Sentez Sıcaklığı Ve Çapraz Bağlayıcı Konsantrasyonunun İpek Fibroin Kriyojelerinin Özelliklerine Etkisi
Sentez Sıcaklığı Ve Çapraz Bağlayıcı Konsantrasyonunun İpek Fibroin Kriyojelerinin Özelliklerine Etkisi
thumbnail.default.placeholder
Tarih
2013-09-13
Yazarlar
Öztoprak, Zeynep
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Hidrojeller, hidrofilik polimer ağyapısı ile ağyapı içindeki çözücüden oluşan iki fazlı bir sistem olarak tanımlanabilir. Polimer ağyapı, çözücünün jel dışına akmasını engellerken çözücü ağyapının çökmemesini sağlar. Polimerik hidrojeller konusunda günümüzde yoğun araştırmalar yapılmaktadır. Bilim insanlarının hidrojel sistemlerine olan ilgisi bu sistemlerin yüksek su emme kapasiteleri, dıştan gelen uyarılara bağlı olarak ani hacim değiştirebilme yetenekleri, biyolojik sistemlere benzerlikleri, bunun sonucu olarak biyomoleküllerde molekül-içi etkileşmelere bağlı konformasyon değişimlerini izlemekte ve anlamakta model sistemler oluşturmaları, ve hidrojel halinde kimyasal reaksiyonlara girebilmeleri nedeniyledir. Hidrojellerin pratik uygulamalarında, dışarıdan gelen uyarılara bağlı olarak hacim değişimlerinin çok hızlı olması arzulanır. Ancak, klasik hidrojellerin hacim değişimleri çok yavaş olarak gerçekleşir. Uyarılara hızlı cevap verebilen hidrojellerin sentezi amacıyla; jel boyutlarının küçültülmesi (mikrojel sentezleri), jel yüzeyine linear zincirlerin bağlanması ve makrogözenekli jellerin tasarımı konularında araştırmalar yapılmaktadır. Hidrojellerin pratik uygulamalarını sınırlayan diğer bir büyük etken ise mekanik olarak dayanıksız oluşlarıdır. Dayanıklı ve tok hidrojellerin eldesi için son yıllarda yoğun araştırmalar yapılmakta ve çeşitli teknikler geliştirilmektedir. Bu tekniklerden başlıca dört tanesi dikkat çekmekte olup, bunlar çift-ağyapılı jeller, topolojik jeller, nanokompozit jeller ve kriyojellerdir. Bu teknikler ile mekanik özellikleri geliştirilmiş jellerin elde edilmesi mümkün olmaktadır. Kriyojelleşme tekniğinin ana prensibi, jelleşme reaksiyonlarının reaksiyon sisteminin donma noktasının altında ilerlemesi ve dolayısıyla, ortamdaki buz kristallerinin kalıp etkisi yaparak gözenekli bir yapının oluşmasıdır. Bu amaçla, reaksiyon çözeltisi donma noktasının altındaki bir sıcaklığa getirilerek dondurulur ve reaksiyonlar donmuş reaksiyon sisteminin donmamış mikrobölgelerinde ilerler. İpek, ipekböceğinde bulunan epitel hücreler tarafından biyolojik olarak sentezlenen doğal bir polimerdir. İpek; fibroin ve serisin olarak adlandırılan iki proteinden oluşmaktadır. Serisin, ipek liflerinin yapısal proteini olan fibroini bir arada tutan ve yüksek alkali çözeltilerde çözünebilen proteindir. İpek fibroin i, başlıca glisin ve alanin amino asit ünitelerinden oluşan büyük hidrofobik bloklar ile bunların aralarında ve zincir uçlarında daha küçük hidrofilik bloklardan (arjinin ve rizin üniteleri) ibaret çok-bloklu bir kopolimer mimarisine sahiptir. Hidrofilik bloklar suda çözünürlüğü