Tarihi yapılarda yapı bilgi modeli uygulamalarının sistematik literatür tarama yöntemiyle değerlendirilmesi

thumbnail.default.alt
Tarih
2021-08-25
Yazarlar
Bastem, Sümeyye Sena
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Lisansüstü Eğitim Enstitüsü
Graduate School
Özet
Yapı bilgi modeli (YBM) mimari, mühendislik ve inşaat (MMİ) uzmanlarının bir tesisi verimli bir şekilde planlamasını, tasarlamasını, inşa etmesini ve yönetmesini sağlayan akıllı bir üç boyutlu (3B) modelleme sürecidir. YBM'nin yeni yapıların inşasında MMİ ve şantiye yönetimi alanlarına sağladığı katkılar paydaşların ilgilisini artırmış, mevcut ve tarihi binalardaki kullanımı üzerine çalışmalar yapılmaya başlamıştır. Böylece yeni binalar için kullanılan bu süreç, 2008 yılından itibaren mevcut ve miras binalarda kullanımı yaygınlaşmıştır. Tarihi yapı bilgi modeli (TYBM), miras binalarının korunması, projelendirilmesi, inşası ve yönetimi gibi aşamalarına katkıda bulunmanın yanısıra bu aşamalarda zamandan ve işçilikten tasarruf, verimliliğin ve doğruluğun artırması gibi faydalar sağlamaktadır. Miras yapılarının korunması sırasında veri eksikliği, belge ve arşivleme sorunları gibi sorunlarla karşılaşılmaktadır. Araştırmacılar, bu sorunları çözmek için TYBM'i geliştirmeyi ve böylece karmaşık ve kültürel açıdan önemli miras binalarını akıllıca belgelemeyi, yorumlamayı ve yönetmeyi amaçlamaktadır.YBM'nin miras yapılarına uygulanmasında kullanıcıların, yeni eğitim becerileri edinmeleri ve YBM ile TYBM arasındaki farklılıktan kaynaklanan temel zorlukları çözmeleri gerekmektedir. Bu zorluklar, TYBM'in uygulanmasında yeni araştırma alanları oluşturmaktadır. TYBM kavramı ve süreci ile ilgili son 12 yılda (2009-2020) yayınlanan çalışmalara ilişkin sistematik bir literatür taraması yapılmıştır. Sistematik derlemenin sonucunda TYBM süreci ve aşamaları hakkında toplam 194 birincil çalışma belirlenmiştir. TYBM'nin kullanım alanları ve faydaları; TYBM uygulaması sırasında gerekli olabilecek araçlar, yöntemler ve yazılımlar ve ayrıca karşılaşılabilecek olası zorluklar açıklanmaktadır. Bu derleme, TYBM sürecini kullanan araştırmacı ve uygulayıcılar için bir rehber niteliği taşımayı amaçlamaktadır. Tezin birinci bölümünde problem tanımlanmış, amaç ve kapsam açıklanmıştır. Aynı zamanda tezde kullanılan yöntemden bahsedilmiştir. Tezin ikinci bölümünde TYBM sürecinin daha iyi anlaşılabilinmesi için YBM süreci, mevcut yapılarda uygulanan YBM süreçleri açıklanmıştır. YBM sürecinde kullanılan yazılımlar ve karşılaşılan kavramlarda detaylandırılmıştır. Ayrıca TYBM sürecinin tanımlanması yapılarak bu süreçte karşılaşılan kavramlardan bahsedilmiştir. Tezin üçüncü bölümünde tezde kullanılan sistematik literatür tarama (SLT) yöntemi ve bu yöntemin aşamaları açıklanmıştır. Yöntemin açıklanmasından sonra TYBM için uygulanan SLT yöntemi aşamalı olarak detaylandırılmıştır. Tezin dördüncü bölümünde, yapılan SLT sonucunda elde edilen birincil çalışmalar referans alınarak TYBM süreci ve aşamaları açıklanmıştır. Bu başlık aynı zamanda süreç boyunca kullanılacak araçlar, yazılımlar, sonuç ürünün kullanım alanları, kullanım şekillerini açıklamaktadır. Tezin son bölümünde ise incelenen çalışma ve değerlendirin sonuçları tarıtışılmıştır. Sonuç olarak tezde TYBM sürecinin koruma ve restorasyon alanlarına süre, maliyet ve nitelik açılarından birçok katkı sağladığına ulaşılmıştır. TYBM sürecinin kullanımının yaygınlaştırılması, mimar, mühendis, arkeolog, tarihçi gibi bu alanda çalışanlara, mekan yönetimini sağlayıcılara, kullanıcılara birçok farklı faydalar sağlamaktadır. Uygulayıcı ve kullanıcıların yanı sıra TYBM, yapının yaşam döngüsünün uzaması ve bu süreyi verimli geçirmesi açısından önemlidir. Ayrıca bu süreçle birlikte kültürel miras yapılarının korunması üzerine bilincin artırması sağlanacaktır.
