Geniş Frekans Bandı Pervane Kavitasyon Spektrum Analizi
Geniş Frekans Bandı Pervane Kavitasyon Spektrum Analizi
Dosyalar
Tarih
Yazarlar
Altıntaş, Volkan
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Instıtute of Science and Technology
Instıtute of Science and Technology
Özet
Bu çalışmada, yarı-ampirik geniş band kavitasyon spektrum modeli ele alınmıştır. Kullanılan yöntem, uçak mühendisliği konularından, helikopter pervane gürültüsü ve uçak pervane gürültüsü formülasyonu üzerine kurulmuştur. Geniş band kavitasyon spektrumu, kavitasyonlu ve kavitasyonsuz olarak iki ayrı bölüm şeklinde ele alınmıştır. Bu iki spektrum eğrisi, frekans ile değişim gösteren pervane gürültüsü ses basınç seviyelerini göstermektedir. Elde edilen yarı ampirik spektrum fonksiyonları; itme, dairesel hız, kavitasyon sayısı, pervane geometrisi, ve akış izi düzgünsüzlük parametreleri içermektedir. Yöntem, kavitasyon başlama anındaki , pervane devrine dayanmaktadır. Kavitasyonsuz bölümün fonksiyonu yukarıda belirtilen çalışma koşulu parametrelerine bağlı olarak tepe noktası frekans değerine bağlı yaklaşık bir polinom şeklinde elde edilmiştir. Kavitasyonlu bölüm, kavitasyonsuz bölümün formülasyonunun modifiye edilmesi ile pervane yükü , pervane kanat özellikleri , iz katsayıları ve pervane tekne etkileşim parametreleri kullanılarak elde edilmiştir. Bir tepe noktası , alçak ve yüksek eğimden oluşan kavitasyonlu spektrum eğrisi ‘Gumbel’ istatistiki dağılım fonksiyonu kullanılarak konsolide edilmiştir. Kavitasyonlu ve kavitasyonsuz spektrum değerlerini logaritmik toplamı ile genel kavitasyon spektrumu elde edilmiştir.
In this study A semi-empirical broad band cavitation spectrum model has been considered involving the common propeller types and a variety of operating conditions. The method is based on aeronautics formulations for propeller noise from helicopter rotors and aircraft propellers. The method consists of a non-cavitating part and a cavitating part. These two spectral curves indicate the sound pressure levels as a function of frequency. These spectrum functions include thrust, rotational speed of propeller, cavitation number, propeller geometry (pitch and chord) and wake non-uniformity parameters. The method is related with the prediction of the propeller revolution per minute at which cavitation first occurs. The universal broad band spectral dependence function of noncavitating part was established as a polynomial depending on peak frequency. This has a broad peak and an almost symmetrical, slowly varying characteristic about this peak. The spectral dependence function for cavitating part was established with modification the formulation of non cavitating part and using the propeller load, propeller blade properties, wake parameters and hull-propeller interaction parameters. This function was first idealized as an inverted V with low and high slopes on either side of the peak and after that the spectral shape was consolidated using the Gumbel probability distribution function. The total spectrum was determined which is the logarithmic sum of the cavitating and noncavitating parts of the spectrum.
In this study A semi-empirical broad band cavitation spectrum model has been considered involving the common propeller types and a variety of operating conditions. The method is based on aeronautics formulations for propeller noise from helicopter rotors and aircraft propellers. The method consists of a non-cavitating part and a cavitating part. These two spectral curves indicate the sound pressure levels as a function of frequency. These spectrum functions include thrust, rotational speed of propeller, cavitation number, propeller geometry (pitch and chord) and wake non-uniformity parameters. The method is related with the prediction of the propeller revolution per minute at which cavitation first occurs. The universal broad band spectral dependence function of noncavitating part was established as a polynomial depending on peak frequency. This has a broad peak and an almost symmetrical, slowly varying characteristic about this peak. The spectral dependence function for cavitating part was established with modification the formulation of non cavitating part and using the propeller load, propeller blade properties, wake parameters and hull-propeller interaction parameters. This function was first idealized as an inverted V with low and high slopes on either side of the peak and after that the spectral shape was consolidated using the Gumbel probability distribution function. The total spectrum was determined which is the logarithmic sum of the cavitating and noncavitating parts of the spectrum.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2000
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2000
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2000
Anahtar kelimeler
: Kavitasyon Spektrumu,
Pervane Gürültüsü,
Sualtı Akustiği,
Cavitation Spectrum,
Propeller Noise,
Underwater Acoustic