LEE- Mekatronik Mühendisliği-Yüksek Lisans

Bu koleksiyon için kalıcı URI

Gözat

Son Başvurular

Şimdi gösteriliyor 1 - 3 / 3
  • Öge
    Paletli araçlar için otomatik transmisyonun dinamik modeli, kavrama parametre adaptasyonu ve kontrolü
    (Lisansüstü Eğitim Enstitüsü, 2022-02-17) Arı, Ali ; Yalçın, Yaprak ; 518171037 ; Mekatronik Mühendisliği
    Bu tez çalışmasında; paletli askeri araçlarda kullanılan otomatik transmisyonların vites değiştirme fonksiyonlarını gerçekleştirecek elektronik kontrol ünitesi kontrol algoritmaları tasarlanmıştır. Bu algoritmaların, transmisyonun dinamik modeli ile desteklenmesi sayesinde planet dişli sistemindeki kavramalarda herhangi bir hız ve basınç sensörü olmadan kontrol için gerekli değişkenler hesaplanmıştır. Kavramaların aşınması durumunda, kavrama parametreleri, yalnızca transmisyon giriş ve çıkış hızı sensörlerinden gelen bilgileri kullanan bir adaptasyon algoritması aracılığıyla kestirilmiştir. Bir yenilik olarak, atalet fazında dinamometredeki kalibrasyon işlemlerini kısaltacak, dayanıklı ve hassas kontrole olanak sağlayacak, dinamikleri doğrusal olmayan transmisyon sisteminde kullanılabilen, genetik algoritma ile optimize edilmiş bir PID kontrol tasarımı yapılmıştır. Tasarlanan dinamik model, uyarlama algoritması ve kontrolör, bir MATLAB/Simulink-Simscape güç aktarma sistemi simülasyon modeli üzerinde test edilmiştir.
  • Öge
    Çamaşır makinelerinde yapay sinir ağları ile yıkama performansı ve enerji tüketiminin modellenmesi
    (Lisansüstü Eğitim Enstitüsü, 2022-06-23) Aktaş, Yakup ; Altınkaynak, Atakan ; Kalafat Acer, Merve ; 518181036 ; Mekatronik Mühendisliği
    Dünyada gelişen teknoloji ve mühendislik yetkinlikleriyle beraber endüstride bir rekabet ortamı oluşmuştur. İlgili sektör üreticileri fark yaratan ürünler otaya koymak için gelişen teknolojik adımları yakalamak ve ürünlerine değer katacak gelişmeleri takip etmek durumundadır. Özellikle tüketicinin doğrudan etkileşim halinde olduğu beyaz eşya ürünlerinde fark yaratan teknolojiler ön plana çıkmaktadır. Ancak ürünlere eklenen birçok yeni özellik beraberinde maliyetleri de doğurmaktadır. Aynı zamanda üreticiler için kaynak ve zaman yönetimi anlamında da ekstra yük getirmektedir. Bu nedenle ürünlerin ar-ge, tasarım ve üretim süreçleri ne kadar iyileştirilebilirse sektörde rekabetçi ve yenilikçi ürünler ortaya koyabilmek o kadar mümkün hale gelecektir. Üretilecek olan ürünlerin ar-ge ve tasarım aşamalarındaki test süreçlerinin iyileştirilmesi maliyet, kaynak ve zaman açısından üreticiler için olumlu katkı sağlamaktadır. Çamaşır makinaları günümüzde yaygın olarak kullanılan dayanıklı tüketim aletleridir. Su ve elektrik enerjisi ile çalıştıkları için, test süreçlerinde her bir çevrimdeki bu tüketimler ek maliyetlere ve aynı zamanda dünya kaynaklarının da tüketilmesine yol açmaktadır. Bununla birlikte zaman açısından da yeni ürün proje süreleri uzamakta ve teknolojik gelişimi yavaşlatmaktadır. Yani test süreçlerinin kısalması, hem sürdürülebilirliğe katkı yapacak, hem maliyetleridüşürecek hem de zamanın verimli kullanılmasına yol açacaktır. Tez kapsamında çamaşır makinalarının ar-ge ve tasarım süreçlerinde gerçekleştirilen test metotlarının kurulacak model yapısında incelenmesi ile çevresel sürdürülebilirliğe katkı sağlanması, üretici maliyetlerinin düşürülmesi ve zaman tasarrufu elde edilmesi amaçlanmaktadır. Çamaşır makinalarının sahip olduğu özelliklerin yanında, standartlarca belirlenmiş çeşitli sınırları da sağlıyor olması gerekmektedir. Bunlardan biri yıkama performansıdır. Çamaşır makinalarının temel özelliği olan yıkama işlemi, standartlarda belirlenmiş yöntemlerile ölçülebilmektedir. Üretilen çamaşır makinalarının da belirlenen limit değerin altına düşmeyecek etkinlikte yıkama performansına sahip olması gerekmektedir. Üreticiler ise bu sınır koşulu sağlayıp sağlamadığını test etmek için standart yıkama performansı testlerini laboratuvar oertamında gerçekleştirmektedir. Ancak farklı sınır koşullarından dolayı yıkama performansını sağlayabilmek adına birçok parametrenin optimize edilmesi gerekmektedir. Birden fazla parametrenin etki ettiği yıkama performansı hedef değerini yakalayabilmek adına yapılan bu deneme testleri ise su ve enerji