Preserving heritage buildings by incorporating them into modern life, improving the lifestyle around these structures, and passing them on to future generations is critical for conservation. Heritage conservation practitioners follow the stages of the traditional conservation process―survey, restitution, and restoration. However, the practitioners encounter difficulties in performing these stages; of these, the most common difficulties include the length of the process followed during the survey and restoration stages, the frequency of revisions, and the clash errors in the projects. To preserve heritage structures for the future, sustainable conservation must be implemented in conjunction with traditional methods. Sustainable conservation methods require conservation information, management of heritage structures, and increasing accessibility to archives and documentation resources. The Architecture, Engineering, Construction (AEC) and Facilities Management (FM) communities aim to resolve these challenges and requirements while efficiently managing the conservation process and heritage structures. To this end, researchers have started implementing building information modeling (BIM) on heritage structures in the last decade. In the 1970s, a new process started in 2D drafting with the use of computer-aided design (CAD). Although BIM has been explored ever since, its implementation attracted significant research attention in the 2000s owing to the disadvantages of CAD: limitations regarding semantic information, inability to provide simultaneous interdisciplinary work and cooperation, and inability to quickly respond to problems encountered during the construction phase. BIM is an intelligent modeling process that enables information generation, storage, and management in the computer environment during the design, operation, and demolition processes of a building in the fields of engineering and architecture. Primarily, BIM aims to improve project performance and deliver quality products. BIM saves resources and benefits architects, engineers, owners, and managers in the predesign, design, production, construction, and post-construction stages. It also supports integrated project delivery, scenario planning, virtual design and construction, lean structure construction, value engineering, real estate asset management, preventive maintenance, energy-saving, and environmental management. Moreover, BIM facilitates the realization of targets such as lifecycle costs. Cost of adaptation, training and skill development, and interoperability are common challenges encountered in the BIM process. Although the stakeholders are obligated to radical changes in the BIM process, it is preferred because of the benefits it provides to the AEC and FM sectors. The benefits of BIM have been observed throughout the lifecycle of new structures. Furthermore, since 2008 and 2009, studies have conducted what benefits will be provided upon the implementation of BIM on existing and heritage structures, respectively. Implementing this process model that creates new buildings in existing and historic structures results in benefits such as the elimination of missing documents, high-accuracy analyses, and realistic planning of repair and demolition operations. Efficiently utilizing resources and sustainability are important for recycling existing structures. Construction activities are increasingly shifting to building modifications, retrofits, and deconstruction of existing buildings, particularly in developed countries with low new construction rates. These situations support the application of BIM to existing structures (EBIM). Under EBIM, stages include lifecycle analysis and asset management of BIM; real-time data access; maintenance schedule; emergency management; retrofitting; repair and reconstruction; building energy modeling; environmental analysis; sustainable and safe facility management; and demolition planning are effectively applied to existing structures. However, data capturing and processing, interoperability/collaboration, ownership, lack of information and documentation are some challenges faced in EBIM. In heritage structures, BIM is used to conserve information as a heritage management tool, and to archive and build information sources. BIM's features such as collaboration, data sharing, and coordination, integration of numerical and semantic data, phasing, four-dimensional (4D) modeling, clash detection, and parametric object library creation, which is the core concept of BIM, are also valid for heritage structures. In heritage structures, BIM is used for creating an information repository; for condition monitoring; for the project, heritage, asset, and