Sıcak gıdalarda soğutma hızının mikrobiyolojik gelişim üzerine etkisi

dc.contributor.advisor Yeşilçubuk, Neşe Şahin
dc.contributor.author Coşkun, Cihan Kaan
dc.contributor.authorID 506161528 tr_TR
dc.contributor.department Gıda Mühendisliği tr_TR
dc.contributor.department Food Engineering en_US
dc.date 2019
dc.date.accessioned 2021-12-23T08:33:14Z
dc.date.available 2021-12-23T08:33:14Z
dc.date.issued 2019-06-01
dc.description Tez (Yüksek Lisans)-- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2019 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2019 en_US
dc.description.abstract C. perfringens çok sayıda toksin üretebilen, ısıya karşı dayanıklı spor oluşturabilen ve çok hızlı şekilde çoğalabilen patojen bir mikroorganizmadır. C. perfringens, çevrede geniş alanlara yayılmış olup, insan ve evcil hayvanların bağırsaklarında düşük miktarlarda ortaya çıkmaktadır. Vejetatif hücreler ve özellikle organizmanın sporları toprakta ve insan veya hayvan dışkı kirliliğine maruz kalan alanlarda yaşamını sürdürür. Herhangi bir çiğ gıda, özellikle kırmızı etler, kümes hayvanları ve deniz ürünleri, bu bakterinin vejetatif hücreleri veya sporlarını içerebilir. C. perfringens'in sporları, ısıya dirençleri bakımından diğer mikroorganizmalara göre büyük ölçüde farklılık gösterir. C.perfringens'in ısıya dayanıklı sporlarının 100°C'de 1 saat süreyle yaşayabildiği gösterilmiştir. C. perfringens, 7-10 dakikada sayısını ikiye katlayabilme özelliği ile diğer spor oluşturabilen patojen mikroorganizmalar arasında indikator mikroorganizma görevi görmektedir. C. perfrigens'in hem ısıya dayanıklı olması, hem çoğalabilme hızının çok yüksek olması, hem de çoğalabilme sıcaklık aralığının 15-60°C olması sebebiyle pişirildikten sonra soğutulan gıdalarda kendini çokça gösterebilmektedir. C. perfringens'in çoğalması sırasında üretmiş olduğu enterotoksin sebebiyle gıda zehirlenmesi yaşanabilmektedir. Ayrıca, içerisinde 5 log10 kob/g ya da daha fazla C. perfringens hücresi bulunan gıdalar tüketildiğinde de insan vücudunda zehirlenme belirtileri görülmektedir. ABD verilerine göre C. perfringens'ten meydana gelen hastalanma rakamları yılda 1 milyona ulaşmaktadır ve yaklaşık 30 kişinin ölümüne sebep olmaktadır. Bu sebeplerle, bazı ülkelerin gıdaların soğutulma sürelerine ilişkin lojistik, hazır yemek sektörü ya da üretim alanlarında uygulanmak üzere bazı düzenlemeleri bulunmaktadır. Bu tez çalışmasında, pişmiş yemeklerde soğutma hızının farklı yemek türlerinde C. perfringens gelişimi üzerine etkisi incelenmiştir. Pişirilen yemekler ile tasarlanan mikrobiyolojik analizler, yemeklerin, C. perfringens'in çoğalma sıcaklığı olan 15-60°C aralığını geçiş hızları göz önüne alınarak gerçekleştirilmiştir. Bu amaç doğrultusunda yemeklerin soğutulacağı 3 farklı soğutma ortamı üzerinde çalışılmıştır. Bu ortamlar 25°C'lik ortam sıcaklığı, 4°C'ye ayarlanmış orijinal buzdolabı ve yemeğin soğutulduğu bölmede bulunan fan kanalı sayesinde 5 L/s'lik hava üfleme debisi ile hızlı soğutma özelliği bulunan buzdolabıdır. Soğutma hızının mikrobiyolojik gelişimi üzerine çalışılması için belirlenen, C. perfringens'in çoğalması için uygun ortam sağlayan 3 farklı yemek türü, analizler için seçilmiştir. Bu yemekler kıymalı bezelye, etli kuru fasulye ve tavuklu patatestir. Günlük yaşamda bir problem olarak insanların karşısına çıkan, zehirlenmelere sebebiyet verebilecek bir durum olan soğutulmuş yemeklerin tekrar ısıtılıp tüketilmesi de göz önünde bulundurularak, soğutma hızları farklılıkları ile birlikte tekrar ısıtma senaryolarının sonuçları da ortaya konmaya çalışılmıştır. Etli kuru fasulye, kıymalı bezelye ve tavuklu patates yemekleri pişirildikten sonra 60°C'ye soğutulup numune alınmış, daha sonra ortam sıcaklığı, orijinal buzdolabı ve hızlı soğutma özelliği bulunan buzdolabı olmak üzere 3 farklı ortamda soğumaya bırakılmıştır. Ortam sıcaklığına bırakılan yemekler 25°C'ye ulaştıktan sonra buzdolabına konularak 15°C'ye soğutulmuş ve numune alınmış, orijinal buzdolabı ve hızlı soğutma özelliği bulunan buzdolabında soğutulan yemekler de 15°C'ye soğuduklarında numune alınarak C. perfringens miktarlarına bakılmak üzere mikrobiyolojik analizler yapılmıştır. Ortam sıcaklığında 60°C'den 25°C'ye ve daha sonra orijinal buzdolabında 25°C'den 15°C'ye soğutulan yemeklerin 15°C'ye soğumaları toplam 7,2 saat sürmüştür. Orijinal buzdolabında soğutulan yemekler 60°C'den 15°C'ye 5,8 saatte; hızlı soğutma özelliği bulunan buzdolabında soğutulmuş yemekler ise 2,9 saatte soğumuşlardır. 