sağlarken, hidrofobik bloklar arası asosiyasyonlar, fibroin in rastgele yumak yapısından ß-tabaka yapısına bir konformasyon geçişine neden olur. İpek fibroin in yapısındaki ß-tabakaları malzemeye dayanıklılık ve sertlik kazandırırken, daha düzensiz olan hidrofilik bloklar tokluğu ve elastisiteyi arttırır. Fibroin çözeltilerinde oluşan moleküller arası ß-tabakaları, fiziksel çapraz bağ etkisi yaparak kararlı hidrojellerin oluşmasını sağlamaktadırlar.Ancak, çoğu protein hidrojellerine kıyasla, sulu çözeltilerde fibroin in jelleşmesi çok yavaş gerçekleşen bir süreçtir. Araştırma grubumuzda son yıllarda yapılan çalışmalar, fibroin çözeltilerine diepoksitlerin ilavesi ile jelleşme prosesinin çok hızlı olarak gerçekleştiğini ortaya koymuştur. Denemelerde kullanılan 1,4 bütandioldiglisidileter (BDDE), polisakkaritlerin, proteinlerin, DNA nın ve bir çok organik molekülün çapraz bağlanmasında yaygın olarak kullanılan bir çapraz bağlayıcıdır. Fibroin molekülleri, birbirlerine BDDE çapraz bağlacısıyla bağlandıkça, moleküllerin hareketliliği azalır. Bunun bir sonucu olarak, moleküller arası hidrofobik etkileşmeler kuvvetlenerek ß-tabaka yapısının çekirdeklenme ve büyüme süreci kolaylaşır. Böylece kısa süre içerisinde jelleşme meydana gelir. Fibroin hidrojellerine makrogözenekli bir yapı kazandırılması ile onların doku mühendisliğinde iskelet olarak kullanımı sağlanmaktadır. İskelet olarak kullanılacak biyomalzemeler için başlıca kriterler, üç-boyutlu, birbirleriyle bağlantılı makrogözenekler içermesi ve hücre onarım bölgesinde gerekli mekanik dayanıklılığa sahip olmasıdır. Özellikle kemik doku mühendisliğinde kullanılacak iskeletler için mekanik dayanıklılık çok önemlidir. Kemik iskeleti olarak çok sayıda polimerik malzeme denenmiş olmasına rağmen, bozunurluk, kontrollü gözeneklilik, stabilite, biyouyumluluk ve işlenebilirlik şartlarının optimum bir kombinasyonunun gerekliliği çoğu polimerin kullanımını sınırlamaktadır. İpek fibroin, üstün mekanik özellikleri, biyouyumluluğu ve biyobozunurluğu ile kemik doku mühendisliğinde öne çıkan bir malzemedir. Araştırma grubumuzda geçen yıl yapılan çalışmalar sonucunda, literatürde ilk defa olarak fibroin moleküllerinin kriyojelleşme yani düşük sıcaklık jelleşme yöntemi uygulanarak -18oC sıcaklıkta donmuş sulu çözeltilerinde çapraz bağlanması sağlanmıştır.Önceki çalışmalarda kriyojel sentezleri -18oC sıcaklıkta ve 20 mmol /g BDDE çapraz bağlayıcısı varlığında gerçekleştirilmiştir. Jellerin mekanik ve morfolojik özelliklerine sentez sıcaklığının ve çapraz bağlayıcı konsantrasyonunun etkisi bilinmemektedir. Bu tezin amacı, sentez sıcaklığının ve çapraz bağlayıcı konsantrasyonunun fibroin kriyojellerinin mekanik ve morfolojik özelikleri üzerine etkisini ayrıntılı olarak incelemek ve optimum fibroin kriyojel sentez koşullarını ortaya koymaktır. Bu sayede elde edilen makrogözenekli fibroin iskeletleri, kemik hücre mühendisliğinde kullanıma uygun gözenek boyutları ve mekanik özellikleri ayarlanabilen malzemelerdir. Bu