Organik-inorganik Hibrit Malzemelerin Sentezi Ve Karakterizasyonu
Organik-inorganik Hibrit Malzemelerin Sentezi Ve Karakterizasyonu
Dosyalar
Tarih
2016-11-18
Yazarlar
Karahasanoğlu, Müfide Duriye
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Mekanik dayanıklılık ve termal kararlılık özellikleri ile organik polimer matrislerinin işlenebilirlik ve esneklik özelliklerini birleştiren organik-inorganik hibrit malzemeler çok fonksiyonlu karakterler gösterirler. İstenilen özelliklere sahip hibrit malzemeler oluşum süreçlerine göre kalıp, toz, nanokompozit, kaplama, cam, elyaf, köpük ve benzeri pek çok şekilde elde edilebilirler ve metal oksit, alaşım, seramik, kil, kauçuk, reçine, elastomer ve doğal malzemeler gibi geniş çapta hibrit bileşenlerden oluşurlar. Farklı inorganik ve organik bileşenlerin uygun işleme yöntemleri kullanılarak birleştirilmesi ile elektrik, optik, biomedikal, yapı ile ilgili ve daha pek çok uygulama alanlarında yeni özelliklere sahip hibrit malzemeler geliştirilebilir. Prensip olarak hibrit malzemelerin oluşumu için kullanılan iki farklı yaklaşım vardır. İlkinde özellikleri iyi belirlenerek önceden oluşturulmuş yapılar birbirleriyle reaksiyona girerek istenilen hibrit malzemeyi oluşturur. Burada her iki yapının önceki orijinal özellikleri bir miktar korunmaktadır. İkinci yaklaşımda ise hibriti oluşturan yapılardan biri ya da her ikisi birden ilk hallerinden başlayarak kullanılır ve insitü olarak özgün yapılara (ağ yapısı) dönüştürülür. Temel olarak iki tür hibrit malzeme vardır. Birincisi, hibrit malzemeyi oluşturan iki bileşenin birbirine van der Waals kuvvetleri, hidrojen bağı ya da zayıf elektrostatik etkileşimler gibi zayıf etkileşimlerle bağlandığı, kovalent bağlar gibi kuvvetli etkileşimlerin olmadığı malzemelerdir. İkinci tip ise hibrit malzemeyi oluşturan bileşenlerin kovalent bağ gibi güçlü etkileşimlerle birbirine bağlandığı malzemelerdir. Bu tez çalışması, inorganik bileşen olarak silika (silikon dioksit) nanopartikülleri ve silikon dioksit ağ örgüsü ile organik polimerik yapıların birleşimiyle oluşan hibrit malzemeler ve bu malzemelerin karakterizasyonuna dayanmaktadır. İnorganik silikon dioksit ile organik yapının etkileşimi kovalent bağ ile oluşan güçlü bir etkileşimdir. Silikalar düşük toksisiteye sahip olmaları, farklı boyut ve morfolojilere sahip olacak şekilde kolaylıkla sentezlenebilmeleri, yüksek kararlılıkları ve fonksiyonlandırılabilir yüzeyleri sayesinde oldukça ilgi çekmektedirler. Geniş yüzey alanı yaratabilen silika nanopartiküller, hibrit materyallerin farklı farklı özelliklere sahip olmasını sağlayan ilgi çekici örnekler olarak görülmüştür. Polimer matrisleri içinde gösterdikleri etki, homojen dağılıp dağılmadıklarına ve hibriti oluşturan iki bileşen arasında güçlü yüzey etkileşimleri sağlayıp sağlayamamalarına bağlıdır. Nanopartiküllerin polimer matrisi içinde zayıf dağılımlarını üstesinden gelebilmek için ortak stratejiler geliştirilmiş ve ayrıca nanopartikül ve matris