15°C sıcaklığa ulaşan yemekler daha sonra buzdolabında bırakılıp 4°C'ye soğutulmuş, 12 saat sonra dolaptan çıkarılıp 60°C'ye tekrar ısıtıldıktan sonra numune alınarak yine aynı şekilde farklı ortamlarda soğumaya bırakılmış ve 15°C'de numune alınmıştır. Mikrobiyolojik analiz sonuçlarına göre, ortam sıcaklığında 7,2 saatte soğutulmuş yemeklerde; orijinal buzdolabında 5,8 saatte soğutulan ve hızlı dondurma özelliği bulunan buzdolabında 2,9 saatte soğutulan yemeklere göre daha fazla C. perfringens artışı gözlenmiştir. Bu artış, yemek çeşidine göre değişiklik göstermekle birlikte, bazı durumlarda tekrar ısıtılma sonucunda USDA-FSIS'in belirlemiş olduğu 1 log10 kob/g sınırını da geçmekte ve insan sağlığını tehdit edecek boyuta ulaşmaktadır. Yemeklerde C. perfringens artışının çoğunlukla tekrar ısıtma sonucunda gerçekleştiği görülmekle birlikte, ilk soğutma ve tekrar soğutma sırasında belirgin bir artış gözlenmemiştir. Yemeklerin soğutulmaları ve tekrar ısıtılmaları sırasındaki artış miktarları, yemeklerde bulunan ilk C. perfringens miktarları ile alakalı olabilmekle birlikte, mikroorganizmanın yaşamsal dönemlerinde hangi faz döneminde bulundukları ile de ilgili olmaktadır. tr_TR
dc.description.abstract With the increasing population of the world and the necessity of nutrition of more people, increasing the efficiency in food production and distribution, thus preventing food losses is a great responsibility. Although the annual milk production in India is over 140 million tons and the meat production reach 220 million tons, per capita consumption is not satisfactory in terms of nutrition due to food losses in the distribution and consumption process. In the United States, food losses during retail sales, distribution and consumption accounted for approximately 23% for fruits; 24% for vegetables; 15% for meat, poultry and fish products and 30% for dairy products. Such losses are not limited to India and the United States of America, but significant losses of food occur worldwide. Therefore, it is essential to increase the yield of food and reduce food losses in order to meet the growing nutritional requirements of a growing world population. Reducing food losses, preserving food for longer periods, preserving nutritional properties, and public health are essential for safe handling, proper processing and preservation of food. Ensuring public health is one of the most important problems of these issues. Foodborne diseases are one of the most important problems threatening public health. Therefore, there is a need for projects that both prevent food waste and ensure public health. There are many factors that can cause foodborne disease outbreaks in homes. These include the intake of contaminated raw foods, food processing and home food preparation errors, and the consumption of raw and undercooked food of animal origin, often described as 'risky eating behavior'. All raw foods, including meat and poultry, raw eggs, fish and shellfish, and fruits and vegetables, should be considered as potential sources of entry for foodborne pathogens. The main infectious agents coming home via food include C. botulinum, C. perfringens, Bacillus cereus, S. aureus, E. coli, Salmonella, Shigella, Klebsiella and Vibrio parahaemolyticus. Each of these microorganisms may have different characteristics, but there are species that share the same common characteristics. The three most common errors in the processing and preparation of food that can allow these microorganisms to contaminate foods were identified as improper storage of food (insufficient and/or slow cooling, cooking at insufficient temperatures and/or insufficient reheating temperature), any process that could cause cross contamination, and the use of contaminated kitchen equipment. C. perfringens is a pathogenic microorganism capable of producing many toxins, which can form heat-resistant spores and can multiply very rapidly. C. perfringens spread over large areas in the environment and occur in small amounts in the intestines of humans and animals. Vegetative cells and spores live in the soil and in areas exposed to human or animal fecal contamination. Any raw food, especially red meats, poultry and seafood, may contain vegetative cells or spores of this bacteria. The spores of C. perfringens differ greatly with their heat resistance feature from other microorganisms. It has been shown that the heat-resistant spores of C. perfringens can survive at 100°C for 1 hour. C. perfringens can be doubled in 7-10 minutes by differentiating it from other microorganisms. C. perfrigens have both heat resistance and high speed of reproduction, and because they are capable of reproducing temperatures of 15-60°C, they can survive in a wide variety of foods after being cooked, while cooling. In humans, food poisoning may occur due to the enterotoxins produced by C. perfringens, if they consume the foods that have increased the number of C. perfringens more than1 