amaçla, Bombyx mori cinsi ipek böceğinin kozasından elde edilen ipek fibroinin sulu çözeltisi, N,N,N ,N -tetrametiletilendiamin (TEMED) katalizörlüğünde BDDEçapraz bağlayıcı ile donmuş sulu ortamda çapraz bağlanma reaksiyonlarına tabi tutulmuş ve ipek fibroin kriyojelleri elde edilmiştir.Reaksiyon sisteminin sıcaklığı -5 ile -22oC, çapraz bağlayıcı konsantrasyonu ise 0 ile 30 mmol/g aralığında değiştirilmiştir. Reaksiyon çözeltisi içerisindeki çapraz bağlayıcı oranının 2 mmol / g ın altında olması halinde 24 saat içeriside jel oluşmadığı deneysel çalışmalar sonucunda ortaya konmuştur. Çapraz bağlayıcı olan BDDE ile fibroin zincirleri arasında gerçekleşen reaksiyon, elde edilen jellerin ATR-FTIR spektrumları ile açıklanabilmektedir. Çapraz bağlayıcının ATR-FTIR spektrumunda, BDDE içerisinde bulunan eter gerilim bandının 1040-1100 cm-1 dalga sayısı aralığında güçlü bir pik verdiği görülmektedir. Jelleşme reaksiyonu öncesi ipek fibroinin spektrumunda 1040-1100 cm-1 aralığında bir pik gözlenmezken, jelleşme reaksiyonu sonucunda elde edilen jellerin spektrumlarında bu aralıkta yeni bir pikin ortaya çıktığı gözlemlenmektedir. Çapraz bağlayıcının reaksiyona girmesi sonucunda ipek fibroin üzerinde eter grupları meydana gelmekte ve 1040-1100 cm-1 dalga sayısı aralığında yeni bir pik olan eter gerilim bandının oluşmasına sebep olmaktadır. Elde edilen tüm jellerin dondurmalı kurutucuda kurutulmalarının ardından ATR-FTIR analizleri yapılmış olup, jelleşme öncesinde 1640 cm-1 de görülen karakteristik pikin, 1620 cm-1?e kaydığı gözlemlenmiştir. 1640 cm-1 dalga sayısındaki pik alfa-heliksi, 1620 cm-1 de bulunan pik ise beta-tabakayı ifade etmektedir. Karakteristik pikin dalga sayısının değişimi donmuş fibroin çözeltisi içerisinde meydana gelen konformasyonel değişimlerin varlığını açıklamaktadır. Suyun donma noktasının altında gerçekleşen jelleşme reaksiyonu sonrasında elde edilen tüm jellerin kurutulmalarının ardından SEM görüntüleri çekilmiş olup, % 90 oranında gözenekli yapıya sahip olduğu ortaya konmuştur. Sentez sıcaklığı ve çapraz bağlayıcı konsantrasyonlarının değiştirilmesi sonucunda gözenek boyutları ve mekanik dayanımları ayarlanabilen fibroin iskeletleri elde edilmiştir. Literatürdeki önceki çalışmaların sonuçlarına göre, fibroin çözeltisinin alkol ile muamelesi ve dondurarak kurutma işleminden sonra Young modülü 10 ile 100 kPa aralığında olan fibroin iskeletleri elde edilmiştir. Buna ek olarak gözenek oluşturucu tuz ilavesi ile ise modül değeri ancak 0,5 MPa değerine ulaşabilmiştir. En yüksek Young modül ve basınç dayanımı değerlerine ise gaz oluşturma tekniği ile ulaşılmış olup, bu değerler sırası ile 3 MPa ve 60 kPa dır. Kriyojelleşme yöntemi ile elde edilen tüm fibroin iskeletlerinin Young modül ve basınç dayanım değerleri literatürdeki en yüksek değerlerdir. Bu da kriyojelleşme yöntemi ile kemik doku mühendisliğinde kullanıma uygun, mekanik olarak dayanıklı iskeletlerinin elde edilebileneceğini ortaya koymaktadır.
