Battery management system design with embedded electrochemical impedance spectroscopy

thumbnail.default.alt
Tarih
2023-04-27
Yazarlar
Babacan, Medet Kerem
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
Humanity is developing day by day in engineering and technical fields. Engineers and scientists all over the world are trying to take humanity one step further. As a result of these studies, the technology provides comfort in our daily lives. One of the best examples of this are transportation, mobility and automotive. Each year, the studies progressing cumulatively in this field have pioneered the presentation of more developed cars than the previous years, and to populate different transportation methods and concepts in our lives. Each development has been formed as a result of some needs. One of the most important motivations in the field of automotive is user requests, the limited resources and the environmental sensitivity. The transition to electric vehicles, one of the biggest revolutions in transportation, has undoubtedly accelerated due to the depletion of fuel resources and the environmental sensitivity. Fuels used to operate internal combustion vehicles are obtained from petrol. While the formation of a petrol reserve takes for thousands of years, the current reserves are running out. Considering the demand that will rise in transportation due to the population and industrialization increase over time, it is predicted that the petrol reserves will be drained in the coming years. In addition, as a result of reactions inside the internal combustion engine, harmful gases are produced and released into world atmosphere. These gases, which are released from millions of vehicles, accumulate in the atmosphere and disrupt the balance of nature. Therefore, humanity has now become unable to lean on to petrol fuels and have been in search of new fuel sources. In this context, the most innovative transportation methods seem to be hydrogen and electrical based. While the comparison of these two methods with each other is the subject of a separate study, this study will focus on the electrical transportation method and the batteries to be used in these means of transportation. Transportation has been mainly provided by internal combustion vehicles until today. This naturally allowed many engineers working on this field to accumulate a lot of knowledge cumulatively. Over the years, engineers have solved the problems in the designs one by one and have reached the present knowledge level by pushing the limits of the existing technology. There have been many developments in internal combustion engines and vehicles in areas such as safety, efficiency, practicality and comfort. However, electric vehicles that have just started to become widespread have opened a new page. Compared to internal combustion propulsion systems, studies on electric propulsion systems are still in their infancy. Engineers and scientists are conducting a lot of work to fill the gap in this field. One of the most basic components of electric vehicles are batteries. When we compare one to one with internal combustion vehicle, the battery group corresponds to the fuel tank of the vehicle. The first factors for the user, such as the range of the electric vehicle, the charge time and the performance at different temperatures, are completely related to the battery. When these factors are examined, they are all disadvantaged xx compared to internal combustion vehicles. This offers a negative effect for the market share of electric vehicles. While the criterias mentioned are the factors that the user will experience directly, there is also a factor that the user cannot experience, but in fact, which is even more important than all of them, which is safety. As can be seen from time to time, electric vehicles may caught fire while charging or in a traffic accident. It is not possible to extinguish it when a battery flames. Therefore, this is a great danger for both the vehicle's user and for those around. These situations show that there are many more things to develop in terms of both safety and user experience in the batteries of electric vehicles. Today, Li-ion type cells are widely used in the batteries of electric vehicles. These cells are preferred because they are one of the cell types that give the highest energy per kilogram. As a result of chemical reactions in these cells, electrical energy is generated, which provides power to traction. Battery cells have safe operating ranges. In particular, the voltage and temperature values of the cells should be within some ranges. Otherwise, chemical reactions in the cells come to an uncontrollable point and undesirable fires, explosions or structural deformations may occur. In addition, since these cells are non linear systems, it is not easy to predict the changes in their internal structures as a result of their use. For this reason, it is a research area in itself to predict the energy remaining in the battery of an electric vehicle and therefore the range it can go to. In order to overcome such difficulties, there is a control unit that manages the battery and this module is called the battery management system. In this study, a battery management system will be developed to ensure the safety of the electric vehicle battery and has a new method to estimate the chemical structure of the batteries. The developed battery management system will measure voltage, current and temperature values in the battery and check whether the battery is at safe ranges. It will take the necessary actions to prevent these values get dangerous. In addition, the battery will drive auxiliary elements in battery pack such as contactors. It will send the measurements and calculations taken over the battery over the communication channels and work in harmony with the other components in the vehicle. The designed battery management system will be scalable and the big battery packets will be able to managed with different number of battery management system modules. There are many methods to analyze the chemical structures of batteries. The most important of these is electrochemical impedance spectroscopy. In this method, an alternative current is sent to a battery cell in the laboratory environment and the voltage change in the cell terminals is monitored. This voltage change analyzed in the frequency domain and an idea is obtained about the chemical internal structure of the cell. In spite of obtaining valuable information as a result of this method, the devices that do this analysis are expensive, heavy and stationary devices that can be used only in the laboratory environment. Within the scope of this study, it is aimed to integrate such an analysis method into designed battery management system. Thus, the tests performed in the laboratory will be able to performed on the vehicle also, and the accuracy will increase for battery management system calculations. Within the scope of this study, the hardware of a battery management system will be developed. After circuit schematic and printing circuit board design completed, circuit board will be produced and prototyping work will be done. Low level drivers, battery management system algorithms and electrochemical impedance analysis algorithms will be developed on this board. The developed product will be tested on a battery pack and measurements will be taken. Taken measurements will be used to express cell structure as an equivalent circuit model. Application areas that product can be used and future studies will be discussed.
Açıklama
Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2023
Anahtar kelimeler
electric batteries, elektrik bataryaları, battery management system, batarya yönetim sistemi
Alıntı