visitor management; for construction scheduling; and for intervention and preventive maintenance decisions. In addition, Historic Building Information Modeling (HBIM) is also used as a parametric object library that stores documents obtained through data collection methods and ensures the continuity of data sharing. Traditionally, data are collected using manual measuring devices (e.g., meters, plumb line, and topographic measurement instruments) from existing and heritage structures. With the development of technology, photogrammetry and terrestrial laser scanning (TLS) is being utilized for data collection; these tools accelerate data collection and decrease errors and deficiencies relative to the traditional method. Despite the development of methodology and improvement in the relevant tools, CAD software has been used in transferring data to computers since the 1970s. 2D projects are generally created in a CAD environment and frequently revised during the survey and restoration process. In addition to the designing stages, difficulties such as those encountered in archiving documents, management, and implementation of decisions encourage the use of BIM in heritage structures. The main differences that separate BIM from EBIM and HBIM are the purpose of the intervention and the variety of intervention subjects. BIM focuses on the design and construction of new buildings; in contrast, HBIM and EBIM focus on existing buildings that require interventions such as conservation, restoration, reuse, and rehabilitation. Incomplete data observed in some structures cause limitations and difficulties in the implementation of EBIM and HBIM, which could cause unpredictable results, loss of time, and increased costs. HBIM first appeared in the literature in Murphy's research in 2009, and ever since HBIM has contributed to the academic field as well as to the research and restoration stages in practice. Along with individual theoric and applied studies published on HBIM, literature reviews have been published by different researchers for several years. However, these literature reviews compiled resources with either limited scope, a very wide scope, or a significantly small number of resources. Limited-scope studies examine the features of BIM that can be used in restoring heritage structures: diagnostic and performance analysis, retrofit, heritage management, survey and digitalization, modeling, and documentation. The wide-scope study simultaneously explores and evaluates the BIM, EBIM, and HBIM processes. In, the HBIM process has been evaluated and staged by addressing 29 studies. Insufficient conclusions were performed as the research was conducted with insufficient resources. In the first part of the thesis, the problem is defined and the purpose and scope are explained. At the same time, the method used in the thesis is mentioned. In the second part of the thesis, the BIM process and BIM processes applied in existing structures are explained in order to better understand the HBIM process. The software used in the BIM process and the concepts encountered are detailed. In addition, the HBIM process was defined and the concepts encountered in this process were mentioned. In the third part of the thesis, the systematic literature review (SLR) method used in the thesis and the stages of this method are explained. After the explanation of the method, the SLT method applied for HBIM was gradually detailed. In the fourth part of the thesis, the HBIM process and stages are explained by taking the primary studies obtained as a result of SLR as a reference. This title also explains the tools and software to be used throughout the process, the usage areas of the end product, and the usage patterns. In the last part of the thesis, the results of the study and evaluation are discussed. As a result, it has been reached in the thesis that the HBIM process has made many contributions to the conservation and restoration areas in terms of time, cost, and quality. The widespread use of the HBIM process provides many different benefits to those working in this field such as architects, engineers, archaeologists, historians, venue management providers, and users. In addition to the implementers and users, HBIM is important in terms of prolonging the life cycle of the building and spending this period efficiently. In addition, with this process, awareness of the protection of cultural heritage structures will be increased.
Açıklama
Tez (Yüksek Lisans)-- İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, 2021
Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2021
Anahtar kelimeler
Yapı bilgi modellemesi,Tarihi yapılar, Building information modeling, Historic buildings
Alıntı