Bir robotik manipülatörün durum geri beslemeli yaklaşımı ile pol atamalı kendi kendini ayarlayan kontrolü
Bir robotik manipülatörün durum geri beslemeli yaklaşımı ile pol atamalı kendi kendini ayarlayan kontrolü
Dosyalar
Tarih
1995
Yazarlar
Gökçe, Murat
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Özet
Bu çalışmada bir robotik manipülatörün kendi kendini ayarlayan konum kontrolü için bir algoritma geliştirildi. Bunun için öncelikle manipülatör dinamiği Lagrange -Euler formülasyonu temel almarak modellendi. Bu modelleme Denavit - Hartenberg tarafindan öngörülen bir metodla çok eklemli yapılarm kinematik anlamda modellenmesi üzerine kuruldu. Manipülatör sisteminin dinamiği gerek hesaplama avantajı sağlaması açısından, gerekse daha sistematik ve uygulanacak kontrol stratejisine uygun bir tarz olan durum uzay modeli şekline dönüştürüldü. Sistemin dinamik simülasyonu bu model üzerinden gerçekleştirildi. Ardından modellenmiş sistem için durum uzay yaklaşımı ile kendi kendini ayarlayan kontrolör (STR) elde edildi.Kontrolörün bir unsuru olan parametre kestirim yöntemlerinin ARMA türünde modeller için geliştirilmiş olması dolayısı ile durum uzay modeli ARMA modeline dönüştürüldü. Sistem parametre kestirimi bu model üzerinden gerçekleştirildi. Kontrolör kurak olarak ise durum geri beslemeli pol ataması tekniği kullanıldı.Bu amaçla model kontrol edilebilir kanonik forma dönüştürülerek kontrolör elde edildi. Kapalı çevrim pollerinin istenen sjstem performansını sağlayacak şekilde atanması yohı ile gerçekleştirilen bu kontrol stratejisinin, z;=0 olacak şekilde hızlı izleme gerektiren sistemler için uygun olan Dead - Beat (DB) hah için kontrol kuralı elde edildi. Robot sisteminin hızlı takip etme gereksiniminden dolayı bu strateji manipülatör sistemine uygulandı. Kontrolörün performansını görmek için örnek olarak iki serbestlik dereceli scara tipi bir robot seçilerek yaklaşım bu robota uygulandı ve gerçekleştirilen simülasyon sonuçları verildi ve tartışıldı.
In this study, a state - space based approach for pole placement self - tuning control (STR) is applied for control of a robotic manipulator. Control of a system means that, for the given dynamic equations of the system which describe the dynamic behavior of the system, to maintain the dynamic response of the system in accordance with some prespecified performance criteria. 1. Modelling Of The Manipulator For dynamic modeling of the manipulator well known Lagrange - Eider formulation is used. This technique based on the systematic representation of manipulator kinematics in a matrix form which is introduced by Denavit - Hartenberg (D-H) (1955). A robotic manipulator is defined as a mechanical construction contain rigid parts called links which are connected with each other by joints. In D -H representation, all links of the manipulator have their own coordinate frame and these frames are transformed to the neighbor frames in homogeneous transformation sense. Here, transformation of the neighbor frames is, i-l ?At = and whole transformation matrix of the manipulator with n degree of freedom is i = L2, General L -E formulation is as follows ?"> ? n dt dL Hi j dL = Tj i = U,-,n Vlll Here, L = Lagrangien Function = K-P K = Total kinetic Energy of the Manipulator P = Total Potential Energy of The Manipulator q;= Generalized Coordinates of The Manipulator q;= First Derivative of The Generalized Coordinates t j= Generalized Moment (or force) is needed for actuating the i. link at i. joint The generalized coordinates in manipulator dynamics are chosed as joint positions. Because this parameters can easily be measured. For modeling of the manipulator on the L -E formulation we need kinetic and potential energy of the system.Using D -H based kinematic modeling of the manipulator, velocities of the links are as follows : Uij = 0 J>i) (i Vi = TjUij qj r And kinetic energy of whole manipulator with n degree of freedom is: K = ±Ki = y2tT\±±VipJiUjqpq \ i=l \p=l r=l n i i = y2llZIt(Tr(UipJiUirT)qpqr),=1 p=l r=l Next the second term of the lagrangian function potential energy of the manipulator for n degree of freedom again : i-l »=1 Using kinetic and potential energy of the manipulator and applying L -E formulation, dynamic model of a manipulator in general matrix form is : x{t) = D(q(t)yq(t) + h(q(t),q(t))+c(q(t)) The dynamic model of the manipulator system is very complex and creates computational difficulties. For more computational advantage, manipulator model transformed into state-space form.In the same time, this form of the dynamic model will be the base for dynamic simulation and control of the manipulator system. For n degree of freedom manipulator state-space model is : IX W-Af and M = Xn-H Xn+2 X2n Mn(r, -*k -cJ+^Ur, -K -c2)+ ?