2-step indoor localization for "smart AGVs"

dc.contributor.advisor Temeltaş, Hakan
dc.contributor.author Yılmaz, Abdurrahman
dc.contributor.authorID 504142101
dc.contributor.department Control and Automation Engineering
dc.date.accessioned 2023-12-26T06:20:54Z
dc.date.available 2023-12-26T06:20:54Z
dc.date.issued 2022-06-17
dc.description Thesis(Ph.D.) -- Istanbul Technical University, Graduate School, 2022
dc.description.abstract With the fourth industrial revolution, in other words, Industry 4.0 (I4.0), the transition from traditional mass production to personalized production started in factories. One of the components of the next-generation factories compatible with I4.0 is cyber-physical systems (CPSs). Smart manufacturing islands, smart warehouses, and smart material-handling vehicles are examples of CPSs. The material handling vehicles employed in today's factories, such as automated guided vehicles (AGVs), are not ready for use in smart factories, as the digital transformation has not been completed and the vehicles are not equipped with software to perform fully autonomous operations. In smart factories, it is aimed that the new generation AGVs will do all the planning themselves while performing a given task. Thus smart AGVs will be able to use the whole free space in the factory instead of being restricted to the routes reserved for them. With this development, it will be possible to increase flexibility and efficiency in production. There may be no physical difference between the traditional and smart AGVs, but thanks to the capabilities of the embedded software, smart AGVs will be able to operate autonomously. One challenging problem to be overcome for smart AGVs to effectively realize an assigned logistic task is localization. Although localization is an extensively studied topic for both indoor and outdoor environments, there are still open problems. Considering the logistics problem, the localization problem can be divided into three in the general sense. The first is global localization, which means determining where the smart AGV is in the environment at the time the vehicle wakes up. The second problem is position tracking, which means updating the pose information depending on the movements of the robot, while the instantaneous pose of the robot is known. The third and last problem is the kidnapped robot problem, which occurs when the robot is moved from one place to another without informing. Cases that reduce the reliability of the calculated pose, such as instantaneous skidding, slipping, and crashing an object, can also be addressed under this problem. The localization approach to be utilized in smart factories is supposed to overcome these three sub-problems. There are two main tasks in a logistic operation. The first is the docking stage, which covers the cases of taking a load to the smart AGV or dropping the load of the smart AGV. At this stage, the aim is to reach the target (destination) where the load will be taken or left with industrial standards. With I4.0, reaching the target with sub-centimeter precision has become a goal. Therefore, estimating the pose with high accuracy and precision is expected from the docking localization algorithm. The second is the delivery stage, which covers carrying the load to the destination in the fastest and safest way in the parts outside the docking region. It is not essential to follow the planned route exactly in this stage, so rather than the high accuracy of the localization approach, showing similar positioning performance in the entire operating field is more important. Within the scope of this thesis, different localization algorithms have been proposed for the delivery and docking stages. In addition, a probabilistic decision mechanism that determines the boundary between the delivery and docking stages is designed. A variant of the particle filter-based Monte Carlo Localization (MCL) approach, Self-Adaptive MCL (SA-MCL), is taken as the basis localization method for the delivery stage. The main reason for choosing SA-MCL is that it can solve all aforementioned sub-problems of localization. While performing the traditional SA-MCL global localization task, it uses energy maps and assumes that all range sensors are uniformly placed on the robot in energy map generation. However, this assumption is not valid for many real applications, such as AGVs with two-dimensional (2D) laser scanners front and rear. Moreover, three-dimensional (3D) sensing technology is developing day by day with the widespread use of autonomous vehicle technology. With the ellipse-based energy model proposed in this thesis, the energy map-generating part of the traditional SA-MCL has been updated to overcome both of these constraints. The pose estimation accuracy of the SA-MCL approach performs more or less the same across the entire environment, making it suitable for the delivery stage. However, since the pose estimation accuracy level is proportional to the grid dimensions of the occupancy map, it may not be possible to reach the expected sub-centimeter precision within the docking region in large areas such as factories. Therefore, it was decided to use a scan matching-based precise localization algorithm in the docking region, and for this purpose, the affine iterative closest point (ICP) algorithm was adapted to the localization problem. To make the developed method robust against factors such as noises, disturbances, and/or outliers, the correntropy criterion was utilized while constructing the cost function of affine ICP. As a result, an updated SA-MCL method with an ellipse-based energy model is proposed for the solution of global localization, position tracking, and kidnapped robot problems in the delivery stage. On the other hand, an affine ICP-based precise localization approach is presented for position tracking in the docking stage. However, the boundary between the delivery stage and the docking stage may not be clear. For example, limiting the docking stage to a zone very close to the target may require extra maneuvers to tolerate positioning errors during the delivery stage due to the physical constraints of smart AGVs. If a larger area is specified as a docking stage, it may not meet the expectations since the performance of the precise localization approach may decrease further away from the target. For this reason, there is a need for a switching mechanism that can be adapted specifically to the application and decides whether to switch from the delivery stage to the docking stage. Since the pose estimation performance of the SA-MCL-based localization approach is roughly similar on the entire map, the deciding factor in the transition to the docking stage is the performance of the precise localization method used in the docking stage. In the literature, it is emphasized that the amount of overlap between matched point sets is supposed to be above 50% for the scan-matching-based methods to yield successful results. Within the scope of the thesis, a correntropy-based similarity rate definition, which gives better results than the overlap ratio calculation methods in the literature, is presented and utilized as the decision parameter of the switching approach. To avoid instabilities, a gap is left according to Hysteresis curve behavior while switching from the delivery stage to the docking stage or vice versa. Within the scope of the thesis, the two-stage localization method developed for the next-generation AGVs to be used in smart factories has been experimentally tested on a differential drive mobile robot. First, the ellipse-based energy model addition to the SA-MCL method has been verified by field tests, and its superiority in global localization has been demonstrated. Then, the affine ICP-based localization method used in the docking stage has been tested over nine separate real-world scenarios and it has been shown that it is possible to compute pose with sub-centimeter precision and reach the target at industrial standards. In addition, an affine ICP method, which is not available in the literature, was proposed, and the point set matching performance was demonstrated over synthetic point sets. After validating its performance in point set registration, it was also used for precise localization. Finally, the whole system was tested together. The delivery was carried out with improved SA-MCL, and the switching point from delivery to the docking stage was determined by the decision mechanism. As seen through three different scenarios, it is possible to complete the localization tasks in the delivery and docking stages in the smart factories by using the proposed methods.
dc.description.degree Ph. D.
dc.identifier.uri http://hdl.handle.net/11527/24261
dc.language.iso en_US
dc.publisher Graduate School
dc.sdg.type Goal 9: Industry, Innovation and Infrastructure
dc.subject mobile robots
dc.subject hareketli robotlar
dc.subject robot navigation
dc.subject robot yönlendirme
dc.title 2-step indoor localization for "smart AGVs"
dc.title.alternative "Akıllı AGV'ler" için iki aşamalı iç mekan konumlama yaklaşımı
dc.type doctoralThesis
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
504142101.pdf
Boyut:
39.54 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
1.58 KB
Format:
Item-specific license agreed upon to submission
Açıklama