tüketimlerinden dolayı beraberinde ekstra bir yük getirmektedir. Bu sebeple kurulacak model yapısı ile bu test sonuçlarının tahmin edilebilmesi hedeflenmektedir. Diğer bir yandan, standart olarak sağlanması gereken yıkama performansının belirli enerji tüketimi sınırları içerisinde gerçekleşiyor olması gerekmektedir. Üreticiler, üretilen çamaşır makinasının enerji tüketiminin, standartlarda belirlenen enerji sınıf aralıklarından hangisine denk geldiğini deklare etmek durumundadır. Doğal olarak daha düşük tüketime sahip enerji sınıfındaki ürünler son kullanıcı tarafından daha çok tercih edileceğinden yıkama performansı değerine olabilecek en düşük enerji tüketimi ile ulaşmak ana hedeftir. Bu nedenle yapılan performans testleri yerine yıkama performansını tahmin edecek model ihtiyacının yanında, optimum tasarımın yapılabilmesi için enerji tüketiminin de tahmin edilmesi gerekmektedir. Kurulacak enerji tüketimi modeli ile de enerji tüketimi değerinin test yapmadan tahmin edilebilmesi amaçlanmaktadır. Tez kapsamında kurulacak yıkama performansı ve enerji tüketimi tahmin modellerini elde edebilmek için öncelikle deneysel veriye ihtiyaç vardır. Bu amaçla laboratuvar ortamında deney istasyonları hazırlanmış ve standart yıkama performansı test sonuçları tüm analog ve dijital verileriyle birlikte toplanmıştır. Tahmin edilmek istenen yıkama performansı ve enerji tüketimi değerlerinin yanında model yapılarını girdi sağlayabilecek parametrelerin de değişimleri kaydedilmiştir. Toplanan verilerin analizi yapılarak yıkama performansı ve enerji tüketimi tahmin modelleri için ayrı ayrı girdi parametreleri seçilmiş ve çeşitli model yapıları oluşturulmuştur. Oluşturulan yapılardan en iyi performans gösteren modeller seçilmiştir. Elde edilen modeller sayseinde yıkama performansı ve enerji tüketimi için seçilen girdi parametresi değerleri verildiğinde yüksek doğrulukta sonuçlar alınmaktadır. Tezin ilk bölümünde literatürde çamaşır makinalarında gerçekleştirilen yıkama prosesine etki eden temel parametrelerden bahsedilmiştir. Ayrıca tezin ilk bölümünde çamaşır makinlarında geliştirilmiş makine öğrenmesi, yapay sinir ağı ve bulanık mantık algoritma çalışmalarından örnekler sunulmuştur. Yapılan çalışmalarda tahmin edilmesi kritik parametrelere yer verilmiş ve farklı yöntemler kıyaslanmıştır. Tezin ikinci bölümünde yıkama performansı ve enerji tüketimi modellerine veri girişi sağlamak amacıyla kurulan deney sisteminden, kullanılan ekipmanlardan ve ölçüm yöntemlerinden bahsedilmiştir. Bu bölümde ek olarak toplanan deneysel veri kümesi incelenmiştir. Verilerin makina özellikleri açısından yıkama performansı ve enerji tüketimine göre dağılımları gösterilmiştir. Tezin üçüncü bölümüden yıkama performansı modeli için girdi parametreleri seçilmiştir. Girdi parametrelerinin çıktı değerine etkileri detaylıca açıklanmıştır. Parametrelerin istatistiksel özellikleri elde edilmiş, girdi-çıktı parametreleri arasındaki lineer korelasyon ilişkileri çıkarılmıştır. Tezin bu bölümünde lineer yöntemlerin problemi çözümlemeye yetmeyeceği ve makine öğrenmesi yöntemlerinin denenmesi gerektiği yapılan lineer regresyon analizleri ile vurgulanmıştır. Bu amaçla aynı bölümde modelleme için kullanılacak yapay sinir ağları ile Levenberg-Marquardt geri yayılım algoritması açıklanmıştır. Kurulacak modelin algoritma parametreleri detayları ile verildikten sonra farklı katman ve nöron sayılarındaki yapay sinir ağı sonuçları elde edilmiş ve en iyi performansı veren modeller belrtilmiştir. Yapay sinir ağı modeli Matlab programı kullanılarak Levenberg-Marquardt geri yayılım öğrenme algoritmasının model parametre detayları değiştirilerek oluşturulmuştur. Tezin dördüncü bölümünde de yıkama performansı yapay sinir ağı modeline benzer şekilde enerji tüketimi modeli için de girdi parametreleri belirlenip lineer korelasyon ilişkileri belirtilmiştir. Lineer regresyon analizi sonuçları paylaşılmış ve enerji tüketimi modeli için de yapay sinir ağı modeli kurulmuştur. Yıkama performansı yapay sinir ağı modeli ile aynı ağ yapısı özelliklerinde modeller karşılaştırılmış ve en yüksek performansı veren model seçilmiştir Tezin beşinci bölümünde elde edilen model yapıları, ortak model arayüzü oluşturmak adına Simulink ortamına aktarılmış ve tasarım süreçlerinde kullanıma hazır hale getirilmiştir. İlgili girdi parametrelerinin değerleri verildiğinde elde edilen en iyi modellerin tahmini sonucu yıkama performansı ve enerji tüketimi değerleri elde edilebilmektedir. Tezin beşinci ve son bölümünde ise yapılan tez çalışmasının sonucuna ve gelecek çalışmalar için önerilere yer verilmiştir.
