Gsm Şebekelerinde İstatistiksel Öğrenme Yöntemleri İle Aksaklık Yönetimi

dc.contributor.advisor Çataltepe, Zehra tr_TR
dc.contributor.author Sarkan, Mehmet Onur tr_TR
dc.contributor.authorID 371506 tr_TR
dc.contributor.department Bilgisayar Bilimleri tr_TR
dc.contributor.department Computer Science en_US
dc.date 2010 tr_TR
dc.date.accessioned 2016-10-25T14:12:30Z
dc.date.available 2016-10-25T14:12:30Z
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Bilişim Enstitüsü, 2010 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Informatics, 2010 en_US
dc.description.abstract Bu çalışmada, GSM şebekeleri aksaklık yönetimi sistemlerine gelen alarmlar için istatistiksel öğrenme yöntemleri ile otomatik filtre kuralları üretimi için algoritmalar geliştirilip, Türkiye'nin en büyük GSM şebeke işletmeci firmasının alarm veri tabanı üzerinde deneysel testleri yapılmıştır. Çalışma iki farklı ihtiyaca odaklanmıştır: Geçici alarmların filtrelenmesi ve ilintili alarmların filtrelenmesi. Geçici alarm filtrelerinin üretiminde dağılımdan bağımsız olasılık kestirimi yöntemlerinden Histogram Analizi ve Parzen Penceresi Analizi yöntemlerinden faydalanılmıştır. Alarm tarihçesi incelenerek her bir alarm tipi için birikimli alarm yaşam süresi histogramları ve yoğunluk fonksiyonları üretilmiştir. Histogramlar ve yoğunluk fonksiyonları incelenerek geçici alarm tipleri ve bu alarm tipleri için uygun alarm bekletme filtreleri tahmin edilmeye çalışılmıştır. Literatürde bu konuda daha önceden gerçekleştirilmiş bir çalışma olmadığı için geçici alarm filtrelerinin üretimi için önerilen iki yöntem türünün ilk örnekleri durumundadır. Histogram Analizi ve Parzen Penceresi Analizi yöntemlerinin geçici alarm filtreleri üretimi konusundaki başarı performansları karşılaştırmalı olarak incelenmiştir. Parzen Penceresi Analizi içindeki çekirdek fonksiyonun yumuşatma etkisi sayesinde incelenen alarm örnek sayısının düşük durumlarda daha başarılı iken, alarm örnek sayısının yüksek olduğu durumlarda Histogram Analizi daha başarılı sonuçlar sergilemiştir. İlintili alarmları filtrelemek amacıyla kullanılan filtreleri üretebilmek için alarm tipleri arasındaki ihtimalsel ilişkilerden faydalanılmıştır. Alarm tarihçesindeki alarmlar kayan zaman penceresi yöntemi ile incelenerek eş kaynaktan yakın zamanlarda gelen alarm tipi gruplarının beraber gözlemlenme frekansları hesaplanmıştır. Hesaplanan gözlemlenme frekansları kullanılarak Pazar Sepet Analizi tekniklerinde kullanılan en yaygın altı benzerlik ölçütü hesaplanmış ve hesaplanan benzerlik ölçütleri ile alarm filtrelerinde kullanılacak ilintili alarm tiplerinin öğrenilmesi konusunda deneysel çalışmalar yapılmıştır. Kullanılan benzerlik ölçütleri Etki, Maksimum Güven, Minimum Güven, Tutarlılık, Cosine ve Kulczynski benzerlikleridir. İlintili alarm filtreleri üretilmesi konusunda önerilen altı benzerlik ölçütünün de başarılı sonuçlar verdiği gözlemlenmiştir. Benzerlik ölçütlerini beraber kullanarak daha başarılı sonuçlar elde etmek için S Biçimli Sınıflandırma yöntemi kullanılmış ve benzerlik ölçütlerinin tek başlarına sağlayabilecekleri sonuçlardan daha başarılı sonuçlar elde edilmiştir. Bu çalışmanın sonunda alarm ilintilendirme kurallarının öğrenilmesi amacıyla farklı benzerlik ölçümlerinin gücünü birleştirdiği ve benzerlik eşiklerinin de öğrenilmesini sağladığı için S Biçimli Sınıflandırma en başarılı yöntem olarak tavsiye edilmiştir. tr_TR
dc.description.abstract In this study, new algorithms are presented to generate automatic alarm filters by using statistical learning methods. Suggested algorithms are tested on Turkey?s biggest GSM Company?s alarm history. In this study, two main areas are focused: Filtering of transient alarms and filtering of correlated alarms. To produce transient alarm filters, two non-parametric density estimation approaches are used: Histogram Analysis and Parzen Window Analysis. By investigating alarm history, cumulative alarm lifetime histograms and density functions are produced for each alarm type. By analyzing calculated cumulative alarm lifetime histograms and density functions, transient alarm types and suitable transient alarm filter parameters are estimated. In the literature, there is no similar work, so suggested both approaches are firsts of its kinds. Learning performance of Histogram Analysis and Parzen Window Analysis are tested with comparision. Results show that Histogram Analysis and Parzen Window Analysis methods are successful to detect transient alarm types and estimate suitable transient alarm filter parameters. On the other hand, Parzen Window Analysis shows better results with inefficient number of alarm sample because of Kernel function?s smoothing effect, and Histogram Analysis has better results with efficient number of alarm sample. In addition, Histogram Analysis is faster than Parzen Window Analysis. To produce alarm filters which can filter correlated alarms, we used probabilistic relationships between different alarm types. Historical alarms are investigated by using sliding time window method to calculate alarm types co-occurrences counts. To be able to detect correlated alarm types, six most common similarity measurement types of Market Basket Analysis are used. These similarity measurements are Lift similarity, Maximum Confidence similarity, Minimum Confidence similarity, Coherence similarity, Cosine similarity, and Kulczynski similarity. Experimental results show that six similarity measurements of Market Basket Analysis are successful to detect correlated alarm types. To combine six different similarity measurements, and to be able to produce more successful experimental results, Logistic Regression is used to determine correlated alarm types, and results are better than each similarity type. In this study, to determine correlated alarm types, Logistic Regression is suggested because this method can combine power of each similarity measurement and similarity thresholds can be learned by experiences. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/12209
dc.publisher Bilişim Enstitüsü tr_TR
dc.publisher Institute of Informatics en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject ilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol tr_TR
dc.subject Yapay zeka tr_TR
dc.subject İstatistiksel analiz tr_TR
dc.subject Computer Engineering and Computer Science and Control en_US
dc.subject Artificial intelligence en_US
dc.subject Statistical analysis en_US
dc.title Gsm Şebekelerinde İstatistiksel Öğrenme Yöntemleri İle Aksaklık Yönetimi tr_TR
dc.title.alternative Gsm Network Fault Management By Using Statistical Learning Methods en_US
dc.type Master Thesis
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
704041012.pdf
Boyut:
2.11 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama