2,4,6-Tris[Amino-hekza(Hekziltiyo)ftalosiyanin]-s-triazin sentezi ve özelliklerinin incelenmesi
2,4,6-Tris[Amino-hekza(Hekziltiyo)ftalosiyanin]-s-triazin sentezi ve özelliklerinin incelenmesi
Dosyalar
Tarih
2000
Yazarlar
Ozan, Nazan
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Makrohalkalar taşıyan koordinasyon bileşikleri bu yüzyılın başından beri bilinmekte ve çalışılmaktadır. Hemoglobin, sitokrom ya da klorofil gibi makrohalkalan taşıyan ve doğada bulunan önemli bileşiklerle ilişkileri ya da pigment ve boyar madde özellikleri yüzünden porfirinlerin, korinlerin ve ftalosiyaninlerin kompleksleri üzerinde araştırmalar yapılmaktadır. Daha sonra ftalosiyaninler olarak adlandırılan bileşikler rastlantı sonucu bulunmuşlardır. 1907 yılında, Braun ve Tcherniac ftalimid ve asetik asitten o-siyanobenzamid ürettikleri sırada çözünür olmayan mavi bir madde gözlemlemişlerdir. 1927 yılında, de Diesbach ve von der Weid o-dibromobenzenle bakır siyanürü reaksiyona sokarak benzenin nitrillerini yapmaya çalıştıkları sırada mavi bir ürün elde etmişlerdir. 1928 yılında, ftalik anhidrit ve amonyaktan ftalimid üretildiği sırada reaksiyon ortamında mavi-yeşil bir safsızlık görülmüştür. Bu safsızlık, reaktörün cam astarında bulunan bir çatlaktan sızan ftalimidin reaktörün demir gövdesiyle reaksiyonu sonucu oluşmuştur. Bu bileşikler daha sonra sırasıyla metalsiz ftalosiyanin, bakır ftalosiyanin ve demir ftalosiyanin olarak belirlenmiştir. Linstead'in incelemeleri ve Robertson'm X-ışını çalışmaları sonucu ftalosiyaninlerin yapısı 1933-1940 yıllan arasında yayınlanmıştır. En son bulunuşlarından ve yapılarının aydınlatılmasından sonra ftalosiyanin bileşikleri bir araştırma ve pratik uygulama konusu olarak gerçek bir başarı kazanmıştır. Işığa, ısıya, asitlere ve bazlara karşı kararlı ve organik çözücülerle suda çözünmeme özellikleriyle ftalosiyanin mavi ve yeşilleri pigment olarak kullanılırlar. Baskı mürekkepleri, kaplamalar, boyalar ve plastiklerde de yaygın şekilde kullanıldıkları görülür. Kükürt atıklarının kontrolunda katalizörler, lazerler, yağlayıcılar, kanser terapisinde fotodinamik elemanlar, optik bilgi depolama sistemleri, fotoğraflama, fotokopi, yüksek enerji pilleri, yüksek iletkenlikte "moleküler metaller", kimyasal sensörler, elektrokromik gösterge cihazları ve sıvı kristal renkli ekran uygulamaları gibi birçok alanda da kullanımları vardır. Ftalosiyaninlerin zengin koordinasyon kimyası araştırmacıların yüksek teknoloji uygulamaları için gerekli belirli özelliklerde özel ürünler tasarlayıp sentezlemelerini sağlamaktadır. Bu sentezler için kullanılan iki değişken, merkezde bulunan metal iyonu ve periferal sübstitüyentlerdir. xı Çözelti hallerinde ilginç elektrik, optik, katalitik ve mezojenik özellikler taşıyan maddeler olmalarından dolayı çözünür ftalosiyaninlere oldukça yoğun ilgi duyulmaktadır. Bu özellikler periferal ve eksenel sübstitüsyona bağlıdır. Basit tek fonksiyonlu sübstitüyentlerden başlayarak taç eterler, tetraaza, diazatrioksa, diazadioksa, tetraaza-taç eter çift tabaka ve tetratiya makrohalkaları gibi karmaşık yapılar ftalosiyanin halkasının periferal konumlanna bağlanmıştır. Taç eterler, uzun alkil ve alkoksi grupları taşıyan ftalosiyaninler sıvı kristaller oluşturur. Alkil sübstitüsyonu ftalosiyaninlerin çözünürlüğünü arttırır. Simetrik sübstitüye ftalosiyaninlerin yanısıra, son yıllarda, asimetrik sübstitüye ftalosiyaninler oldukça ilgi çekmiştir. Bu bileşikler ilginç nonlineer optik özellikler gösterirler ve LB filmleri için önemlidirler. Bundan başka, çinko ve alüminyum türevlerinin fotodinamik kanser tedavisi uygulamalarında kullanılmaları oldukça uygundur. Bu yüzden, asimetrik sübstitüye ftalosiyaninlerin sentezi ve saflaştırılması kimyacılar için ilgi kaynağı olmayı sürdürmektedir. Polimer destek yolu, subftalosiyanin yolu ve istatistiksel kondensasyon yolu bu bileşikleri sentezleme yöntemleridir. Son sentez yolu, çok gelişmiş kromatografık yöntemler