The Effects Of Current Conveyor Non-idealities On The Performance Of Active Filters And Novel Current Conveyor Structures Suitable For Continuous-time Filters
The Effects Of Current Conveyor Non-idealities On The Performance Of Active Filters And Novel Current Conveyor Structures Suitable For Continuous-time Filters
Dosyalar
Tarih
1998
Yazarlar
Tarım, Nil
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
709, ayrık elemanların performansını yakalayabilen ilk monolitik kuvvetlendirici devresi olarak ortaya çıktı. LM 101 tümdevresi bundan sonraki ilk kayda değer aşamadır. Genel olarak 709 ile aynı özelliklere sahip olup bazı uygulama sorunlarını ortadan kaldırmıştır. İşlemsel kuvvetlendiricinin tümdevre olarak ortaya çıkması ve kabul görmesi sonucu 1960'lı yıllar boyunca lineer analog tümdevre uygulamaları büyük bir ilerleme kaydetmiştir. Bunun sonucu olarak, ayrık benzerleri kadar, hatta daha iyi performanslı tümdevre işlemsel kuvvetlendirici tasarımları, daha ekonomik fiyatlarla ortaya çıkmıştır. Maliyet, 1965'te 70$'dan 1970'te 2$'dan daha az bir rakama inmiştir. O zamandan beri, işlemsel kuvvetlendirici tümdevreleri, piyasada üretilen ürünler içerisinde en fazla kullanılan lineer elemanlar olmuşlardır. Analog/sayısal ve sayısal/analog çeviriciler, gerilim referans kaynakları, analog çarpma devreleri, dalga şekillendirici devreler, osilatörler ve dalga üreteçleri gibi pek çok alanda uygulama imkanı bulmuşlardır. İşaret işlemenin gerilim değişkenleri aracılığıyla düşünülmesi alışkanlığının sonucu olarak, gerilim kuvvetlendiricileri, gerilim integratörleri, gerilim transfer fonksiyonu gerçekleyen filtreler gibi gerilim modlu işaret işleme devreleri ortaya çıkmıştır. Bugün, yüksek kaliteli işlemsel kuvvetlendirici devreleri 0.1$ mertebelerinde maliyete sahiptir. Bunun sonucu olarak, yapısından kaynaklanan yükselme eğimi - kazanç bant genişliği ikilemine rağmen, kullanışlı olması, işlemsel kuvvetlendiriciyi gerilim modlu tasarımların vazgeçilmez elemanlarından birisi yapmıştır. Aynı dönemlerde, bu gelişmelere paralel olarak tümdevre tasarımında da önemli aşamalar kaydedilmiştir. İşlemsel kuvvetlendiricinin ortaya çıkıp yaygın bir hal almaya başladığı dönemlerde, analog devre tasarımı, çoğunlukla bipolar ve hibrit teknolojileriyle gerçekleştirilmekteydi. 1980'lerin başlarında NMOS teknolojisi ortaya çıktı; ancak eşlenik elemanların olmaması, CMOS teknolojisini, sayısal olduğu kadar analog tasarımlar için de temel üretim teknolojisi haline getirdi. Son on yılda, tasarımcıya bipolar ve MOS teknolojilerinin avantajlarım birleştirme olanağı sağlayan BiCMOS teknolojisi ortaya çıkmıştır. Bu şekilde, bugünün yüksek performanslı, çok geniş ölçekli tümleştirilmiş, analog ve sayısal devre tasarımları mümkün hale gelebilmektedir.