Gels are crosslinked polymer networks swollen in a liquid medium. The liquid inside the gel allows free diffusion of some solute molecules, while the polymer network serves as a matrix to hold the liquid together. Hydrophilic gels called hydrogels are important materials of both fundamental and technological interest. These materials are useful for drug delivery systems, separation operations in biotechnology, processing of agricultural products, sensors, and actuators. In these applications, a fast response rate of the hydrogel to the external stimuli is needed. To increase the response rate of hydrogels, several techniques were proposed including decrease of the gel dimensions (microgel preparation), attachment of dangling chains on the gel surfaces and, preparation of macroporous gels. Another feature of the hydrogels limiting their technological applications is that, they are normally very brittle when handled in the swollen state. A number of techniques for toughening of gels have recently been proposed including the double network gels, topological gels, nanocomposite hydrogels, and cryogels. Cryogelation technique has been widely used to produce macroporous gels (cryogels) of high toughness and superfast responsivity. By this technique, polymerization and/or cross-linking reactions are conducted in apparently frozen reaction solutions. During freezing of an aqueous polymer solution containing a chemical cross-linker, the polymer chains and the cross-linker molecules expelled from the ice concentrate within the liquid channels between the ice crystals, so that the cross-linking reactions only proceed in these unfrozen domains. After cross-linking and, after thawing of ice, a macroporous material is produced whose microstructure is a negative replica of the ice formed. In contrast to the mechanically weak macroporous gels prepared by phase separation technique, cryogels are very tough and withstand very large strains without permanent deformation or fracture. Silk fibroin derived from Bombyx mori is a fibrous protein exhibiting extraordinary material properties such as good biocompatibility, biodegradability, high strength and toughness, and ease of processability. Silk fibroin has been used for cell culture, wound dressing, drug delivery, enzyme immobilization, and as a scaffold for bone tissue engineering. Silk fibroin has a blocky structure consisting of less ordered hydrophilic and crystallizable hydrophobic blocks. Hydrophilic blocks provide solubility in water and, are responsible for fibroin elasticity and toughness, while hydrophobic blocks form intermolecular beta-sheet structures leading to the insolubility and high strength of fibroin. Several techniques have been developed to produce porous fibroin scaffolds such as freeze-thawing, porogen leaching, gas foaming, electrospinning, and freeze-drying. The principle of porogen leaching and gas foaming techniques is the use of porogens, such as sodium chloride and ammonium percarbonate acting as a template and gas-forming agent, respectively. After treatment of fibroin/porogen composites with alcohols to induce beta-sheet formation, the porogen is leached out with water to form the pores of the scaffolds. To produce fibroin scaffolds by freeze-drying, aqueous fibroin solutions are mixed with alcohol to obtain a gel precipitate following freezing at a low temperature and finally freeze-drying. It was shown that porogen leaching and gas foaming techniques produce scaffolds having larger pores (100-200 mikrometer) as compared to the scaffolds formed by freeze-drying (10-50 mikrometer). The compressive moduli of the scaffolds vary depending on the preparation conditions between 10 kPa and 3 MPa. Here, we showthat gelation of aqueous silk fibroin solutions at subzero temperatures in the presence of 1,4-butanediol diglycidyl ether (BDDE) leads to the formation of cryogels with a wide range of tunable properties. BDDE has been widely used for cross-linking of polysaccharides, proteins, DNA, as well as organic molecules. BDDE contains epoxide groups on both ends that can react with nucleophiles, including amino groups, sulfhydryls, and hydroxyls. Recently, our research group has shown that the introduction of BDDE cross-links between the fibroin molecules decreases the mobility of the chains, which triggers the conformational transition from random-coil to beta-sheet structure and hence fibroin gelation. Gelation reactions conducted at 50oC showed formation of strong to weak fibroin hydrogels