ve başlangıç maddelerinin senteze yönelik belirli yapısal önşartlan taşımasını gerektirir. Bu çalışmanın ilk bölümünde, yeni bir asimetrik sübstitüye ftalosiyanin hazırlanmasında subftalosiyanin yöntemi kullanılmıştır. Bu sentez için, hekzakis(hekziltiyo)-sübstitüye subftalosiyaninin bor kompleksi ve 5-(2-asetilaminoetiltiyo)-l,3-diiminoizoindolin başlangıç maddeleri olarak kullanılmış ve 80 °C'de yürütülen halka genişlemesi reaksiyonuyla yeni bir metalsiz asimetrik ftalosiyanin 1 elde edilmiştir (Şemal). Ürün silika jel üzerinde yapılan kolon kromatografisiyle ayrılmıştır. Verim (%14) bu sentez yöntemi için oldukça iyidir. Literatürde bulunan ve benzer bir sisteme uygulanmış olan yöntemle asetil grubunun kesilmesi başanlamamıştır. Bu çalışmanın ikinci bölümünde, asimetrik çinko(IT) ftalosiyanin 2 sentezi için iki farklı dinitril türevinin istatistiksel kondensasyonu uygulanmıştır (Şema 1). 4-(2-asetilaminoetiltiyo)ftalonitril ve 4, 5-bis(hekziltiyo)- 1,2-disiyanobenzen (ağırlıkça 1:9) çinko(II) asetat ile DMF içinde 170 °C'de kaynatılarak reaksiyona sokulmuştur. Ürün silika jel üzerinde kolon kromatografisi ile ayrılmıştır. %10 verime ulaşılmıştır. Asetil grubunun kesilmesi yine yapılamamıştır. Bu çalışmanın son bölümünde, 4-nitroftalonitril ve 4,5-bis(hekziltiyo)-l,2- disiyanobenzenin (ağırlıkça 1:4) DMF içinde 170 °C'de istatistiksel karışım kondensasyonuyla asimetrik olarak sübstitüye olmuş nitro grubu taşıyan yeni bir çinko(II) ftalosiyanin 3 hazırlanmıştır. Silika jel üzerinde kolon kromatografisiyle ayrılmış olan nitro bileşiği 3 sodyum sülfür kullanılarak 100 °C'de amin haline indirgenmiş ve amin türevinin hidroklorik tuzu 4 olarak elde edilmiştir. 4 bileşiği 70 °C'de siyanürik klorürle reaksiyona sokularak üç adet hekza(hekziltiyo)- sübstitüye ftalosiyanin makrohalkası taşıyan ilginç bir trimerik-s-triazin 5 sentezlenmiştir (Şema 2). Ürünün ayrılması silika jel üzerinde kolon kromatografisiyle yapılmıştır. %78 verime ulaşılmıştır. Elementel analizler; UV7VIS, İR ve NMR spektrumlan sentezlenmiş bileşiklerin önerilen yapılarını doğrulamıştır. xıı *\ AC.H,,) "1 S'-^N-C-CH, 1-KIoronaflalen, DMF 80 «C, 12 m ? ?.CM (CW CN (CHjCCW^.OTjO, DMF 170°C,12sa u S ^N-C-CH, «AJ! s«W 1 M = 2H 2 M = Zn Şema 1. Metalsiz ve ÇinkoOT-asetilaminoetiltiyo-PJOJöJT^S^-hekzaOıekziltiyo)- ftalosiyanin Sentezi. Elementel analizlerin sonuçlan 1, 2, 3, 4 ve 5 bileşiklerinin formüllerinden (C72H97N9OS7, C72H95N9OS7Z11, C68H87N9O2S6Z11, CggHşoNşClSeZn ve C2o7H264N3oSi8Zn3) hesaplanan değerlere oldukça yakın olup yapılara uygunluk göstermiştir. UV7VIS spektrumlannda metalsiz ftalosiyanin için çift, metalli ftalosiyanin için tek olan karakteristik Q-bantlan açıkça görülmüştür. KBr tabletiyle alınan İR spektrumlan fonksiyonel gruplara karşılık gelen titreşim piklerini göstermiştir. Reaksiyonların gerçekleştiği başlangıç maddelerinin fonksiyonel gruplarına ait titreşim piklerinin kaybolmasıyla görülmüştür. 1 bileşiğinin metalsiz yapısı ftalosiyanin makrohalkasının boşluğundaki -NH grupları pikinin 3311 cm^'de olmasıyla ortaya çıkmıştır. 1600 cm^'de aromatik -C=C piki, 3081 cm^'de aromatik -CH piki, 758 cm^'de sübstitüye benzen piki bileşiklerin hepsinin spektrumunda çıkmıştır. 2979, 2928, 2877 cm^'deki gerilme pikleri ve 1472, 1370 cm^'deki bükülme pikleri sübstitüyentlerdeki -CH ve -CH3 yapısını göstermiştir. 1 ve 2 bİleşiklerindeki -C=0 yapısı 1651 cm^'deki pikle xııı doğrulanmıştır. 4 bileşiğine ait spektrumdaki 1549 cm"1 'de çıkan pik -N02 fonksiyonel grubun varlığını belirlemektedir. NC>Y^^r»^'0a (CA^^^CN VO^^ * 3 (CflJS^sA (GftJa***^*CI!t (CI^COOJjZilZHîO, DMF 170°C,6sa (t^^Sv/SCC^,,) l.DMF.THF.NajS.M^O (q^^j ?NO, 100°e,88a ZHClfe) ^(ÇA.NH..HCI THF.KjCO, 70 «C, 24 s» T Şema 2. 2,4,6-Tris[amino-hekza(hekziltiyo)ftalosiyanin]-s-triazin Sentezi. ^-NMR spektrumlan da sentezlenmiş bileşiklerin önerilen yapılarıyla uygunluk göstermiştir.
The coordination compounds containing macrocycles have been known and studied since the beginning of this century. The complexes of porphyrins, corrins and phthalocyanines have been investigated because of their relation to important naturaly occuring species containing macrocycles such as heme, cytochromes or chlorophyll or because of their potential as dyestuffs or pigments. The compounds those were later called phthalocyanines were discovered by accident. In 1907, Braun and Tcherniac observed a blue insoluble substance during the preparation of o-cyanobenzamide from phthalimide and acetic acid. In 1927, de Diesbach and von der Weid obtained a blue product when they attempted to make nitriles of benzene by reacting o-dibromobenzene with cuprous cyanide. In 1928, a blue-green impurity was found in the reaction mass of phthalimide preparation from phthalic anhydride and ammonia. This impurity was a result of a reaction between phthalimide, that leaked through a crack of the glass lining, and the iron wall of the reactor. These compounds were later identified as metal-free phthalocyanine, copper phthalocyanine and iron phthalocyanine respectively. After the investigations of Linstead and X-ray studies of Robertson the structure of phthalocyanines were published between 1933 and 1940. Since their final discovery and elucidation of structure, phthalocyanine compounds have gained a real success as an object of research and of practical application. Phthalocyanine blues and greens are used as pigments because of their outstanding stability to light, heat, acids and alkalies and their insolubility in organic solvents and water. They are used extensively in printing inks, coatings, paints and plastics. They yield outstanding, durable automobile colors and they can be used in the matching of colors in plastics for car interiors. The phthalocyanines find use also in catalysts for control of sulfur effluents, lasers, lubricants, photodynamic reagents for cancer therapy and other medical applications, optical information storage systems, photography and xerography, high energy density batteries, high conductive "molecular metals", chemical sensors, electrochromic display devices and liquid crystal color display applications. The rich coordination chemistry of phthalocyanine complexes has encouraged researchers to synthesize tailor-made spesific products with certain properties which xv are required for high technology applications. The two variables are the central metal ion and the peripheral substituents. The intense interest in soluble phthalocyanines originates from the suitability of these compounds as materials with novel electrical, optical, catalytic and mesogenic properties. These properties are strongly dependent on peripheral and axial substitution. Starting from simple monofunctional substitutents, more complex structures such as crown ethers, tetraaza, diazatrioxa, diazadioxa, tetraaza-crown ether double layer and tetrathia macrocycles have been introduced to the periphery of the phthalocyanines nucleus. Phthalocyanines with long alkyl or alkoxy groups as well as crown ethers form liquid crystals. The alkyl substitution increases the solubility of phthalocyanines. Beside the symmetrically substituted phthalocyanines, in the last few years, unsymmetrically substituted phthalocyanines have attracted much interest. These compounds show interesting properties in nonlinear optics and are important for LB films. Moreover, their zinc and aluminum derivatives are proposed to be well suitable for application in the photodynamic therapy of cancer. However, the synthesis and isolation of unsymmetrically substituted phthalocyanines are still of great interest for the chemists. The polymer support route, the subphthalocyanine route and the statistical condensation route are the methods to synthesize them. The last one requires well developed chromatographical methods as well as definite structural preconditions of the precursor