Taşıtın Yanal Ve Doğrusal Kontrolü İçin Sürücünün Modellenmesi

thumbnail.default.alt
Tarih
Yazarlar
Delice, İ. İlker
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Özet
Bu tez çalışmasının amacı, doğrusal ve yanal kontrolü bir arada gerçekleştiren bir sürücü modeli çıkarmaktır. Sürücünün taşıtla etkileşiminin karmaşıklığından, insan operatörlerin iç rasgeleliğinden ve yanlılığından ötürü modelleme zorlaşmakta ve bu durum, çalışmayı, verilerin içindeki bilginin kullanılmasına dayalı sistem tanılama yöntemlerine götürmektedir. Çalışmalara ilk olarak doğrusal parametrik model olan ARX (Auto Regressive with eXogenous input) ile başlanmış ve daha iyi performans vereceği düşünülerek doğrusal olmayan modeller (YSA Yapay Sinir Ağları) de denenmiştir. Uygun giriş-çıkış bileşenleri ve uygun ağ mimarisi seçilerek yapılan denemelerde YSA modelde gaz pedalı için %82.5, fren için %83.5, vites için %81.7 ve direksiyon açısı için %93.3 başarım elde edilmiştir.
Main objective of this study is obtaining a human driver model containing both lateral and longitudinal control of a vehicle. Human driver-vehicle interactions, human operators’ randomness and bias make the modeling difficult and system identification approach seems to be the only choice for modeling. Firstly, human driver was modeled using a linear parametric model structure, namely ARX (Auto Regressive with eXogenous input), then nonlinear model structures based on Neural Networks are also applied. Neural Network model outputs match the real data much more satisfactorily. For the best results, fitting percentages for accelerator pedal, brake, gear, steering wheel angle are 82.5%, 83.5%, 81.7%, 93.3% respectively.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005
Anahtar kelimeler
Taşıt Sürücüsünün Modellenmesi, Lineer Parametrik Modelleme, Yapay Sinir Ağları, Sistem Tanılama, Human Driver Modeling, Linear Parametric Modeling, Artificial Neural Networks, System Identification
Alıntı