Sanal eksen üzerine Hermite matris çokterimlilerinin spektral çarpanlarına ayrılması
Sanal eksen üzerine Hermite matris çokterimlilerinin spektral çarpanlarına ayrılması
Dosyalar
Tarih
1994
Yazarlar
Ergün, Rahmiye
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Özet
Bu çalışmada, Hermite matris çokterimlilerinin spektral çarpanlarına ayrılma problemi incelenmiştir. Kullanılan çarpanlara ayırma algoritmala rında, problem, çarpanlanııa ayrılması istenen matris çokterimlilerinin kat sayılarından yararlanılarak oluşturulan cebirsel Riccati denkleminin çözü müne dayandırılmıştır. Problem üç bölümde ele alınmıştır ikinci bölümde sanal eksen üzerinde pozitif definit olan bir Hermite matris çokterimlisinin spektral çarpanlarına ayrılması işlemi için bir algo ritma verilmiştir. Buna ek olarak, tekillik içeren matris çokterimlilerinin çarpanlarına ayrılma problemine de, bazı dönüşümler yardımı ile tekil mat risi, çarpanlarına ayırma işlemi yukarıdaki biçimde yapılabilir bir matris durumuna getirerek çözüm bulunmuştur. Üçüncü bölümde, oyunlar teorisi ve minimax problemleri literatüründe rastlanan daha genel bir durum için spektral çarpanlarına ayırma işlemi üzerinde durulmuştur. Burada, kullanılan matrisin özdeğerlerinin bir kısmı sol, bir kısmı sağ yarım düzlemdedir. Dördüncü bölümde ise, kullanılan matrisin normunun çok küçük olması durumu ele alınmıştır. Bu dununda cebirsel Riccati denklemine çözüm bul mada bazı zorluklarla karşılaşılır. Bu nedenle cebirsel Riccati denklemi nin çözümünün bir e parametresinin kuvvetlerine göre asimptotik ayrışımı kullanılmıştır. Bu yöntemin kullanılması ile problemin çözümünün bulun masına getirilen değişiklik, cebirsel Riccati denklemini daha küçük boyutlu iki cebirsel Riccati denklemi durumuna getirerek, problemi bunların çözüm lerinin bulunmasına indirgeme biçimindedir. Bu bölümde de, kullanılan matrisin özdeğerlerinin bir kısmı sol, bir kısmı sağ yarım düzlemdedir. Ele alman yöntemlerin bilgisayarda gerçekleştirilmesi için gerekli prog ramlar yapılarak Ekler' de verilmiştir. Bu programlar kullanılarak yapılan örnek problem çözümleri çalışma içinde görülmektedir.
The optimization of the stabile linear feedback systems (such as, control of elastik space construction [1], design of the elements that tune the con nectors of the manipulators [2], control on the vehicle motors [3], etc.) and the construction of the optimal linear filters, constitute a large class of prob lems of the applied mechanics. The natural complexification of these kind of problems (for the purpose of obtaining better system behavior, for exam ple consideration of the system and the controlling elements together) bring some serios mathematical problems, such as for the procedure of synthesis of the optimal systems with feedback [5-10]. Related with these problem we may mention the linear quadratic Gaussian (LQG) problem [1] and the optimization procedures in Hardy spaces H% and ifoo- The most important part of these procedures is the spectra! factorization of the Hermite matrix polynomials. For the numerical solution of this factorization problem two class of algorithms are available. The first class of the algorithms includes the determination of the roots of the polynomial matrix. Some algorithms of this kind are given first in the work of Youla [11]. The computer code of the algorithm is also given in [12], but has some problems when the determinant of the matrix has a multiple roots. The more interesting second class of algorithms, instead of finding the roots of the determinant of the polynomial matrix of the factorization problem, relies on the solution of the proper algebraic Riccati equation constructed with the coefficients of the matrix polynomial that is to be factorized [13-16]. The algorithm of the Tuel [13], transforms the matrix from the continuous to the discrete case (by use of the scalar Kelly transformation z = j^\) and perform the factorization by the discrete Riccati equation. Then it is transformed back to the continuous case. This method does not enable to solve few problems. For overcoming this deficiency an another method is used [13-16] which solves the factorization problem in the continuous case by the Riccati equation. 1. An algorithm for the factorization of polynomial matrices An algorithm for the factorization of an Hermitian polynomial matrix, positive definite on the imaginary axis will be given. In 1.1 the problem of factorizing of a regular matrix polynomial is reduced to constructing the solution of a matrix algebraic Riccati equation (ARE). Then in 1.2 the general factorization algorithm is described. 1.1 Given a regular matrix polynomial (of dimension m x m) of complex variables A(s) = (-l)nIs2n + Axs2"-1 +???+ A2n, (1)
The optimization of the stabile linear feedback systems (such as, control of elastik space construction [1], design of the elements that tune the con nectors of the manipulators [2], control on the vehicle motors [3], etc.) and the construction of the optimal linear filters, constitute a large class of prob lems of the applied mechanics. The natural complexification of these kind of problems (for the purpose of obtaining better system behavior, for exam ple consideration of the system and the controlling elements together) bring some serios mathematical problems, such as for the procedure of synthesis of the optimal systems with feedback [5-10]. Related with these problem we may mention the linear quadratic Gaussian (LQG) problem [1] and the optimization procedures in Hardy spaces H% and ifoo- The most important part of these procedures is the spectra! factorization of the Hermite matrix polynomials. For the numerical solution of this factorization problem two class of algorithms are available. The first class of the algorithms includes the determination of the roots of the polynomial matrix. Some algorithms of this kind are given first in the work of Youla [11]. The computer code of the algorithm is also given in [12], but has some problems when the determinant of the matrix has a multiple roots. The more interesting second class of algorithms, instead of finding the roots of the determinant of the polynomial matrix of the factorization problem, relies on the solution of the proper algebraic Riccati equation constructed with the coefficients of the matrix polynomial that is to be factorized [13-16]. The algorithm of the Tuel [13], transforms the matrix from the continuous to the discrete case (by use of the scalar Kelly transformation z = j^\) and perform the factorization by the discrete Riccati equation. Then it is transformed back to the continuous case. This method does not enable to solve few problems. For overcoming this deficiency an another method is used [13-16] which solves the factorization problem in the continuous case by the Riccati equation. 1. An algorithm for the factorization of polynomial matrices An algorithm for the factorization of an Hermitian polynomial matrix, positive definite on the imaginary axis will be given. In 1.1 the problem of factorizing of a regular matrix polynomial is reduced to constructing the solution of a matrix algebraic Riccati equation (ARE). Then in 1.2 the general factorization algorithm is described. 1.1 Given a regular matrix polynomial (of dimension m x m) of complex variables A(s) = (-l)nIs2n + Axs2"-1 +???+ A2n, (1)
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1994
Anahtar kelimeler
Mühendislik Bilimleri,
Matrisler,
Çarpanlara ayırma,
Engineering Sciences,
Matrices,
Factorization