molecules. In the first part of this study, subphthalocyanine route has been used for the preparation of a new unsymmetrically substituted phthalocyanine. For this synthesis, a boron complex of a hexakis(hexylthio)-substituted subphthalocyanine and 5-(2-acetylaminoethylthio)-l,3-diiminoisoindoline were used as the starting compounds and a new metal-free unsymmetrical phthalocyanine 1 was obtained by a ring enlargement reaction carried out at 80 °C (Scheme 1). The product was seperated by column chromatography on silica gel. The yield was relatively good (%14) for this method of synthesis. Deacetylation could not be made by applying the procedure stated in the literature for a similar system. In the second part of this study, statistical condensation of two different dinitrile derivatives has been applied to synthesize unsymmetrical zinc(H) phthalocyanine 2 (Scheme 1). 4-(2-acetylaminoethylthio)phthalonitrile and 4,5-bis(hexylthio)-l,2- dicyanobenzene (1:9 by weight) were reacted in the presence of zinc(II) acetate and in DMF at 170 °C. The product was seperated by column chromatography on silica gel. The yield of %10 was achieved. Deacetylation was again unsuccessful. In the last part of this study, by means of the statistically mixed condensation of 4-nitrophthalonitrile and 4,5-bis(hexylthio)-l,2-dicyanobenzene (1:4 by weight) in DMF at 170 °C a new zinc(II) phthalocyanine containing an unsymmetrically substituted nitro group 3 was obtained. After separation by column chromatography on silica gel, this nitro-compound 3 was reduced to amine form at 100 °C by using sodium sulfide as the reducing agent and obtained as the hydrochloric salt of the amine derivative 4. The compound 4 was then reacted with cyanuric chloride at 70 °C and an interesting timeric-s-triazine containing three hexa(hexylthio)- substituted phthalocyanine macrocycles 5 was synthesized (Scheme 2). The xvi separation of the product was carried out by column chromatography on silica gel The yield of %78 was attained. «WsN l-Chloronaphthaleno, DMF 80°C.12h ¥? NC' XJ (c,p")s- CN (CHjCOOJ^ZHjO, DMF 170»C,12h W 1 M = 2H 2 M = Zn V.N-C-CH, Scheme 1. Synthesis of Metal-Free and Zinc(n)-2-acetylaminoethylthio-9, 10, 16, 17,23,24- hexa(hexylthio)phthalocyanine. The elemental analyzes; UV/VIS, IR and NMR spectra confirm the proposed structures of the synthesized compounds. The results of the elemental analyzes confirmed the calculated figures of C72H97N9OS7, C72H95N9OS7Z11, CegH^NşOîSgZn, CgsHşoNşClSgZn and C207H264N3oSi8Zn3 for the compounds 1, 2, 3, 4 and 5 respectively. Two and single Q-bands those are the characteristic features of the metal-free and metallo phthalocyanines respectively were clearly occurred in UV/VIS spectra. IR spectra taken with KBr pellets showed the vibration peaks corresponding to the functional groups. The realization of the reactions could be seen by the disappereance of the functional group vibrations belonging to the reactants. The xvu (a^COO)iZn.2H20, DMF (CA^S^^^Qf 170°C,6h (CJ,J8\ /gqft,) I.DMF,THF,N«IS.»y> (CiHuJS'v^^ 2.HCl(g) ^(CAj)1 THF,K,CO, 70 «C, 24b a V Scheme 2. Synthesis of 2,4,6-Tris[amino-hexa(hexylthio)phtnalocyanine]-s-triazine. metal-free structure of 1 was obvious by the peak of the -NH group, which is in the core of the phthalocyanine macrocycle, at 3311 cm'1. Aromatic -C=C peak at 1600 cm"1, aromatic -CH peak at 3081 cm"1, substituted benzene peak at 758 cm"1 were present in the spectra of all of the compounds. The streching peaks at 2979, 2928, 2877 cm"1 and the bending peaks at 1472, 1370 cm"1 showed the structure of -CH and -CH3 respectively in the substituents again for all of the compounds. xvni -C=0 structure in 1 and 2 was confirmed by the peak at 1651 cm"1. The peak at 1549 cm"1 in the spectrum of 4 indicated presence of -NO2 functional group. ^-NMR spectrums were also in good correlation to the proposed structures of the synthesized compounds.
