Taşıtın Yanal Ve Doğrusal Kontrolü İçin Sürücünün Modellenmesi

dc.contributor.advisorErtuğrul, Şeniz
dc.contributor.authorDelice, İ. İlker
dc.contributor.departmentSistem Dinamiği ve Kontrol
dc.contributor.departmentSystem Dynamics and Control
dc.date2005
dc.date.accessioned2015-06-09T12:12:39Z
dc.date.available2015-06-09T12:12:39Z
dc.descriptionTez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005
dc.descriptionThesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005
dc.description.abstractBu tez çalışmasının amacı, doğrusal ve yanal kontrolü bir arada gerçekleştiren bir sürücü modeli çıkarmaktır. Sürücünün taşıtla etkileşiminin karmaşıklığından, insan operatörlerin iç rasgeleliğinden ve yanlılığından ötürü modelleme zorlaşmakta ve bu durum, çalışmayı, verilerin içindeki bilginin kullanılmasına dayalı sistem tanılama yöntemlerine götürmektedir. Çalışmalara ilk olarak doğrusal parametrik model olan ARX (Auto Regressive with eXogenous input) ile başlanmış ve daha iyi performans vereceği düşünülerek doğrusal olmayan modeller (YSA Yapay Sinir Ağları) de denenmiştir. Uygun giriş-çıkış bileşenleri ve uygun ağ mimarisi seçilerek yapılan denemelerde YSA modelde gaz pedalı için %82.5, fren için %83.5, vites için %81.7 ve direksiyon açısı için %93.3 başarım elde edilmiştir.
dc.description.abstractMain objective of this study is obtaining a human driver model containing both lateral and longitudinal control of a vehicle. Human driver-vehicle interactions, human operators’ randomness and bias make the modeling difficult and system identification approach seems to be the only choice for modeling. Firstly, human driver was modeled using a linear parametric model structure, namely ARX (Auto Regressive with eXogenous input), then nonlinear model structures based on Neural Networks are also applied. Neural Network model outputs match the real data much more satisfactorily. For the best results, fitting percentages for accelerator pedal, brake, gear, steering wheel angle are 82.5%, 83.5%, 81.7%, 93.3% respectively.
dc.description.degreeYüksek Lisans
dc.description.degreeM.Sc.
dc.identifier.urihttp://hdl.handle.net/11527/4480
dc.publisherFen Bilimleri Enstitüsü
dc.publisherInstitute of Science and Technology
dc.rightsİTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır.
dc.rightsİTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectTaşıt Sürücüsünün Modellenmesi
dc.subjectLineer Parametrik Modelleme
dc.subjectYapay Sinir Ağları
dc.subjectSistem Tanılama
dc.subjectHuman Driver Modeling
dc.subjectLinear Parametric Modeling
dc.subjectArtificial Neural Networks
dc.subjectSystem Identification
dc.titleTaşıtın Yanal Ve Doğrusal Kontrolü İçin Sürücünün Modellenmesi
dc.title.alternativeHuman Driver Modeling For Lateral And Longitudinal Control Of A Vehicle
dc.typeMaster Thesis

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
3276.pdf
Boyut:
922.53 KB
Format:
Adobe Portable Document Format

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama