperatures is indispensable for space exploration and quantum computers. Liquid nitrogen environment (LNT) is the most common method used to model cryogenic environments on the earth's surface and in laboratories and to develop circuits operating in space conditions. Nitrogen, which has a boiling point of approximately 77 K, contains most of the critical situations that electronic circuits encounter in space conditions. The operating range for integrated circuits traditionally based on common design models such as BSIM is between −55 ℃ and +125 ℃. However, when the design results made with these models are examined, it is observed that the error rate increases even moving away from the room temperature. This makes it inevitable to use new models for cryogenic conditions. The cryogenic modeling process used in this thesis is based on the logic of recalculating and replacing temperature-sensitive parameters and sub-parameters in the BSIM by using a MATLAB environment with a new algorithm. In this way, the margin of error in the experimental measurements is considerably reduced and this environment is accurately simulated in computer-aided programs. In experiments with many transistors in the cryogenic environment, it has been observed that the threshold voltage increases, but the current flowing capacity of the transistors increases as the mobility of the carriers rises. In addition, in the theoretical and practical studies, the linear reduction of thermal noise, which is seen as the main source of the noise in transistors, with temperature is promising results for the designers. With the developing electronic technology, the use of portable devices and biomedical sensors has become quite common. This brings the need for more efficient use of batteries, which cannot develop at the same rate. For this reason, the electronics industry turns to devices that work with less than 1 V power supply and consume very little power. One of the circuit design methods with a very low power supply is bulk-driven (BD) structures. Thus, when the gate terminals are biased with a DC voltage that creates a channel between the source and the drain, the current passing through the channel can be manipulated by the input signal applied from the bulk. In terms of the circuit designs, this method means removing the threshold voltage from the signal path. The most important advantages of the bulk-driven transistors can be shown as having much more linear transconductance and much less power consumption. In addition, without using n-channel and p-channel transistors together, the input common-mode range (ICMR) and output swing can be rail-to-rail. However, driving the transistor from the bulk also brings some disadvantages. The most important issue is the bulk transconductance is quite low compared to the gate-driven counterpart. Although it is theoretically possible to increase, it can activate the parasitic Bipolar Junction Transistors (BJT) in the structure and damage the chip. Also, low transconductance increases the noise factor of transistors. Another detriment is the high capacitive effects on the body. These effects greatly reduce the transition frequency of transistors. Another low power circuit design method is to operate the transistors in the subthreshold region. Transistors enter the subthreshold saturation region between 3 and 4 times their thermal voltage and can operate with low power supplies. Operational transconductance amplifiers (OTA), which are one of the indispensable building blocks of analog designs, are frequently used in analog signal processing, thanks to the high-level linear transconductance and stable high frequency performance. In this study, a three-stage OTA is designed in which all transistors operate in the subthreshold saturation region. It consists of an input stage based on non-tailed differential amplifiers, a second stage with a common-source amplifier, and a class AB output stage. The input stage provides high ICMR and 36 dB DC gain. The bias current of this structure was calculated as 8 nA using thermal noise and dynamic range in the voltage follower configuration.
Açıklama
Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2022
Anahtar kelimeler
Cryogenic method,
Operational transconductance amplifier,
Matlab medium,
OTA