The coordination compounds containing macrocycles have been known and studied since the beginning of this century. The complexes of porphyrins, corrins and phthalocyanines have been investigated because of their relation to important naturaly occuring species containing macrocycles such as heme, cytochromes or chlorophyll or because of their potential as dyestuffs or pigments. The compounds those were later called phthalocyanines were discovered by accident. In 1907, Braun and Tcherniac observed a blue insoluble substance during the preparation of o-cyanobenzamide from phthalimide and acetic acid. In 1927, de Diesbach and von der Weid obtained a blue product when they attempted to make nitriles of benzene by reacting o-dibromobenzene with cuprous cyanide. In 1928, a blue-green impurity was found in the reaction mass of phthalimide preparation from phthalic anhydride and ammonia. This impurity was a result of a reaction between phthalimide, that leaked through a crack of the glass lining, and the iron wall of the reactor. These compounds were later identified as metal-free phthalocyanine, copper phthalocyanine and iron phthalocyanine respectively. After the investigations of Linstead and X-ray studies of Robertson the structure of phthalocyanines were published between 1933 and 1940. Since their final discovery and elucidation of structure, phthalocyanine compounds have gained a real success as an object of research and of practical application. Phthalocyanine blues and greens are used as pigments because of their outstanding stability to light, heat, acids and alkalies and their insolubility in organic solvents and water. They are used extensively in printing inks, coatings, paints and plastics. They yield outstanding, durable automobile colors and they can be used in the matching of colors in plastics for car interiors. The phthalocyanines find use also in catalysts for control of sulfur effluents, lasers, lubricants, photodynamic reagents for cancer therapy and other medical applications, optical information storage systems, photography and xerography, high energy density batteries, high conductive "molecular metals", chemical sensors, electrochromic display devices and liquid crystal color display applications. The rich coordination chemistry of phthalocyanine complexes has encouraged researchers to synthesize tailor-made spesific products with certain properties which xv are required for high technology applications. The two variables are the central metal ion and the peripheral substituents. The intense interest in soluble phthalocyanines originates from the suitability of these compounds as materials with novel electrical, optical, catalytic and mesogenic properties. These properties are strongly dependent on peripheral and axial substitution. Starting from simple monofunctional substitutents, more complex structures such as crown ethers, tetraaza, diazatrioxa, diazadioxa, tetraaza-crown ether double layer and tetrathia macrocycles have been introduced to the periphery of the phthalocyanines nucleus. Phthalocyanines with long alkyl or alkoxy groups as well as crown ethers form liquid crystals. The alkyl substitution increases the solubility of phthalocyanines. Beside the symmetrically substituted phthalocyanines, in the last few years, unsymmetrically substituted phthalocyanines have attracted much interest. These compounds show interesting properties in nonlinear optics and are important for LB films. Moreover, their zinc and aluminum derivatives are proposed to be well suitable for application in the photodynamic therapy of cancer. However, the synthesis and isolation of unsymmetrically substituted phthalocyanines are still of great interest for the chemists. The polymer support route, the subphthalocyanine route and the statistical condensation route are the methods to synthesize them. The last one requires well developed chromatographical methods as well as definite structural preconditions of the precursor molecules. In the first part of this study, subphthalocyanine route has been used for the preparation of a