(jrOjr. - A. -c.) M»^ -A, -cj+MJr, -*,-<:>. -K^U^-A.-c.) 2. Control OfThe Manipulator For control of the manipulator chosen control law STR includes two substantial steps.One is parameter identification and the other is control law construction based on a specific control law. In general SISO system described by the state - space equations is, x{k + 1) = Ax(k) + Bu(k) + w(k) y(k) = CTx(k) + v(k) For controller design the model type is transformed into the innovation representation as follows : tfk)=Ax(k- l)+flu(k- l)+tf(k)e
In this study, a state - space based approach for pole placement self - tuning control (STR) is applied for control of a robotic manipulator. Control of a system means that, for the given dynamic equations of the system which describe the dynamic behavior of the system, to maintain the dynamic response of the system in accordance with some prespecified performance criteria. 1. Modelling Of The Manipulator For dynamic modeling of the manipulator well known Lagrange - Eider formulation is used. This technique based on the systematic representation of manipulator kinematics in a matrix form which is introduced by Denavit - Hartenberg (D-H) (1955). A robotic manipulator is defined as a mechanical construction contain rigid parts called links which are connected with each other by joints. In D -H representation, all links of the manipulator have their own coordinate frame and these frames are transformed to the neighbor frames in homogeneous transformation sense. Here, transformation of the neighbor frames is, i-l ?At = and whole transformation matrix of the manipulator with n degree of freedom is i = L2, General L -E formulation is as follows ?"> ? n dt dL Hi j dL = Tj i = U,-,n Vlll Here, L = Lagrangien Function = K-P K = Total kinetic Energy of the Manipulator P = Total Potential Energy of The Manipulator q;= Generalized Coordinates of The Manipulator q;= First Derivative of The Generalized Coordinates t j= Generalized Moment (or force) is needed for actuating the i. link at i. joint The generalized coordinates in manipulator dynamics are chosed as joint positions. Because this parameters can easily be measured. For modeling of the manipulator on the L -E formulation we need kinetic and potential energy of the system.Using D -H based kinematic modeling of the manipulator, velocities of the links are as follows : Uij = 0 J>i) (i Vi = TjUij qj r And kinetic energy of whole manipulator with n degree of freedom is: K = ±Ki = y2tT\±±VipJiUjqpq \ i=l \p=l r=l n i i = y2llZIt(Tr(UipJiUirT)qpqr),=1 p=l r=l Next the second term of the lagrangian function potential energy of the manipulator for n degree of freedom again : i-l »=1 Using kinetic and potential energy of the manipulator and applying L -E formulation, dynamic model of a manipulator in general matrix form is : x{t) = D(q(t)yq(t) + h(q(t),q(t))+c(q(t)) The dynamic model of the manipulator system is very complex and creates computational difficulties. For more computational advantage, manipulator model transformed into state-space form.In the same time, this form of the dynamic model will be the base for dynamic simulation and control of the manipulator system. For n degree of freedom manipulator state-space model is : IX W-Af and M = Xn-H Xn+2 X2n Mn(r, -*k -cJ+^Ur, -K -c2)+ ?(jrOjr. - A. -c.) M»^ -A, -cj+MJr, -*,-<:>. -K^U^-A.-c.) 2. Control OfThe Manipulator For control of the manipulator chosen control law STR includes two substantial steps.One is parameter identification and the other is control law construction based on a specific control law. In general SISO system described by the state - space equations is, x{k + 1) = Ax(k) + Bu(k) + w(k) y(k) = CTx(k) + v(k) For controller design the model type is transformed into the innovation representation as follows : tfk)=Ax(k- l)+flu(k- l)+tf(k)e
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1995
Anahtar kelimeler
geri beslemeli kontrol,
robot manipülatörleri,
feedback control,
robot manipulators