Gen İfadesinin Şebeke Modeli
Yükleniyor...
Dosyalar
Tarih
item.page.authors
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Biyolojik sistemlerde protein üretimi, yani gen ifadesi, birebir olmamakta ve genlerin birbirleriyle olan etkileşimleri sonucu ortaya çıkmaktadır. Bu etkileşimler için, seçilim baskısı olmaksızın mutasyon geçiren basit bir modelde, Monte Carlo simülasyonlarıyla, gen etkileşimlerinin ölçekten bağımsız bir şebeke oluşturduğu ve bir gen tarafından baskılanan gen sayısı ( O z ) dağılımının ( ) O O z τ − ( O τ =0.47±0.01) gibi bir kuvvet yasasına tabi olduğu ve bu şebekenin bir küçük dünya modeline uygun olarak kümelenme katsayısının C ≈ 0.5 olduğu bulundu. Gen etkileşimi şebekesinin bir kinetik Ising modeli biçiminde betimlenmesi durumunda, sistemin tepkimelerinin zaman içinde ölçekten bağımsız bir sönümlenme zamanı dağılımına sahip olabileceği görüldü. Bu kendiliğinden kritik sistemin dinamik davranışını inceleyebilmek için, dinamik renormalizasyon grubu dönüşümleri rastgele Γ - komşuluklu spin sistemlerine genelleştirildi.
We have studied the regulatory network of gene expression during protein synthesis in biological systems. We have intoduced a simple random bit-string model to represent a chromosome sequence and have only considered the inhibition interactions between the genes. As the result of our Monte Carlo simulations, we have found that this simple model gives rise to a network of gene expression which is of the small-world type, with a clustering coefficient C ≈ 0.5, and is scale-invariant with the distribution of out-going connectivities obeying n(zout) ∼ (zout)-τ . The exponent τ is found to be τ=0.47±0.01. This result shows that the system is complex and can respond on any scale to the sitimuli coming from the environment. This also shows that the system has a selforganized critical behavior. In order to test ideas regarding the distribution of relaxation times on such a network, we have generalized the dynamical renormalization-group calculations to networks with an arbitrary number of nearest neighbors. This will enable us to compute the dynamical exponent on networks with random connections.
We have studied the regulatory network of gene expression during protein synthesis in biological systems. We have intoduced a simple random bit-string model to represent a chromosome sequence and have only considered the inhibition interactions between the genes. As the result of our Monte Carlo simulations, we have found that this simple model gives rise to a network of gene expression which is of the small-world type, with a clustering coefficient C ≈ 0.5, and is scale-invariant with the distribution of out-going connectivities obeying n(zout) ∼ (zout)-τ . The exponent τ is found to be τ=0.47±0.01. This result shows that the system is complex and can respond on any scale to the sitimuli coming from the environment. This also shows that the system has a selforganized critical behavior. In order to test ideas regarding the distribution of relaxation times on such a network, we have generalized the dynamical renormalization-group calculations to networks with an arbitrary number of nearest neighbors. This will enable us to compute the dynamical exponent on networks with random connections.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2003
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2003
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2003
Konusu
Gene ifadesi, Şebeke, Dinamik renormalizasyon grubu, Gene Expression, Network, Dynamic Renormalization Group
