A compact two stage GaN power amplifier design for sub-6GHz 5G base stations
A compact two stage GaN power amplifier design for sub-6GHz 5G base stations
Dosyalar
Tarih
2023
Yazarlar
Türk, Burak Berk
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
Both commercial and military systems use wireless communication networks. The range of applications is wide, including radar, mobile communications, Wi-Fi, SATCOM and many more. They all have different requirements and different solutions to meet their needs. The development of mobile communications began with 1G in the 1970s, and new generations have found their place in the radio communications market. In 2019, 5G New Radio has started to be expanded worldwide with higher data rate, wider frequency bands, lower latency features. Moreover, there are more frequency bands are available for 5G New Radio. These are called sub-6GHz and mmWave. As the name suggests, the sub-6 GHz frequency bands are below the 6 GHz frequency bands, including the bands of the previous generation. On the other hand, mmWave frequency bands are above 24 GHz. With the goal of low latency, engineers are developing new solutions for the next generation of base stations. One solution is to deploy smaller base stations more frequently than traditional macro base stations. These small cell base stations are called Micro, Pico, Femtocells. As the size of base stations has decreased, the transmitters and receivers of the cells require new technological developments. As the transmitters contain power amplifiers, they are known to dissipate significant amounts of DC power and require appropriate thermal protection. Also, with the increasing demand for small cells, the size of the transmitters must also be considered, along with the nuisance of heat. One of the most important component of the transmitters is power amplifiers. They are the last element of the transmitter before the antenna and amplify the RF power using DC power. In this work, the power amplifier is studied. The size of the power amplifiers play important role for the 5G New Radio small base station cells. Also, due to the size of power amplifiers being small, the power density and thermal conductivity managements are examined. GaN transistors gained popularity over GaAs and Si semiconductor technologies since their thermal conductivity is better and their power density is higher. They are also capable of amplifying higher power levels and have broader bandwidths. For these reasons a compact GaN HEMT power amplifier module is designed to meet the requirements of 5G small cell base stations. For thermal reasons, the efficiency of the power amplifier is crucial. The traditional power amplifiers are divided into classes that is determined by their bias points. These are Class A, Class B, Class C and Class AB. Class A is theoretically the least efficient and Class C is the most efficient. Also, the linearity is important factor in telecommunications because of complex modulation systems. Class A is the most linear and Class C is the least linear of all classes. As a result of this compromise, our power amplifier module operates in Class AB, which balances efficiency and linearity. In this work, a compact two-stage power amplifier module is designed with high gain, high linearity and high efficiency. 2 bare die GaN HEMT transistors are used with 0201 packaged lumped components for matching circuits on a laminate PCB. The PA module measures 10x6 mm. Given these dimensions, the alternative design option is MMIC technology, but the cost of a GaN-based wafer is significantly higher than our solution. A large signal model of the transistor is used and simulated with the EM co-simulation. The simulations are resulted as the output power level of 5W with 0.1 dB gain compression at the center frequency 3.5 GHz. The stability of the PA module is secured with series resistors. The designed power amplifier module is manufactured and implemented with the die transistors and components by using die bonder and wire bonder machines. Small signal and large signal measurement setups are prepared and the device is tested. Due to the mesh settings the designed power amplifiers matching circuits are shifted. 18.5 dB gain is measured with 30% PAE at the output power level of 2W. The simulations are repeated with accurate EM simulations and the results are matched.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, 2023
Anahtar kelimeler
wireless communication,
wireless communication networks,
5G,
power amplifier module