  • Öge
    Energy-efficient velocity trajectory optimization using dynamic programming for electric vehicles
    ( 2021-10-22) Kızıl, Abdullah ; Sezer, Volkan ; 518161030 ; Mechatronics Engineering ; Mekatronik Mühendisliği
    The electrification and autonomous systems developed in the automotive industry in the last decade bring different solutions. Many methods have been developed and still continue to be developed to reduce energy consumption in vehicles, especially with electrified, connected vehicle technologies and navigation systems. Speed trajectory optimization is part of these methods. The main motivation of speed trajectory optimization is to prevent excessive energy consumption due to driver driving style. In order to prevent this, information such as the slope and speed limit of the road to be traveled is used over the navigation system. When we consider only energy while optimizing the speed trajectory, the prolongation of the driving time will appear as a concern. Because if the vehicle goes faster, the energy consumed will increase quadratically. Therefore, optimization will always demand the vehicle to go slower in order to consume less energy and there must be a balance between energy and travel time. In this thesis, a study has been carried out that periodically updates the speed trajectory, which will ensure that the destination point and arrival time information are provided into the navigation system by the driver while consuming the least energy in the given time. The dynamic Programming (DP) method is used to solve this problem. Dynamic programming always presents the global optimum behavior under the given boundary conditions. The speed of the vehicle was used as the only state variable and its optimization was performed separately over the distance stages. The average speed required to reach the destination on time, based on the destination point and travel time information obtained from the navigation system, is given as an input to the optimization, and the DP state space is constantly updated. The main reason for this is to reduce the memory load required by DP. Thus, a fixed number of states are scanned. But the scanned range values are updated according to this speed input. A longitudinal vehicle model was used for optimization. The limits of the powertrain are also part of the optimization as a boundary condition. Before the optimization is run, a pre-calculation is also made to include the states where the transition between states is possible only in the optimization. Thus, it is aimed to shorten the calculation time by not including the unreachable situations in the optimization. Optimization takes place along a certain horizon. The speed trajectory calculated for this horizon is transmitted to the vehicle speed control unit as an input. The vehicle follows this speed profile. The optimization is updated again after a certain period of time and transmits the speed trajectory calculated for the next horizon to the vehicle. The purpose of this is if the vehicle cannot follow the given speed for any reason during real driving, the optimization is performed again based on the new conditions. This allows the vehicle to progress in real-time using the speed trajectory closest to the global optimum. In the study, simulation and analysis of the all-electric truck were carried out on two different slope routes. Tests were performed with different fixed velocity values and velocity profiles produced by velocity trajectory optimization in both routes. As a result of the simulations carried out, it has been observed that up to 4% of energy consumption and up to 2.5% of the targeted time are saved. Thanks to the proposed adaptive weight factor, it has been observed that the time-energy balance is maintained for different routes, arrival times, and vehicle parameters.