depending on the pH of the solutions, which was adjusted by the addition of N,N,N ,N -tetramethylethylenediamine (TEMED). Within the framework of this thesis, we conducted the gelation reactions of fibroin in frozen solutions at subzero temperatures between -5 and -22oC. The gelation temperature and the cross-linker (BDDE) concentration were varied to find out the effect of these parameters on the properties of fibroin cryogels. The gels were prepared according to the following scheme: Aqueous fibroin solution of known concentration was mixed with aqueous TEMED and finally with BDDE. The homogeneous reaction solution was then transferred into several plastic syringes of 4 mm internal diameters and, they were placed in a cryostat at a fixed temperature between -5 and -22oC to conduct the cross-linking reactions for one day. In this way, cryogels with tunable properties were obtained. Note that the cryogelation reactions conducted in the absence of BDDE did not lead to gel formation after one day of reaction time, indicating that the cryo-concentration alone does not induce fibroin gelation. This suggests that, even in the frozen state, fibroin gelation is mediated by the presence of diepoxide cross-linker. The reaction between BDDE and fibroin was assessed by the ATR-FTIR spectra of freeze-dried fibroin samples. In addition to a shift of the Amide I absorption band to lower wavenumbers, new bands at 1040 - 1100 cm-1 appear upon gelation, which were assigned to the ether stretching bands of BDDE cross-linkages. The ether stretching bands were observed in the spectra of all cryogel samples. ATR-FTIR spectrum of fibroin before gelation was characterized by a peak at 1640 cm-1 indicating the presence of primarily random coil and/or alfa-helix conformations. After cryogelation, all samples display a main peak at 1620 cm-1 which was assigned to beta-sheet conformation. In addition to the main peak, shoulders at 1660 and 1698 cm-1 appeared after gelation, which can be assigned to alfa-helix and beta-turn conformations, respectively. This indicates the occurrence of a conformational transition from random coil to beta-sheet structure in frozen fibroin solutions. To estimate the conformation of the fibroin network chains, peak separation of Amide I band was carried out after base line correction by selecting a Gaussian model for curve fitting. The peak positions were fixed at 1620, 1640, 1660, and 1698 cm-1, representing beta-sheet, random coil, alfa-helix, and beta-turn conformations, respectively. The results of beta-sheet contents show that fibroin chains before gelation have 12 % beta-sheet structures, while their contribution increases to 33 %, independent on the amount of BDDE and cryogelation temperature. We attribute the occurrence of the gelation reactions and the conformational transition of fibroin in frozen solutions to the cryo-concentration that effectively increases the reaction mixture concentration. When the reaction solution containing fibroin, BDDE and TEMED was cooled to a temperature below the nominal freezing temperature, the majority of water formed ice crystals whereas bound water and soluble substances accumulated in the unfrozen domains as a result of the freezing point depression. This phenomenon referred as cryo-concentration leads to a high concentration of the reactants in the unfrozen domains accelerating the reactions. Gelation reactions of fibroin conducted at subzero temperatures lead to the formation of macroporous fibroin cryogels showing 90 % porosity and high mechanical stability upon compression. In contrast to weak and brittle fibroin hydrogels, cryogels can be compressed up to about 100 % strain without any crack development, during which water inside the cryogel is removed. The compressed cryogel immediately swells during unloading to recover its original shape. The scaffolds obtained by freeze-drying of fibroin cryogels consist of regular, interconnected pores of diameters ranging from 50 to 10 mikrometer, depending on the synthesis parameters. The pore size of the cryogel scaffold could be regulated depending on the cryogelation conditions. Decreasing the gelation temperature Tprep, or increasing BDDE concentration decreased the average diameter of the pores. For example, at Tprep = -18oC, the average pore diameter decreased from 55 to 30 mikrometer while the pore-size distribution became narrower as the amount of BDDE is increased from 5 to 25 mmol/g. This could be due to the increased rigidity of the fibroin gel in