arasındaki yüzey etkileşimini artırmak için çeşitli organik çözücüler kullanılmıştır. Silika partiküllerinin yüzey modifikasyonunu sağlamak için kullanılan en genel yaklaşım, silika nanopartiküllerin fonksiyonel grup içeren birleştirici silan bileşikleriyle kenetlenme reaksiyonlarıdır. Kenetlenme reaksiyonlarının ilk aşaması, silan kenetlenme bileşiklerinin hidrolizi sonucu silanol (mono, di ve trisilanol) oluşumudur ve hidroliz aşamasında bu silanol grupları arasında gerçekleşen kondenzasyon sonucu dimer, oligomer veya siloksan (Si-O-Si) ağı oluşur. Silanol grupları arasında gerçekleşen kondenzasyon reaksiyonları, silan bileşiklerindeki serbest silanollerin sayısını azaltır ve bu nedenle fonksiyonel grup içeren silan yapıların içeren silika nanopartikülleri ile silanol gruplarının kondenzasyon hızı düşer. Silika nanopartiküllerinin yüzeyinde siloksan ağının oluşması silan bileşiklerindeki fonksiyonel grupların çeşitli şekillerde azalmasına neden olur. Kenetlenme reaksiyonlarının ikinci aşamasında ise, kenetlenme bileşiklerinin serbest silanol grupları, silika nanopartiküllerinin silanol grupları ile kondense olur. Kenetlenme bileşiklerinin serbest silanol grupları ile silika nanopartiküllerin silanol grupları arasında gerçekleşebilecek olan farklı tip kondenzasyon reaksiyonları silika partiküllerinin yüzeyindeki fonksiyonel grupların azalmasına neden olabilir. Silan kenetlenme bileşiklerinin reaksiyonlarına göre daha etkin görünen silika nanopartiküllerin kenetlenme reaksiyonları pek çok dezavantaj yüzünden zorlayıcı olabilmektedir. Silika partiküllerin yüzeylerinin toluendiizosiyanat (TDI) gibi reaktif organik yapılarla doğrudan fonksiyonlandırılması, silan kenetlenme reaksiyonları ve silika yüzeyindeki fonksiyonel grup sayısının sınırlandırılması gibi problemleri çözmek için avantaj sağlayabilir. Oldukça reaktif iki izosiyanat grubu taşıyan toluendiizosiyanat, silika taneciklerindeki hidroksil gruplarıyla reaksiyona girerek oldukça etkin bir organik yapı olarak davranmaktadır. Böylelikle silika yüzeyinin fonksiyonlandırılması ve sonrasında izosiyanat gruplarıyla gerçekleştirilebilecek sonraki aşama reaksiyonları mümkün olmaktadır. Silika nanopartiküllerin yüzeyinde bulunan ve fonksiyonel uç grup içeren polimerlerin uç grup üzerinden yeniden fonksiyonlandırılması en çok uygulanan yöntemlerdendir. Monomer ya da başlatıcı ile fonksiyonlandırılmış silika nanopartikül yüzeylerinde polimerleşme reaksiyonlarının gerçekleştirilmesi uygulanan bir diğer yöntemdir. Serbest radikallerin olması durumunda polimerleşme, organik monomerler tarafından fonksiyonlandırılan silika nanopartiküllerde hem nanopartiküllerin yüzey monomerleri hem de polimerizasyon ortamında bulunan serbest monomerler ile gerçekleşir ve bu durum yüksek oranda fonksiyonlandırılmadan kalan polimer oluşumuna neden olur. Bu nedenle, nanopartiküllerin yüzeyinde daha çok polimerin oluşabilmesi için başlatıcı ile fonksiyonlandırılmış nanopartiküllerin kullanımı