Amorf ferromagnetik şeritlerin mekanik faktörler altında basamaklı histeresis eğrileri
Amorf ferromagnetik şeritlerin mekanik faktörler altında basamaklı histeresis eğrileri
Dosyalar
Tarih
2000
Yazarlar
Birkök, H. Gülay Algül
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
1. Giriş Pozitif magnetositriksiyona sahip amorf şeritler Titreşen Örnek Magnetometresi kullanılarak incelenmiştir. Örneğe, burulma, boyuna gerdirme ve şeridin uzun ekseni boyunca doğru akım uygulandığında histeresis eğrileri basamaklı karakter gösterir. Eğrilerin şekli ve uygulanan mekanik faktörler arasındaki ilişki hem deneysel olarak hem de gerçekçi bir model ile araştırılmıştır. 2. Deneysel Metot Örnekler (2 mm x 96 mm x 25 um) ticari Metglas FeevCoıgBuSi (2605CO), Fe4oNi38Bi8Mo4 (2826MB) ve Fe77Cr2Bı6Sİ5 (2605S3) amorf şeritlerdir. Bu örneklerin magnetositriksiyon katsayıları 10-3 0x1 0"6 'dır. Amorf şeritlerin histeresis eğrileri el yapımı Titreşen Örnek Magnetometresi ile ölçülmüştür. Fiber-camdan yapılmış olan örnek tutucu, burulma (n(7t/4)/96 rad mm"1, n = 1,....,8) ve boyuna gerdirme kuvvetinin uygulanmasını sağlamaktadır. Örnek, uzun bir solenoidin ekseni boyunca sinusoidal olarak düşük frekansta (20-23 Hz) titreştirilmiştir. Algılayıcı-bobinler, özellikle uzun örneklerin ölçülmesi için tasarlanmıştır. Magnetik alan, 0.7 A m^'lik adımlarda değiştirilip, ve 0.01 Am^'lik bir duyarlılıkla ölçülmüştür. 3. Deneysel Sonuçlar Birinci grup ölçümlerde, burulmanın histeresis eğrilerine olan etkisi incelenmiştir. Burulma açısının artması ile histeresis eğrileri genişlemekte; büyük ve simetrik basamaklar ortaya çıkmaktadır. Basamak sayısı ile burulma açısı arasında doğrudan bir bağıntı görülmemiştir. İkinci grup ölçümlerde, gerdirmenin histeresis eğriler üzerindeki etkisi incelenmiştir. Uygulanan gerginliğin artması ile histeresis eğrileri genişlemekte; basamaklar yok olmakta ve düşük alanlar da mıknatıslanma doyuma ulaşmaktadır. xı Üçüncü grup ölçümlerde, elektrokimyasal olarak inceltilmiş örnekler incelenmiştir. Örneklerin kalınlıkları düştüğünde, eğriler genişlerken basamakların sayısı değişmemektedir. Dördüncü grup ölçümlerde, şeridin uzun ekseni boyunca geçirilen doğru akımın histeresis eğrileri üzerindeki etkisi incelenmiştir. Şerit boyunca geçirilen doğru akım histeresis eğrilerinin kaymasını ve asimetri oluşmasını sağlamaktadır. 4. Model Önerilen mikromagnetik model, şeritteki magnetik moment dağılımının hesaplanmasına dayanmaktadır. Bu modele göre: 1. Örnek, ara-kesiti boyunca aynı büyüklükte küçük bölgelere bölünmüştür. 2. Her bölge, kolay-eksenin örneğin uzun ekseni boyunca uygulanan dış magnetik alan ile yaptığı a açısı ve anizotropi sabiti-K ile karakterize edilmiştir. 3. Farklı bölgeler arasında magnetostatik ve değiş-tokuş etkileşmelerinin olmadığı varsayılmıştır. Böylece her küçük bölgenin sahip olduğu toplam indirgenmiş enerji, örnekten doğru akım geçirilmediğinde 9 McH ti =- cos2 (9 -a) ^-cosG (1) K. ve örnekten doğru akım geçirildiğinde M H M H cos (9- a) ^- cosG ^-^sinG K K (2) olarak verilmektedir. Burada 8 açısı söz konusu bölgenin mıknatıslanma vektörü ile dış magnetik alan H ile yaptığı açı, a ise kolay-eksen ve şeridin uzun eksenine paralel dış magnetik alan arasındaki açıdır. Hx, örnek boyunca geçirilen doğru akımın meydana getirdiği enine magnetik alandır. Her bölgenin mıknatıslanmaya olan katkısı, örnekten doğru akım geçirilmediğinde (2) ve örnekten doğru akım geçirildiğinde (3) ile verilen indirgenmiş enerjilerin 9 açısına göre minimizasyonu ile bulunmakta; ve bu katkılar toplanarak model histeresis eğrileri elde edilmektedir.