the unfrozen domains as the amount of BDDE is increased. Moreover, since lower gelation temperature means faster freezing of the reaction solution, decreasing pore size with decreasing Tprep is consistent with the fact that a larger number of small ice crystals form as the freezing rate is increased. Additionally, since water in large voids is preferentially frozen relative to that in small capillaries due to a smaller freezing-point depression, it is thought that, at Tprep = -5oC, only water in large voids freezes during gelation leading to large pores. A similar effect of temperature on the pore size of fibroin scaffolds was recently reported in the literature. By decreasing the freezing temperature of aqueous 6 % fibroin solutions from -20oC to -80oC, the pore diameter of freeze-dried scaffolds decreased from ca. 50 to 15 mikrometer. The cryogel scaffolds formed at Tprep= -18oC and CSF = 4.2 % exhibit a compressive modulus E of 8 MPa over the whole range of TEMED with a compressive nominal stress comp of 0.22 MPa. These values are about 1 order of magnitude higher than those of the hydrogel scaffolds formed below 0.25 % TEMED (E = 1.0 MPa,comp = 0.030 MPa). The modulus E of the cryogel scaffolds increased with decreasing Tprep or with increasing BDDE concentration. Drying conditions of the cryogels slightly affected the strength of the resulting scaffolds. Comparison of the SEM images with the modulus data clearly show that a decrease in the average pore diameter increases the mechanical stability of fibroin scaffolds formed by cryogelation. Previous work shows that fibroin scaffolds formed by freeze-drying of fibroin solutions pre-treated with alcohols exhibit compression moduli of 10 to 100 kPa, while salt leaching method generates scaffolds with a modulus of 0.5 MPa. The largest compressive modulus and compressive strength reported so far for fibroin scaffolds are 3 MPa and 60 kPa, respectively, which were produced by gas foaming technique. Cryogel scaffolds prepared in this thesis exhibit larger moduli and strength as compared to those of the scaffolds reported before, making them good candidates as bone scaffold materials.
Gels are crosslinked polymer networks swollen in a liquid medium. The liquid inside the gel allows free diffusion of some solute molecules, while the polymer network serves as a matrix to hold the liquid together. Hydrophilic gels called hydrogels are important materials of both fundamental and technological interest. These materials are useful for drug delivery systems, separation operations in biotechnology, processing of agricultural products, sensors, and actuators. In these applications, a fast response rate of the hydrogel to the external stimuli is needed. To increase the response rate of hydrogels, several techniques were proposed including decrease of the gel dimensions (microgel preparation), attachment of dangling chains on the gel surfaces and, preparation of macroporous gels. Another feature of the hydrogels limiting their technological applications is that, they are normally very brittle when handled in the swollen state. A number of techniques for toughening of gels have recently been proposed including the double network gels, topological gels, nanocomposite hydrogels, and cryogels. Cryogelation technique has been widely used to produce macroporous gels (cryogels) of high toughness and superfast responsivity. By this technique, polymerization and/or cross-linking reactions are conducted in apparently frozen reaction solutions. During freezing of an aqueous polymer solution containing a chemical cross-linker, the polymer chains and the cross-linker molecules expelled from the ice concentrate within the liquid channels between the ice crystals, so that the cross-linking reactions only proceed in these unfrozen domains. After cross-linking and, after thawing of ice, a macroporous material is produced whose microstructure is a negative replica of the ice formed. In contrast to the mechanically weak macroporous gels prepared by phase separation technique, cryogels are very tough and withstand very large strains without permanent deformation or fracture. Silk fibroin derived from Bombyx mori is a fibrous protein exhibiting extraordinary material properties such as good biocompatibility, biodegradability, high strength and toughness, and ease of processability. Silk fibroin has been used for cell culture, wound dressing, drug delivery, enzyme immobilization, and as a scaffold for bone tissue engineering. Silk fibroin