Ru Katalizörlü Azit Alkin Siklokatılma Tepkimeleri Üzerine Hesapsal Bir Çalışma
Ru Katalizörlü Azit Alkin Siklokatılma Tepkimeleri Üzerine Hesapsal Bir Çalışma
Dosyalar
Tarih
2011-07-12
Yazarlar
Boz, Esra
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
1,2,3-triazoller azol ailesinin bir üyesidir ve özellikle biyomedikal alanında uygulamaları mevcuttur. Triazollerin elde yöntemlerinden biri Husigen’in azit ve alkinlerin 1,3-dipolar siklokatılma tepkimesidir. Bu tepkime hem yüksek aktivasyon bariyerine sahiptir, hem de yüksek sıcaklıklarda bile yavaş ilerlemektedir. 1,5-triazollerin rutenyum katalizörlüğünde azit ve alkinlerin tepkimesinden elde edilmesi alternatif ve yeni bir yoldur. Bu çalışmada rutenyum katalizörlü bir azit-alkin siklokatılma tepkimesi kuantum mekanik metodlarla modellenmiştir. İlk olarak model bir tepkime önerilmiş ve tepkime mekanizması bulunmuştur. Daha sonra deneysel olarak çalışılmış farklı sübstitüentli azit-alkin molekülleri içeren gerçek bir sistem model tepkime kullanılarak modellenmiştir. Bunun yanında, katalizörün tepkimedeki etkisinin anlaşılması için farklı bir ligand içeren Ru metalli tepkime incelenmiştir. Bu amaçla B3LYP fonksiyoneli ile YFT teorisi kullanılarak 6-31G* bazında Gaussian 03 programı kullanılarak hesaplamalar gerçekleştirilmiştir. Substratın etkisini açıklamak için alkol ve keton grupları içeren iki farklı sistem daha modellenmiş ve sonuçlar deneysel verilerle karşılaştırılmıştır. Hesaplamalarda, deneysel olarak görülen regioseçicilik desteklenmektedir. Bu reaksiyonlarda hem kinetik hem de termodinamik parametrelerin önemli olduğu görülmektedir. Ürün dağılımını, hem komplekslerin termodinamik kararlılıkları, hem de komplekslerin reaksiyon verme kolaylıkları etkilemektedir.
1,2,3-triazoles are a member of azole family, which have been widely used in especially biomedical applications. One of the synthetic methods to assemble 1,2,3-triazoles is the Huisgen 1,3-dipolar cycloaddition of azides and alkynes. This reaction has a high activation barrier and it is very slow even at high temperatures. An alternative and a very recent method of obtaining 1,5-disubstituted triazoles is via ruthenium catalyzed reaction of alkynes with azides. In this study, a ruthenium catalyzed azide-alkyne cycloaddition reaction has been modeled by quantum mechanical methods. Firstly, a model mechanism has been devised and a pathway for the reaction has been found. Then, the reaction of azide-alkyne with different substituents based on experimental work has been modeled by following model mechanism. Additionally, the effect of the catalyst has been investigated by adding a different ligand on the Ru metal. For this purpose, DFT calculations have been performed with the B3LYP functional with the 6-31G* basis set, utilizing Gaussian 03 program package. To account on the effect of substrate, two other systems, where the alkyne is substituted with alcohol and ketone functional groups have also been modeled and compared with the experimental results. The calculations in this study have reproduced the experimental regioselectivity and allowed us to account on the effects employed in this study. Both thermodynamic and kinetic parameters appeared to be important in these reactions. The thermodynamic stability of the complexes and the relative ease of the complex to undergo reaction determines the product distribution.
1,2,3-triazoles are a member of azole family, which have been widely used in especially biomedical applications. One of the synthetic methods to assemble 1,2,3-triazoles is the Huisgen 1,3-dipolar cycloaddition of azides and alkynes. This reaction has a high activation barrier and it is very slow even at high temperatures. An alternative and a very recent method of obtaining 1,5-disubstituted triazoles is via ruthenium catalyzed reaction of alkynes with azides. In this study, a ruthenium catalyzed azide-alkyne cycloaddition reaction has been modeled by quantum mechanical methods. Firstly, a model mechanism has been devised and a pathway for the reaction has been found. Then, the reaction of azide-alkyne with different substituents based on experimental work has been modeled by following model mechanism. Additionally, the effect of the catalyst has been investigated by adding a different ligand on the Ru metal. For this purpose, DFT calculations have been performed with the B3LYP functional with the 6-31G* basis set, utilizing Gaussian 03 program package. To account on the effect of substrate, two other systems, where the alkyne is substituted with alcohol and ketone functional groups have also been modeled and compared with the experimental results. The calculations in this study have reproduced the experimental regioselectivity and allowed us to account on the effects employed in this study. Both thermodynamic and kinetic parameters appeared to be important in these reactions. The thermodynamic stability of the complexes and the relative ease of the complex to undergo reaction determines the product distribution.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2011
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2011
Anahtar kelimeler
Metal katalizörler,
YFT,
triazol,
Click kimyası,
Rutenyum,
Metal catalyst,
DFT,
triazole,
Click chemistry,
Ruthenium