Hareketli Sıvı Kolonunda Kaynamanın İncelenmesi
Hareketli Sıvı Kolonunda Kaynamanın İncelenmesi
Dosyalar
Tarih
Yazarlar
Sayar, Ersin
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Bu çalışmada, sürekli olduğu varsayılan düşey halkasal sıvı kolonunda, sinüzoidal zorlanmış laminer salınımlı bir akışta, kabarcıklı kaynama rejiminde ısı geçişi deneysel ve teorik olarak incelenmiştir. Yapılan deneysel ölçmeler ve değerlendirmeler sonucunda, sabit ısı akısına sahip bir yüzeyden, salınımlı akışta ısı geçişine etki eden parametrelerin frekans, genlik ve yüzey sıcaklığı olduğu görülmüştür. Deneylerden elde edilen değerler için bir hesap tarzı geliştirilmiş ve Nusselt sayıları bulunmuştur. Bulunan Nusselt sayıları için boyutsuz sayılara bağlı olarak bir korelasyon bağıntısı verilmiştir. Bu bağıntı literatürde bulunan tek fazlı çalışmalarla karşılaştırılmıştır. Böylelikle kaynamanın ısı transferine etkisi tespit edilmiştir. Deney tesisatı ve salınımlı akışa uygun olarak kurulan matematiksel model iki farklı yaklaşımla ele alınmıştır. İlk olarak diferansiyel yaklaşımla genel olarak ele alınan kütle, momentum ve enerji denklemleri salınımlı akış şartlarına göre sadeleştirilerek geçerli denklemler bulunmuştur. Hız profili için halkasal kesitte sınır şartları yazılarak momentum denklemi analitik olarak çözülmüştür. İkinci olarak kontrol hacmi yöntemiyle integral formda süreklilik, momentum ve enerji denklemi yazılarak hareketli sınıra sahip kontrol hacminde ısıl enerji dengesi yazılmıştır. Tek fazlı bölgede, ısı geçişinde etkili olan mekanizmanın akışın merkezini takip edemeyen hidrodinamik sınır tabakadan kaynaklandığı, bu durumun ısı geçişini artırdığı doğrulanmıştır. Salınımlı akışta kısmi soğutulmuş kaynamanın ve tam gelişmiş soğutulmuş kaynamanın etkin olduğu rejimde ısı geçişi tek fazlı durum ile kıyaslanmış, kabarcıkların ısı geçiş katsayısında keskin bir artış sağladıkları doğrulanmıştır.
In this study; in quasi-steady state conditions, heat transfer in a laminar oscillating vertical annular liquid column flowing in the bubbly flow regime investigated experimentally and theoretically. Experimental study proved that the frequency , displacement amplitude and wall temperature were important parameters affecting heat transfer from a uniform heat flux surface to reciprocating flow. For the experimental investigation a new approach was considered in the calculation of Nusselt number. A correlation equation was obtained for the Nusselt number depending on dimensionless numbers. The increment of heat transfer coefficient for the studied working regime was obtained comparing correlation with ones for single phase flows. Experimental setup and mathematical model related to reciprocating flow were examined with two different approximations. First of all, mass, momentum and energy equations examined generally by using differential approximation. Then equations were simplified according to reciprocating flow and governing equations were obtained. In order to obtain velocity profile, using the appropriate boundary conditions in an annular cross-section, momentum equations were solved analytically. Secondly, using the control volume approach mass, momentum and energy equations were written in integral form, then energy balance on the moving control volume were written. For the single phase region of flow, it is understood that, the effective heat transfer mechanism is due to the hydrodynamic boundary layer which can not follow the core flow. Because of this condition, it is found that the heat flow has been increasing. In reciprocating flow, the heat transfer coefficient which is strongly affected by single phase flow and nucleate-bubbly flow boiling conditions was studied. According to the experimental results, bubbles induce highly efficient heat transfer mechanisms.
In this study; in quasi-steady state conditions, heat transfer in a laminar oscillating vertical annular liquid column flowing in the bubbly flow regime investigated experimentally and theoretically. Experimental study proved that the frequency , displacement amplitude and wall temperature were important parameters affecting heat transfer from a uniform heat flux surface to reciprocating flow. For the experimental investigation a new approach was considered in the calculation of Nusselt number. A correlation equation was obtained for the Nusselt number depending on dimensionless numbers. The increment of heat transfer coefficient for the studied working regime was obtained comparing correlation with ones for single phase flows. Experimental setup and mathematical model related to reciprocating flow were examined with two different approximations. First of all, mass, momentum and energy equations examined generally by using differential approximation. Then equations were simplified according to reciprocating flow and governing equations were obtained. In order to obtain velocity profile, using the appropriate boundary conditions in an annular cross-section, momentum equations were solved analytically. Secondly, using the control volume approach mass, momentum and energy equations were written in integral form, then energy balance on the moving control volume were written. For the single phase region of flow, it is understood that, the effective heat transfer mechanism is due to the hydrodynamic boundary layer which can not follow the core flow. Because of this condition, it is found that the heat flow has been increasing. In reciprocating flow, the heat transfer coefficient which is strongly affected by single phase flow and nucleate-bubbly flow boiling conditions was studied. According to the experimental results, bubbles induce highly efficient heat transfer mechanisms.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008
Anahtar kelimeler
Salınımlı Akış,
Kabarcıklı Kaynama,
Arayüzey,
Akış Kaynaması,
Kaynama,
Habbecikli kaynama,
Reciprocating Flow,
Bubbly Flow,
Liquid-Vapour Interface,
Flow Boiling,
Oscillatory Flow,
Boiling,
Nucleate Boiling