düşünülebilir. Bu çalışmada ilk olarak, iyi karakterize edilmiş, homojen dağılımlı silika nanopartiküller Stöber yöntemi kullanılarak istenilen boyut aralığında Şekil 1’de gösterildiği gibi sentezlenmiştir. Sentezlenen silika nanopartiküllerin tanecik boyutu, spesifik yüzey alanı ve hidroksil sayısı gibi fiziksel ve kimyasal özellikleri incelenerek modifikasyon için gerekli yüzey özellikleri belirlenmiştir. Şekil 1 : Stöber yöntemi ile silika nanopartiküllerin sentezi. Taneciklerin tanımlanmasından sonra yüzey modifikasyonu, nanopartiküllerin organik fazda daha iyi dağılımının sağlanması ve sonrasında benzoin fotobaşlatıcının bağlanabilmesi için toluendiizosiyanata ait izosiyanat gruplarının reaksiyonları ile sağlanmıştır (Şekil 2). Şekil 2 : TDI ve benzoinin silika nanopartiküllerin yüzeyine bağlanması. Çalışmanın ikinci aşamasında, silika nanopartiküllerinin yüzeyinde önceden bağlanmış olan benzoin fotobaşlatıcı ile metil metaakrilat (MMA) fotopolimerizasyonu başarıyla gerçekleştirilmiştir. Dupont firması tarafından keşfedildiğinden beri fotobaşlatıcılı polimerizasyon endüstriyel üretimde önemli bir yere sahiptir. Fotokimyasal süreçlerin en önemli olumlu tarafı, reaktif sıvıları hızlı bir şekilde radikalik ya da katyonik olarak katıya dönüştürebilmeleridir. Önceden fotobaşlatıcı bağlanıp sonradan MMA fotopolimerizasyonunun gerçekleştirildiği bu yöntemde polimerizasyon, benzoin fonksiyonu bağlanmış silika makrobaşlatıcılar ile basitçe UV ışığı altında gerçekleştirilmiştir. TDI ile fonksiyonlandırılmış, homojen dağılımlı, küresel silika nanopartiküller (Si-TDI), önceden oluşturulmuş epoksi-akrilat reçinelerine de epoksi reçinelerin hidroksil grupları ve Si-TDI’ın serbest izosiyanat grupları arasında kovalent bağ kurarak üretan köprüleri üzerinden bağlanmışlardır. İyi tanımlanmış, kimyasal olarak bağlanmış silika nanopartiküller ile ağ yapısı oluşturan epoksi-akrilat reçineleri UV altında kürlenerek film oluşturmuşlardır. Sentezlenen hibrit epoksi-akrilat filmlerin ısısal, morfolojiik ve mekanik özellikleri incelenmiştir. Ayrıca silikon dioksit ağ yapısı ve polimer matrisin beraber oluşumu ile gerçekleştirilen sol-jel reaksiyonu da hibrit malzemelerin sentezi için uygulanmıştır. Bu amaçla, terefitalik asit klorür amino fenol ile reaksiyona sokularak aromatik amit fonksiyonu içeren dihidroksi ön yapıları oluşturulmuştur ve ön yapılar aminopropil trimetoksisilan ile modifiye edilerek Şekil 3’te gösterilen iyi tasarlanmış makromonomeri oluşturmuştur. Alkoksisilan ile reaksiyondan elde edilen bu makromonomer hibrit malzemelerin sentezi için kullanılmıştır. Aromatik amit-ürethan alkoksi silan yapılı monomerden soljel hazırlanmış ve epoksi akrilat reçine formülasyonlarına dahil edilmiştir, formülasyonların UV ışığı altında kürlenmeleriyle hibrit malzeme elde edilmiştir. Elde edilen hibrit epoksi akrilat malzemenin karekterizayonu yapılmış ve ısısal ve morfolojik özelllikleri incelenmiştir. Şekil 3 : Alkoksisilan modifiye makromonomer.