has a blocky structure consisting of less ordered hydrophilic and crystallizable hydrophobic blocks. Hydrophilic blocks provide solubility in water and, are responsible for fibroin elasticity and toughness, while hydrophobic blocks form intermolecular beta-sheet structures leading to the insolubility and high strength of fibroin. Several techniques have been developed to produce porous fibroin scaffolds such as freeze-thawing, porogen leaching, gas foaming, electrospinning, and freeze-drying. The principle of porogen leaching and gas foaming techniques is the use of porogens, such as sodium chloride and ammonium percarbonate acting as a template and gas-forming agent, respectively. After treatment of fibroin/porogen composites with alcohols to induce beta-sheet formation, the porogen is leached out with water to form the pores of the scaffolds. To produce fibroin scaffolds by freeze-drying, aqueous fibroin solutions are mixed with alcohol to obtain a gel precipitate following freezing at a low temperature and finally freeze-drying. It was shown that porogen leaching and gas foaming techniques produce scaffolds having larger pores (100-200 mikrometer) as compared to the scaffolds formed by freeze-drying (10-50 mikrometer). The compressive moduli of the scaffolds vary depending on the preparation conditions between 10 kPa and 3 MPa. Here, we showthat gelation of aqueous silk fibroin solutions at subzero temperatures in the presence of 1,4-butanediol diglycidyl ether (BDDE) leads to the formation of cryogels with a wide range of tunable properties. BDDE has been widely used for cross-linking of polysaccharides, proteins, DNA, as well as organic molecules. BDDE contains epoxide groups on both ends that can react with nucleophiles, including amino groups, sulfhydryls, and hydroxyls. Recently, our research group has shown that the introduction of BDDE cross-links between the fibroin molecules decreases the mobility of the chains, which triggers the conformational transition from random-coil to beta-sheet structure and hence fibroin gelation. Gelation reactions conducted at 50oC showed formation of strong to weak fibroin hydrogels depending on the pH of the solutions, which was adjusted by the addition of N,N,N ,N -tetramethylethylenediamine (TEMED). Within the framework of this thesis, we conducted the gelation reactions of fibroin in frozen solutions at subzero temperatures between -5 and -22oC. The gelation temperature and the cross-linker (BDDE) concentration were varied to find out the effect of these parameters on the properties of fibroin cryogels. The gels were prepared according to the following scheme: Aqueous fibroin solution of known concentration was mixed with aqueous TEMED and finally with BDDE. The homogeneous reaction solution was then transferred into several plastic syringes of 4 mm internal diameters and, they were placed in a cryostat at a fixed temperature between -5 and -22oC to conduct the cross-linking reactions for one day. In this way, cryogels with tunable properties were obtained. Note that the cryogelation reactions conducted in the absence of BDDE did not lead to gel formation after one day of reaction time, indicating that the cryo-concentration alone does not induce fibroin gelation. This suggests that, even in the frozen state, fibroin gelation is mediated by the presence of diepoxide cross-linker. The reaction between BDDE and fibroin was assessed by the ATR-FTIR spectra of freeze-dried fibroin samples. In addition to a shift of the Amide I absorption band to lower wavenumbers, new bands at 1040 - 1100 cm-1 appear upon gelation, which were assigned to the ether stretching bands of BDDE cross-linkages. The ether stretching bands were observed in the spectra of all cryogel samples. ATR-FTIR spectrum of fibroin before gelation was characterized by a peak at 1640 cm-1 indicating the presence of primarily random coil and/or alfa-helix conformations. After cryogelation, all samples display a main peak at 1620 cm-1 which was assigned to beta-sheet conformation. In addition to the main peak, shoulders at 1660 and 1698 cm-1 appeared after gelation, which can be assigned to alfa-helix and beta-turn conformations, respectively. This indicates the occurrence of a conformational transition from random coil to beta-sheet structure in frozen fibroin solutions. To estimate the conformation of the fibroin network chains, peak separation of Amide I band was carried out after base line correction by selecting a Gaussian model for curve