An Integral Equation Approach For The Solution Of The Stokes Flow With Hermite Surface
An Integral Equation Approach For The Solution Of The Stokes Flow With Hermite Surface
Dosyalar
Tarih
2013
Yazarlar
Ata, Kayhan
Karaca, Süleyman
Şahin, Mehmet
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Teorik ve Uygulamalı Mekanik Türk Milli Komitesi
Theoretical and Applied Mechanical Turkish National Committee
Theoretical and Applied Mechanical Turkish National Committee
Özet
Üç boyutlu Stokes akışını çözmek amacıyla sınır integral yöntemiyle beraber dörtgen Hermit yüzeyler kullanılarak bir integral denklem yöntemi geliştirilmiştir. Sayısal sonuçlar, sınır sıralama yönteminden ve daimi Stokes denkleminin temel çözümleri olan Stokesletlerin sürekli dağılımından yararlanılarak elde edilmiştir. Dörtgen yüzey elemanları, komşu elemanlar arasındaki yüzey normal vektörünün sürekliliğini sağlayan hermite fonksiyonları kullanılarak tanımlanmıştır. Tekil integraller tanh-sinh tümlev yöntemi, tekil olmayan integraller ise Gauss-Legendre yöntemi kullanılarak sayısal olarak hesaplanmıştır. Sayısal algoritma ilk olarak küre etrafindaki üç boyutlu Stokes akışında doğrulanmıştır. Sonrasında algoritma küresel parçacıkların sedimantasyonu problemi için uygulanmıştır.
An integral equation method has been developed to solve the three-dimensional Stokes flow using a quadrilateral Hermite based function approach to the boundary integral method. The numerical solutions are obtained by utilizing the boundary collocation method as well as the continuous distribution of Stokeslets, which are the fundamental solutions of the steady Stokes equations. The quadrilateral surface elements are based on the bi-cubic hermite functions that allows the continuous variation of the surface normal vectors between neighboring elements. The singular integrations are evaluated numerically using the tanh-sinh quadrature rule meanwhile non-singular integrals are evaluated using the Gauss-Legendre quadrature rule. The numerical algorithm is initially validated for the three-dimensional unbounded Stokes flow around a sphere. Then the algorithm is applied to the sedimentation of spherical particles. Keywords: Integral equation method, Stokes flow, Hermite functions, singular integrals, sedimentation.
An integral equation method has been developed to solve the three-dimensional Stokes flow using a quadrilateral Hermite based function approach to the boundary integral method. The numerical solutions are obtained by utilizing the boundary collocation method as well as the continuous distribution of Stokeslets, which are the fundamental solutions of the steady Stokes equations. The quadrilateral surface elements are based on the bi-cubic hermite functions that allows the continuous variation of the surface normal vectors between neighboring elements. The singular integrations are evaluated numerically using the tanh-sinh quadrature rule meanwhile non-singular integrals are evaluated using the Gauss-Legendre quadrature rule. The numerical algorithm is initially validated for the three-dimensional unbounded Stokes flow around a sphere. Then the algorithm is applied to the sedimentation of spherical particles. Keywords: Integral equation method, Stokes flow, Hermite functions, singular integrals, sedimentation.
Açıklama
Konferans Bildirisi -- Teorik ve Uygulamalı Mekanik Türk Milli Komitesi, 2013
Conference Paper -- Theoretical and Applied Mechanical Turkish National Committee, 2013
Conference Paper -- Theoretical and Applied Mechanical Turkish National Committee, 2013