Organic–inorganic hybrids that combine the advantages of both kinds of materials, such as mechanical strength and thermal stability with the processability and flexibility of an organic polymer matrix, exhibit multifunctional characteristics. Hybrid materials with the desired properties can be obtained in many forms such as bulk, powder, nanocomposites, coatings, glasses, fibres, foams etc., depending on the forming process and a wide variety of components of hybrids such as metal oxides, alloys, ceramics, clay, rubber, resins, elastomers, natural materials. Through the combinations of different inorganic and organic components with appropriate processing methods hybrid materials can be developed with new properties for electrical, optical, biomedical, structural, or related applications. In principle two different approaches are used for the formation of hybrid materials: First approach, well-defined preformed building blocks are applied that react with each other to form the final hybrid material in which the precursors of blocks still at least partially keep their original integrity and second approach, one or both structural units are formed from the precursors that are transformed into a novel (network) structure as in-situ method. There are mainly two classes of hybrid materials; the one with weak interactions between the two components of hybrid materials, such as van der Waals, hydrogen bonding or weak electrostatic interactions and no strong interaction such as covalent bonds and the second having strong chemical interactions between the components of the hybrid materials such as covalently bonding. Silica has attracted much interest due to their low toxicity, ease of formation in a wide range of sizes and morphologies, high stability, and the surface that can be further functionalized. This thesis based on the study of incorporation of silica nanoparticles and silicon dioxide network domains, as the inorganic components, with organic polymeric structures leading the formation of hybrid materials and, the characterization of the such materials. The interactions between the inorganic silicon dioxide and organic components were based on the strong chemical interaction as covalent bonding. Silica nanoparticles leading to an extreme increase in interfacial area have been considered as a challenging reinforcement with a wide range of properties for hybrid materials. Their efficiency in polymeric matrices requires uniform dispersion and strong interfacial bonding between two component of the hybrids. Common strategies are being developed to improve the poor dispersion of nanoparticles in polymer matrices and also organic solvents for advanced interfacial bonding of nanoparticles and matrices. Coupling reactions of silica nanoparticles with silane coupling agents having functional groups is one of the most common approaches for the modification of the surface of the silica particles. As the first step of the coupling reaction, silane coupling agents hydrolyze to form silanols and during the hydrolysis step, condensation can also take place between silanols resulting in ormation of siloxane bridges (Si-O-Si). The condensation between the silanol groups of coupling agents decrease the number of free silanols of silane coupling agents that reduce the rate of possible condensation with the silanol groups of the silica particles. Hence, the formation of a siloxane network layer on the surface of the silica nanoparticles may also results in a variety of concentration of functional groups of silane coupling agents. In the second step of coupling reaction of silica particles, the possibility of different type of condensation reactions between free silanol groups of coupling agents and silanol groups of silica nanoparticles may also result in inadequate concentration of functional groups grafted on the surface of silica particles. Seemingly effective coupling reactions of silica nanoparticles over the silane coupling agents may become challenging due to the such disadvantages. Direct functionalization of the surface of silica particles with reactive organic moieties can overcome such problems of silane coupling reactions and the limitation of high concentration of functional groups on the surface of silica particle. 2,4-toluene diisocyanate (TDI) having two reactive isocyanate groups takes the place of being a very effective organic moiety for reacting with the hydroxyl groups of silica particles resulting in surface grafting and also for bringing the ability for further reactions on the surface of silica particles. Grafting of end-functional polymers on the surface of silica nanoparticle as “grafting to” method has been described as one of the main approaches and the “grafting from” method, where polymers are grown from either monomer functionalized or initiator functionalized surfaces of silica nanoparticles, has been described as another approach. By a free radical manner, in most of silica nanoparticles functionalized with the organic monomers, the polymerization proceeds both by surface monomers of nanoparticles and by the free monomers existing in polymerization medium resulting a high ratio of ungrafted polymer formation. For this reason, initiator grafted nanoparticles may be considered for the higher grafting ratios of polymers onto the nanoparticles surfaces. In this study, firstly, well defined, mono-dispersed silica nanoparticles within desired size range was synthesized according to Stöber method as depicted in Figure 1. Physical and chemical structure of the nanoparticles such as particle size, specific surface area and hydroxyl number characterized clarifying their surface properties for the modification of silica nanoparticles. Figure 1 : Synthesis of silica nanoparticles by Stöber method. After the