new unsymmetrically substituted phthalocyanine. For this synthesis, a boron complex of a hexakis(hexylthio)-substituted subphthalocyanine and 5-(2-acetylaminoethylthio)-l,3-diiminoisoindoline were used as the starting compounds and a new metal-free unsymmetrical phthalocyanine 1 was obtained by a ring enlargement reaction carried out at 80 °C (Scheme 1). The product was seperated by column chromatography on silica gel. The yield was relatively good (%14) for this method of synthesis. Deacetylation could not be made by applying the procedure stated in the literature for a similar system. In the second part of this study, statistical condensation of two different dinitrile derivatives has been applied to synthesize unsymmetrical zinc(H) phthalocyanine 2 (Scheme 1). 4-(2-acetylaminoethylthio)phthalonitrile and 4,5-bis(hexylthio)-l,2- dicyanobenzene (1:9 by weight) were reacted in the presence of zinc(II) acetate and in DMF at 170 °C. The product was seperated by column chromatography on silica gel. The yield of %10 was achieved. Deacetylation was again unsuccessful. In the last part of this study, by means of the statistically mixed condensation of 4-nitrophthalonitrile and 4,5-bis(hexylthio)-l,2-dicyanobenzene (1:4 by weight) in DMF at 170 °C a new zinc(II) phthalocyanine containing an unsymmetrically substituted nitro group 3 was obtained. After separation by column chromatography on silica gel, this nitro-compound 3 was reduced to amine form at 100 °C by using sodium sulfide as the reducing agent and obtained as the hydrochloric salt of the amine derivative 4. The compound 4 was then reacted with cyanuric chloride at 70 °C and an interesting timeric-s-triazine containing three hexa(hexylthio)- substituted phthalocyanine macrocycles 5 was synthesized (Scheme 2). The xvi separation of the product was carried out by column chromatography on silica gel The yield of %78 was attained. «WsN l-Chloronaphthaleno, DMF 80°C.12h ¥? NC' XJ (c,p")s- CN (CHjCOOJ^ZHjO, DMF 170»C,12h W 1 M = 2H 2 M = Zn V.N-C-CH, Scheme 1. Synthesis of Metal-Free and Zinc(n)-2-acetylaminoethylthio-9, 10, 16, 17,23,24- hexa(hexylthio)phthalocyanine. The elemental analyzes; UV/VIS, IR and NMR spectra confirm the proposed structures of the synthesized compounds. The results of the elemental analyzes confirmed the calculated figures of C72H97N9OS7, C72H95N9OS7Z11, CegH^NşOîSgZn, CgsHşoNşClSgZn and C207H264N3oSi8Zn3 for the compounds 1, 2, 3, 4 and 5 respectively. Two and single Q-bands those are the characteristic features of the metal-free and metallo phthalocyanines respectively were clearly occurred in UV/VIS spectra. IR spectra taken with KBr pellets showed the vibration peaks corresponding to the functional groups. The realization of the reactions could be seen by the disappereance of the functional group vibrations belonging to the reactants. The xvu (a^COO)iZn.2H20, DMF (CA^S^^^Qf 170°C,6h (CJ,J8\ /gqft,) I.DMF,THF,N«IS.»y> (CiHuJS'v^^ 2.HCl(g) ^(CAj)1 THF,K,CO, 70 «C, 24b a V Scheme 2. Synthesis of 2,4,6-Tris[amino-hexa(hexylthio)phtnalocyanine]-s-triazine. metal-free structure of 1 was obvious by the peak of the -NH group, which is in the core of the phthalocyanine macrocycle, at 3311 cm'1. Aromatic -C=C peak at 1600 cm"1, aromatic -CH peak at 3081 cm"1, substituted benzene peak at 758 cm"1 were present in the spectra of all of the compounds. The streching peaks at 2979, 2928, 2877 cm"1 and the bending peaks at 1472, 1370 cm"1 showed the structure of -CH and -CH3 respectively in the substituents again for all of the compounds. xvni -C=0 structure in 1 and 2 was confirmed by the peak at 1651 cm"1. The peak at 1549 cm"1 in the spectrum of 4 indicated presence of -NO2 functional group. ^-NMR spectrums were also in good correlation to the proposed structures of the synthesized compounds.
Açıklama
Tez (Doktora)--İTÜ Fen Bil. Enst., 1999
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2000
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2000
Anahtar kelimeler
Ftalosiyaninler,
Metal kompleksleri,
Sübstitüe,
Phthalocyanines,
Metal complexes,
Substitue