1. Introduction Iron-based amorphous ribbons with a positive magnetostriction constant have been investigated by means of the Vibrating Sample Magnetometer (VSM) technique. When the samples are subjected to torsion, tensile stress and direct current passing along the long axis of the ribbon, their hysteresis loops show stepwise characters. The correlation between the shape of the loops and applied mechanic factors has been explored both experimentally and a realistic model. 2. Experimental Method Samples (2 mm x 96 mm x 25 (im) are commercial Metglas (Allied Signal Inc.) Fe67Coi8Bı4Si (2605CO), Fe4oNİ38Bi8Mo4 (2826MB) and FerrCrîBjeSis (2605S3) amorphous ribbons. The saturation magnetostriction coefficients of these samples are between 10 to 30x1ü"6. Hysteresis loops of amorphous ribbon were measured with home made VSM. The sample holder which is made of fiber glass provides the application of torsion with n(7i/4)/96 rad mm"1 (n = 1,....,8) as well as of longitudinal force. The sample has been vibrated sinusoidally along the axis of a long solenoid at a low frequency (20-23 Hz). The pick-up coils have been particularly designed to measure long samples. The magnetic field can be changed with a step of 0.7 A m"1, and measured with a sensitivity of 0.01 Am"1. 3. Experimental Results In the first group of measurements, the influence of torsion on the hysteresis loops was investigated. With increasing the torsion angle, hysteresis loops become wider; large symmetric steps appear. Direct relation between number of steps and torsion angle was not observed. In the second group of measurements, the influence of tension on the hysteresis loops was investigated. Hysteresis loops become wider with increase of applied tension; the steps disappear, and the magnetization reaches saturation at lower fields. Xlll In a third series of measurements, electrochemically etched samples was investigated. When the etching duration increases, the number of steps does not change while the curves become wider. In the fourth group of measurements, the influence of the direct current passing along the long axis of the ribbon on the hysteresis loops was investigated. Direct current flowing along the ribbon causes the hysteresis loops both to shift opposite directions with opposite currents and to form an asymmetry. 4. Model The proposed micromagnetic model is based on the calculation of the magnetic moment distribution in the ribbon. According to this model: 1. The sample has been divided into small regions along its cross-section. 2. Each region of the sample has been characterized by an angle a between the easy-axis and the applied field (H) parallel to the long axis of the ribbon, and anisotropy constant-K. 3. Magnetostatic and exchange interactions between different regions have been assumed to be negligible. Therefore, the resulting reduced energy for each region in the case with no direct current passing along the sample 0 M H Ti = -cos2(9-a) ^- cosG (1) and in the case with direct current passing along the sample M H M H ti =-cos2(0-a) ^- cosG ^- ^sinB (2) K. K. Here, the angle of 9 is between magnetization vector and applied field in the region under consideration, a is the angle between the easy axis and the applied field (H) parallel to the long axis of the ribbon. Hx is a transverse magnetic field existed by direct current along the sample. The contributions of all regions to the magnetization are found by minimization of both the reduced energy (1) in the case with no direct current passing along the sample and the reduced energy (2) in the case with direct current passing along the sample with respect to 0; and the model hysteresis loops are obtained by adding these contributions.
1. Introduction Iron-based amorphous ribbons with a positive magnetostriction constant have been investigated by means of the Vibrating Sample Magnetometer (VSM) technique. When the samples are subjected to torsion, tensile stress and direct current passing along the long axis of the ribbon, their hysteresis loops show stepwise characters. The correlation between the shape of the loops and applied mechanic factors has been explored both experimentally and a realistic model. 2. Experimental Method Samples (2 mm x 96 mm x 25 (im) are commercial Metglas (Allied Signal Inc.) Fe67Coi8Bı4Si (2605CO), Fe4oNİ38Bi8Mo4 (2826MB) and FerrCrîBjeSis (2605S3) amorphous ribbons. The saturation magnetostriction coefficients of these samples are between 10 to 30x1ü"6. Hysteresis loops of amorphous ribbon were measured with home made VSM. The sample holder which is made of fiber glass provides the application of torsion with n(7i/4)/96 rad mm"1 (n = 1,....,8) as well as of longitudinal force. The sample has been vibrated sinusoidally along the axis of a long solenoid at a low frequency (20-23 Hz). The pick-up coils have been particularly designed to measure long samples. The magnetic field can be changed with a step of 0.7 A m"1, and measured with a sensitivity of 0.01 Am"1. 3. Experimental Results In the first group of measurements, the influence of torsion on the hysteresis loops was investigated. With increasing the torsion angle, hysteresis loops become wider; large symmetric steps appear. Direct relation between number of steps and torsion angle was not observed. In the second group of measurements, the influence of tension on the hysteresis loops was investigated. Hysteresis loops become wider with increase of applied tension; the steps disappear, and the magnetization reaches saturation at lower fields. Xlll In a third series of measurements, electrochemically etched samples was investigated. When the etching duration increases, the number of steps does not change while the curves become wider. In the fourth group of measurements, the influence of the direct current passing along the long axis of the ribbon on the hysteresis loops was investigated. Direct current flowing along the ribbon causes the hysteresis loops both to shift opposite directions with opposite currents and to form an asymmetry. 4. Model The proposed micromagnetic model is based on the calculation of the magnetic moment distribution in the ribbon. According to this model: 1. The sample has been divided into small regions along its cross-section. 2. Each region of the sample has been characterized by an angle a between the easy-axis and the applied field (H) parallel to the long axis of the ribbon, and anisotropy constant-K. 3. Magnetostatic and exchange interactions between different regions have been assumed to be negligible. Therefore, the resulting reduced energy for each region in the case with no direct current passing along the sample 0 M H Ti = -cos2(9-a) ^- cosG (1) and in the case with direct current passing along the sample M H M H ti =-cos2(0-a) ^- cosG ^- ^sinB (2) K. K. Here, the angle of 9 is between magnetization vector and applied field in the region under consideration, a is the angle between the easy axis and the applied field (H) parallel to the long axis of the ribbon. Hx is a transverse magnetic field existed by direct current along the sample. The contributions of all regions to the magnetization are found by minimization of both the reduced energy (1) in the case with no direct current passing along the sample and the reduced energy (2) in the case with direct current passing along the sample with respect to 0; and the model hysteresis loops are obtained by adding these contributions.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2000
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2000
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2000
Anahtar kelimeler
Amorf ferromanyetik şerit,
Eğriler,
Histerezis eğrileri,
Mekanik özellikler,
Mıknatıslar,
Amorphous ferromagnetic ribbons,
Curves,
Hysteresis curves,
Mechanical properties,
Magnets