definition of the silica nanoparticles, surface modification of the nanoparticles was achieved with the reaction over isocyanate groups of toluen di-isocyanate (TDI) in order to gain both improved dispersion in organic phase and further attachment possibility of benzoin photoinitiator moieties onto the surface of silica nanoparticles as represented in Figure 2. Figure 2 : Grafting of TDI and benzoin moeities onto the surface of silica nanoparticles In the second stage, photopolymerization of methyl methacrylate (MMA) was achived over the benzoin photo-initiator attached succesfully onto the surface of silica nanoparticles. Since it was discovered by Dupont, photoinitiated polymerization has become an important industrial process. The main positive attributes of photochemical processes are that they offer a rapid conversion of formulated reactive liquids to solids by radical or cationic means. The photopolymerization of MMA by grafting from method was simply performed under UV radiation in the presence of benzoin functionalized silica macroitiators. Well-defined, spherical silica nanoparticles grafted with TDI was also incorporated into preformed epoxy-acrylate resin over the covalent bonding between hydroxyl groups of epoxy resin and free isocyanate groups of Si-TDI by the formation of urethane linkage. Epoxy-acrylate resin forming networks with chemically incorporated silica naoparticles (EA-Si hybrid resin) was cured under UV treatment in the form of film. The effect of uniform, well-dispersed, covalently incorporated silica nanoparticles on the thermal, morphological and mechanical behavior of cured EA-Si hybrid film was also investigated. In this thesis, the design of alkoxysilane precursor of aromatic amide-urethane structure was also aimed for the formation of silicon dioxide network domains and polymeric matrix together as hybrid material. For this purpose, preformed terephthalic acid chloride was reacted with m-amino phenol yielding aromatic amid containing dihydroxy monomer, N1,N4-bis(3-hydroxyphenyl), and the reaction of the synthesized monomer with amino propyl trimethoxysilane (IPTES), formed alkoxysilane containing aromatic amide-urethane macromonomer, over the urethane linkage. Synthesized macromonomer (Figure 3) characterized by 1HNMR indicating the high purity, has the potential to form hybrid materials by owning the organic and inorganic precursor in the same macromonomer. Aromatic amide-urethane alkoxy silane based sol-gel was prepared and incorparated into epoxy acrylate resin formulations following UV curing process. The resulting epoxy acrylate hybrid material was determined and thermal and morphological properties of the hybrid material were characterized. Figure 3 : Alkoxysilane modified aromatic amide-urethane precursor.
Organic–inorganic hybrids that combine the advantages of both kinds of materials, such as mechanical strength and thermal stability with the processability and flexibility of an organic polymer matrix, exhibit multifunctional characteristics. Hybrid materials with the desired properties can be obtained in many forms such as bulk, powder, nanocomposites, coatings, glasses, fibres, foams etc., depending on the forming process and a wide variety of components of hybrids such as metal oxides, alloys, ceramics, clay, rubber, resins, elastomers, natural materials. Through the combinations of different inorganic and organic components with appropriate processing methods hybrid materials can be developed with new properties for electrical, optical, biomedical, structural, or related applications. In principle two different approaches are used for the formation of hybrid materials: First approach, well-defined preformed building blocks are applied that react with each other to form the final hybrid material in which the precursors of blocks still at least partially keep their original integrity and second approach, one or both structural units are formed from the precursors that are transformed into a novel (network) structure as in-situ method. There are mainly two classes of hybrid materials; the one with weak interactions between the two components of hybrid materials, such as van der Waals, hydrogen bonding or weak electrostatic interactions and no strong interaction such as covalent bonds and the second having strong chemical interactions between the components of the hybrid materials such as covalently bonding. Silica has attracted much interest due to their low toxicity, ease of formation in a wide range of sizes and morphologies, high stability, and the surface that can be further functionalized. This thesis based on the study of incorporation of silica nanoparticles and silicon dioxide network domains, as the inorganic components, with organic polymeric structures leading the formation of hybrid materials and, the characterization of the such materials. The interactions between the inorganic silicon dioxide and organic components were based on the strong chemical interaction as covalent bonding. Silica nanoparticles leading to an extreme increase in interfacial area have been considered as a challenging reinforcement with a wide range of properties for hybrid materials. Their efficiency in polymeric matrices requires uniform dispersion and strong interfacial bonding between two component of the hybrids. Common strategies are being developed to improve the poor dispersion of nanoparticles in polymer matrices and also organic solvents for advanced interfacial bonding of nanoparticles and matrices. Coupling reactions of silica nanoparticles with silane coupling agents having functional groups is one of the most common approaches for the modification of the surface of the silica particles. As the first step of the coupling reaction, silane coupling agents hydrolyze to form