The current conveyor is one of the most versatile active elements which can potentially provide the high accuracy, wide bandwidth, low input impedance and high output impedance characteristics needed for many current domain signal processing applications. Since its first proposal in 1968 and its reformulation named as the second generation current conveyor in 1970 this circuit element continues to receive a great deal of attention and find numerous applications. This growing interest to current-mode approach, has led us to focus on this basic building block of current-mode design, and its widely used application of active filters. In active filters, the performance of the active element plays an important role in the overall performance of the filter, besides the filter configuration itself. It is obvious that the non-idealities of the current conveyor will result in deviations in filter parameters such as the cutoff frequency, quality factor and filter gain. Therefore the derivation of analytical expressions for the deviations in the filter parameters in terms of current conveyor non-idealities may be of vital importance. This will enable one to realize the effect of each non-ideality term on the filter parameters and help design or choose a suitable current conveyor configuration for a specified filter performance. After an introduction in Chapter 1, Chapter 2 starts with a complete macromodel, which fully represents both the small and large-signal behavior of the current conveyor, which is especially suitable for the simulation of active filter applications. Results show that the simple and yet accurate model provides a relative amount of simulation speedup. The studies made on eight current conveyor configurations found in literature are given in Chapter 3. Both bipolar and MOS structures, as well as one of the commercially available current conveyors, namely the AD844 circuit has been covered and compared results of the current conveyor performance characteristics are given. In Chapter 4 and 5, provided that a certain filter configuration is given, we will investigate the effects of current conveyor non-idealities on both voltage and current-mode active filter examples, and derive analytical expressions for the filter parameter deviations in terms of non- ideality terms. We will determine the requirements for the current conveyor non-ideality terms in order to obtain a specified filter performance. The filter configurations chosen, actually represent certain classes of active filters, which enables us to generalize the results obtained. A comparable demonstration of the filter transfer function and large- signal behavior for each current conveyor will be given. Simulations including three types of filters, namely, the bandpass, lowpass and highpass filters, confirm the analytical expressions obtained. In Chapter 6, current conveyors suitable for continuous-time filter applications will be proposed, taking the results obtained previously under consideration. Performance characteristics of the current conveyors and comparable demonstration of the voltage and current-mode filter performances will be given. The results show that acceptable performance has been obtained for the filters.
The current conveyor is one of the most versatile active elements which can potentially provide the high accuracy, wide bandwidth, low input impedance and high output impedance characteristics needed for many current domain signal processing applications. Since its first proposal in 1968 and its reformulation named as the second generation current conveyor in 1970 this circuit element continues to receive a great deal of attention and find numerous applications. This growing interest to current-mode approach, has led us to focus on this basic building block of current-mode design, and its widely used application of active filters. In active filters, the performance of the active element plays an important role in the overall performance of the filter, besides the filter configuration itself. It is obvious that the non-idealities of the current conveyor will result in deviations in filter parameters such as the cutoff frequency, quality factor and filter gain. Therefore the derivation of analytical expressions for the deviations in the filter parameters in terms of current conveyor non-idealities may be of vital importance. This will enable one to realize the effect of each non-ideality term on the filter parameters and help design or choose a suitable current conveyor configuration for a specified filter performance. After an introduction in Chapter 1, Chapter 2 starts with a complete macromodel, which fully represents both the small and large-signal behavior of the current conveyor, which is especially suitable for the simulation of active filter applications. Results show that the simple and yet accurate model provides a relative amount of simulation speedup. The studies made on eight current conveyor configurations found in literature are given in Chapter 3. Both bipolar and MOS structures, as well as one of the commercially available current conveyors, namely the AD844 circuit has been covered and compared results of the current conveyor performance characteristics are given. In Chapter 4 and 5, provided that a certain filter configuration is given, we will investigate the effects of current conveyor non-idealities on both voltage and current-mode active filter examples, and derive analytical expressions for the filter parameter deviations in terms of non- ideality terms. We will determine the requirements for the current conveyor non-ideality terms in order to obtain a specified filter performance. The filter configurations chosen, actually represent certain classes of active filters, which enables us to generalize the results obtained. A comparable demonstration of the filter transfer function and large- signal behavior for each current conveyor will be given. Simulations including three types of filters, namely, the bandpass, lowpass and highpass filters, confirm the analytical expressions obtained. In Chapter 6, current conveyors suitable for continuous-time filter applications will be proposed, taking the results obtained previously under consideration. Performance characteristics of the current conveyors and comparable demonstration of the voltage and current-mode filter performances will be given. The results show that acceptable performance has been obtained for the filters.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1998
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 1998
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 1998
Anahtar kelimeler
Akım taşıyıcı devreler,
Filtreler,
Current conveyor circuits,
Filters