fitting. The peak positions were fixed at 1620, 1640, 1660, and 1698 cm-1, representing beta-sheet, random coil, alfa-helix, and beta-turn conformations, respectively. The results of beta-sheet contents show that fibroin chains before gelation have 12 % beta-sheet structures, while their contribution increases to 33 %, independent on the amount of BDDE and cryogelation temperature. We attribute the occurrence of the gelation reactions and the conformational transition of fibroin in frozen solutions to the cryo-concentration that effectively increases the reaction mixture concentration. When the reaction solution containing fibroin, BDDE and TEMED was cooled to a temperature below the nominal freezing temperature, the majority of water formed ice crystals whereas bound water and soluble substances accumulated in the unfrozen domains as a result of the freezing point depression. This phenomenon referred as cryo-concentration leads to a high concentration of the reactants in the unfrozen domains accelerating the reactions. Gelation reactions of fibroin conducted at subzero temperatures lead to the formation of macroporous fibroin cryogels showing 90 % porosity and high mechanical stability upon compression. In contrast to weak and brittle fibroin hydrogels, cryogels can be compressed up to about 100 % strain without any crack development, during which water inside the cryogel is removed. The compressed cryogel immediately swells during unloading to recover its original shape. The scaffolds obtained by freeze-drying of fibroin cryogels consist of regular, interconnected pores of diameters ranging from 50 to 10 mikrometer, depending on the synthesis parameters. The pore size of the cryogel scaffold could be regulated depending on the cryogelation conditions. Decreasing the gelation temperature Tprep, or increasing BDDE concentration decreased the average diameter of the pores. For example, at Tprep = -18oC, the average pore diameter decreased from 55 to 30 mikrometer while the pore-size distribution became narrower as the amount of BDDE is increased from 5 to 25 mmol/g. This could be due to the increased rigidity of the fibroin gel in the unfrozen domains as the amount of BDDE is increased. Moreover, since lower gelation temperature means faster freezing of the reaction solution, decreasing pore size with decreasing Tprep is consistent with the fact that a larger number of small ice crystals form as the freezing rate is increased. Additionally, since water in large voids is preferentially frozen relative to that in small capillaries due to a smaller freezing-point depression, it is thought that, at Tprep = -5oC, only water in large voids freezes during gelation leading to large pores. A similar effect of temperature on the pore size of fibroin scaffolds was recently reported in the literature. By decreasing the freezing temperature of aqueous 6 % fibroin solutions from -20oC to -80oC, the pore diameter of freeze-dried scaffolds decreased from ca. 50 to 15 mikrometer. The cryogel scaffolds formed at Tprep= -18oC and CSF = 4.2 % exhibit a compressive modulus E of 8 MPa over the whole range of TEMED with a compressive nominal stress comp of 0.22 MPa. These values are about 1 order of magnitude higher than those of the hydrogel scaffolds formed below 0.25 % TEMED (E = 1.0 MPa,comp = 0.030 MPa). The modulus E of the cryogel scaffolds increased with decreasing Tprep or with increasing BDDE concentration. Drying conditions of the cryogels slightly affected the strength of the resulting scaffolds. Comparison of the SEM images with the modulus data clearly show that a decrease in the average pore diameter increases the mechanical stability of fibroin scaffolds formed by cryogelation. Previous work shows that fibroin scaffolds formed by freeze-drying of fibroin solutions pre-treated with alcohols exhibit compression moduli of 10 to 100 kPa, while salt leaching method generates scaffolds with a modulus of 0.5 MPa. The largest compressive modulus and compressive strength reported so far for fibroin scaffolds are 3 MPa and 60 kPa, respectively, which were produced by gas foaming technique. Cryogel scaffolds prepared in this thesis exhibit larger moduli and strength as compared to those of the scaffolds reported before, making them good candidates as bone scaffold materials.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2013
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2013
Anahtar kelimeler
Hidrojel,
Kriyojel,
İpek Fibroin,
Hydrogel,
Cryogel,
Silk Fibroin