silanols and during the hydrolysis step, condensation can also take place between silanols resulting in ormation of siloxane bridges (Si-O-Si). The condensation between the silanol groups of coupling agents decrease the number of free silanols of silane coupling agents that reduce the rate of possible condensation with the silanol groups of the silica particles. Hence, the formation of a siloxane network layer on the surface of the silica nanoparticles may also results in a variety of concentration of functional groups of silane coupling agents. In the second step of coupling reaction of silica particles, the possibility of different type of condensation reactions between free silanol groups of coupling agents and silanol groups of silica nanoparticles may also result in inadequate concentration of functional groups grafted on the surface of silica particles. Seemingly effective coupling reactions of silica nanoparticles over the silane coupling agents may become challenging due to the such disadvantages. Direct functionalization of the surface of silica particles with reactive organic moieties can overcome such problems of silane coupling reactions and the limitation of high concentration of functional groups on the surface of silica particle. 2,4-toluene diisocyanate (TDI) having two reactive isocyanate groups takes the place of being a very effective organic moiety for reacting with the hydroxyl groups of silica particles resulting in surface grafting and also for bringing the ability for further reactions on the surface of silica particles. Grafting of end-functional polymers on the surface of silica nanoparticle as “grafting to” method has been described as one of the main approaches and the “grafting from” method, where polymers are grown from either monomer functionalized or initiator functionalized surfaces of silica nanoparticles, has been described as another approach. By a free radical manner, in most of silica nanoparticles functionalized with the organic monomers, the polymerization proceeds both by surface monomers of nanoparticles and by the free monomers existing in polymerization medium resulting a high ratio of ungrafted polymer formation. For this reason, initiator grafted nanoparticles may be considered for the higher grafting ratios of polymers onto the nanoparticles surfaces. In this study, firstly, well defined, mono-dispersed silica nanoparticles within desired size range was synthesized according to Stöber method as depicted in Figure 1. Physical and chemical structure of the nanoparticles such as particle size, specific surface area and hydroxyl number characterized clarifying their surface properties for the modification of silica nanoparticles. Figure 1 : Synthesis of silica nanoparticles by Stöber method. After the definition of the silica nanoparticles, surface modification of the nanoparticles was achieved with the reaction over isocyanate groups of toluen di-isocyanate (TDI) in order to gain both improved dispersion in organic phase and further attachment possibility of benzoin photoinitiator moieties onto the surface of silica nanoparticles as represented in Figure 2. Figure 2 : Grafting of TDI and benzoin moeities onto the surface of silica nanoparticles In the second stage, photopolymerization of methyl methacrylate (MMA) was achived over the benzoin photo-initiator attached succesfully onto the surface of silica nanoparticles. Since it was discovered by Dupont, photoinitiated polymerization has become an important industrial process. The main positive attributes of photochemical processes are that they offer a rapid conversion of formulated reactive liquids to solids by radical or cationic means. The photopolymerization of MMA by grafting from method was simply performed under UV radiation in the presence of benzoin functionalized silica macroitiators. Well-defined, spherical silica nanoparticles grafted with TDI was also incorporated into preformed epoxy-acrylate resin over the covalent bonding between hydroxyl groups of epoxy resin and free isocyanate groups of Si-TDI by the formation of urethane linkage. Epoxy-acrylate resin forming networks with chemically incorporated silica naoparticles (EA-Si hybrid resin) was cured under UV treatment in the form of film. The effect of uniform, well-dispersed, covalently incorporated silica nanoparticles on the thermal, morphological and mechanical behavior of cured EA-Si hybrid film was also investigated. In this thesis, the design of alkoxysilane precursor of aromatic amide-urethane structure was also aimed for the formation of silicon dioxide network domains and polymeric matrix together as hybrid material. For this purpose, preformed terephthalic acid chloride was reacted with m-amino phenol yielding aromatic amid containing dihydroxy monomer, N1,N4-bis(3-hydroxyphenyl), and the reaction of the synthesized monomer with amino propyl trimethoxysilane (IPTES), formed alkoxysilane containing aromatic amide-urethane macromonomer, over the urethane linkage. Synthesized macromonomer (Figure 3) characterized by 1HNMR indicating the high purity, has the potential to form hybrid materials by owning the organic and inorganic precursor in the same macromonomer. Aromatic amide-urethane alkoxy silane based sol-gel was prepared and incorparated into epoxy acrylate resin formulations following UV curing process. The resulting epoxy acrylate hybrid material was determined and thermal and morphological properties of the hybrid material were characterized. Figure 3 : Alkoxysilane modified aromatic amide-urethane precursor.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2015
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2015
Anahtar kelimeler
Hibrit Malzemeler Silika Organik-inorganik Sol-jel,
Hybrid Materials Silica Organic-inorganic Sol-gel