İki Rijit Dikdörtgen Blok İle Yüklenmiş Elastik Yarı Sonsuz Düzlem Üzerine Oturan Elastik İki Tabakanın Sürekli Temas Problemi
Yükleniyor...
Dosyalar
Tarih
item.page.authors
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Teorik ve Uygulamalı Mekanik Türk Milli Komitesi
Theoretical and Applied Mechanical Turkish National Committee
Theoretical and Applied Mechanical Turkish National Committee
Özet
Bu çalışmada, rijit dikdörtgen iki blok aracılığı ile yüklenmiş ve elastik yarı sonsuz düzleme oturan elastik özellikleri farklı iki tabakanın sürekli temas problemi elastisite teorisine göre incelenmiştir. Problemde bütün yüzeylerin sürtünmesiz olduğu kabul edilmiştir. Probleme ait sınır şartları ve integral dönüşüm tekniği kullanılarak problem singüler bir integral denkleme indirgenmiştir. Uygun Gauss-Chebyshev integrasyon formülü kullanılarak, integral denklem iki dikdörtgen blok profili için sayısal olarak çözülmüş ve blok altındaki temas gerilmeleri hesaplanmıştır. Bloklar altındaki temas gerilmelerine bağlı olarak, tabakalar arasındaki ve alt tabaka ile elastik yarı sonsuz düzlem arasındaki ilk ayrılma yükleri ve ilk ayrılma uzaklıkları belirlenmiştir.
In this study, continuous contact problem for two layers, having different heights and elastic constants, loaded by means of two rigid rectangle stamps and resting on an elastic half infinite plane is considered according to theory of elasticity. The problem is solved under the assumptions that all surfaces are frictionless. Using boundary conditions of the problem and integral transform technique, the problem is reduced to a singular integral equation. The integral equation is solved numerically by making use of appropriate Gauss- Chebyshev integration formula for rectangular stamp profiles and contact stress distribution under the stamps is obtained. Depending on the contact stress under the stamps, initial separation loads and initial separation distances between elastic layers and between lower layer elastic half infinite plane are determined.
In this study, continuous contact problem for two layers, having different heights and elastic constants, loaded by means of two rigid rectangle stamps and resting on an elastic half infinite plane is considered according to theory of elasticity. The problem is solved under the assumptions that all surfaces are frictionless. Using boundary conditions of the problem and integral transform technique, the problem is reduced to a singular integral equation. The integral equation is solved numerically by making use of appropriate Gauss- Chebyshev integration formula for rectangular stamp profiles and contact stress distribution under the stamps is obtained. Depending on the contact stress under the stamps, initial separation loads and initial separation distances between elastic layers and between lower layer elastic half infinite plane are determined.
Açıklama
Konferans Bildirisi -- Teorik ve Uygulamalı Mekanik Türk Milli Komitesi, 2015
Conference Paper -- Theoretical and Applied Mechanical Turkish National Committee, 2015
Conference Paper -- Theoretical and Applied Mechanical Turkish National Committee, 2015
