Negatif Olmayan Matris Ayrıştırma Yöntemi İle Video Parmak İzi Çıkarımı
Negatif Olmayan Matris Ayrıştırma Yöntemi İle Video Parmak İzi Çıkarımı
Dosyalar
Tarih
2010-08-13
Yazarlar
Çırakman, Özgün
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Bu tez kapsamında, pek çok alanda kullanılan video parmak izi sistemlerinin özellikle videoda kopya sezme alanında kullanımı üzerinde durulmuştur. Kopya sezme problemlerinde bir parmak izi sisteminin, aynı video içeriğinin kopyasını bozulmaya uğramış olsa dahi sezebilmesi istenir. Bu yüzden video parmak izi sistemleri video verisine uygulanabilecek global bozulmalara (sıkıştırma, çerçeve hızını değiştirme, gürültü, gama bozulması vb.) ve geometrik dönüşümlere (aynalama, kaydırma, kırpma, yeniden boyutlandırma gibi) karşı dayanıklı olmalıdır. Pratikte kopya sezme alanında kullanılan arama-getirme sistemleri, kendilerine verilen bir videonun, daha önceden parmak izi çıkarma uygulaması tarafından veritabanına kaydedilmiş videolar arasında olup olmadığını anlamaya çalışır. Bu çalışmada biri anahtar-çerçeve, diğeri içerik tabanlı olmak üzere iki video parmak izi çıkarma yöntemi önerilmiştir. Önerilen yöntemlerin her ikisinde de video çerçevelerinden negatif olmayan matris ayrıştırma (NOMA) yöntemi ile elde edilen baz ve kodlama matrisleri kullanılarak elde edilen video parmakizi vektörlerinin kullanımı önerilmektedir. Performans testleri TRECVID 2002, 2009 ve 2010 veritabanlarından alınan video klipleri üzerinden gerçeklenmiştir ve başarım doğruluk, hatırlama ve bunların harmonik ortalaması olan kopya tespit başarım oranı (DCR) cinsinden raporlanmıştır.
Modelling and retrieving video content is a difficult problem due to increasing amounts of media in applications such as broadcast monitoring, P2P network filtering or copy detection and constraints on media content representations. Video fingerprinting systems have been proposed to deal with such problems and used in wide range of applications. Copy detection features of video fingerprinting systems are the main concern of this work. In copy detection applications, a fingerprinting system should be able to match an input query video clip with its original content which has been previously introduced to the system. Thus, video fingerprinting system should be robust aginst possible modifications on input data. These modifications are generally mentioned under two different classes as global distortions and geometric transformations. Video re-encoding, frame rate conversion, changes in brightness, contrast and gamma, introduction of additive noise and blur can be given as examples of global distortions while flipping, shifting, cropping and resizing attacks are the examles of geometric transformations. In this work two video fingerprinting approaches are proposed. Both approaches use non-negative matrix factorization (NMF) as feature extraction tool but differs especially in selection of the input data. In the first approach, extracted fingerprints only correspond to the selected key-frames of the input video clip, while in the content based second method fingerprints are extracted for groups of successive frames. Proposed systems are tested on TRECVID 2002, 2009 and 2010 video databases and performance of the system is evaluated by using precision and recall rates as well as their harmonical average DCR (detection cost rate).
Modelling and retrieving video content is a difficult problem due to increasing amounts of media in applications such as broadcast monitoring, P2P network filtering or copy detection and constraints on media content representations. Video fingerprinting systems have been proposed to deal with such problems and used in wide range of applications. Copy detection features of video fingerprinting systems are the main concern of this work. In copy detection applications, a fingerprinting system should be able to match an input query video clip with its original content which has been previously introduced to the system. Thus, video fingerprinting system should be robust aginst possible modifications on input data. These modifications are generally mentioned under two different classes as global distortions and geometric transformations. Video re-encoding, frame rate conversion, changes in brightness, contrast and gamma, introduction of additive noise and blur can be given as examples of global distortions while flipping, shifting, cropping and resizing attacks are the examles of geometric transformations. In this work two video fingerprinting approaches are proposed. Both approaches use non-negative matrix factorization (NMF) as feature extraction tool but differs especially in selection of the input data. In the first approach, extracted fingerprints only correspond to the selected key-frames of the input video clip, while in the content based second method fingerprints are extracted for groups of successive frames. Proposed systems are tested on TRECVID 2002, 2009 and 2010 video databases and performance of the system is evaluated by using precision and recall rates as well as their harmonical average DCR (detection cost rate).
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010
Anahtar kelimeler
Negatif Olmayan Matris Ayrıştırma,
Video Parmak İzi,
Non-Negative Matrix Factorizations,
Video Fingerprinting