log10 cfu/g after the moment they were cooked. There are also signs of poisoning in the human body when foods containing 5 log10 cfu/g or more C. perfringens cells are being consumed. According to US data, the number of sicknesses from C. perfringens reaches 1 million per year and causes death of approximately 30 people. For these reasons, some countries have some arrangements for the implementation of logistics, catering or production areas related to the cooling times of foods. In this thesis, the effect of cooling rate in cooked meals on growth of C. perfringens in different food types was investigated. The microbiological analyzes with the cooked dishes were carried out considering the cooling rates of the meals on the growth temperature of C. perfringens, which is 15-60°C. For this purpose, 3 different cooling environments were studied. These environments are the refrigerator with fast cooling capacity with 5 L/h airflow rate occupied with a fan channel in the compartment where the food is cooled; the room temperature at 25°C and the regular refrigerator set at 4°C. Three different types of food, selected for the study of microbiological development of the cooling rate, which provide a suitable medium for the growth of C. perfringens, were selected for analysis. These dishes include peas with minced meat, beans with chopped meat and potatoes with chicken. As a problem in daily life, it has been tried to reveal the results of the reheating scenarios together with the differences in cooling rates, considering the reheating and consumption of these meals, which is a condition that can cause poisoning. After cooking, the peas with minced meat, beans with chopped meat and potatoes with chicken meals were cooled to 60°C, and then sampled, then allowed to cool down in 3 different environments: the room temperature, the regular refrigerator and the refrigerator with fast cooling. The dishes left to the room temperature reached to 25°C, and then refrigerated, cooled to 15°C and sampled; the meals which cooled by original refrigerator and refrigerator with fast cooling were cooled to 15°C directly and sampled. Foods which were cooled from 60°C to 25°C at room temperature and then from 25°C to 15°C in the regular refrigerator took a total of 7.2 hours to cool down. Foods which were cooled from 60°C to 15°C in regular refrigerator had 5.8 hours of cooling; foods which were cooled with fast cooling feature have been cooled in 2.9 hours. The dishes that were cooled to 15°C were then left in the refrigerators and cooled to 4°C. After 12 hours they were removed from the refrigerators and heated to 60°C. According to the results of the microbiological analysis, more C. perfringens increase was observed in the meals that were cooled at room temperature in 7.2 hours compared to the meals which were cooled in 5.8 hours in the regular refrigerator and the meals which were cooled in 2.9 hours in the refrigerator with fast cooling. This increase varies from meal to meal, but in some cases, it exceeds the 1 log10 cfu/g limit determined by the USDA-FSIS as a result of reheating and reaches the dimension that threatens human health. Although the increase in C. perfringens was observed as a result of reheating, no significant increase was observed during initial cooling and re-cooling. The amounts of increase in the amount of C. perfringens in meals during the cooling and reheating are also related to the amount of C. perfringens at the beginning. It is also related to the growth phase of the microorganism during the period of life. When the amount of C. perfringens stated in the first cooling for beans with chopped meat dish is examined, it is seen that no cooling medium has increased by 1 log10 cfu/g. When the amount of C. perfringens in beans with chopped meat dish was reheated and cooled; during reheat, the increase in the amount of C. perfringens in meal cooled at ambient temperature was 1.94 log10 cfu/g. This increase did not comply with the compliance rules set by the USDA-FSIS and increased by more than 1 log10 cfu/g. In these conditions, beans with chopped meat can cause illness when they are cooled and reheated at ambient temperature. In microbiological analysis results of peas with minced meat meal, the maximum increase in C. perfringens amounts in the first cooling, reheating and second cooling processes was observed in slow-cooled peas with minced meat meal at room temperature; however, this increase did not exceed the 1 log10 cfu/g increase limit set by the USDA-FSIS. Considering the changes in the amount of C. perfringens during cooling, reheating and re-cooling of potatoes with chicken dish with different cooling rates, again, the highest increase was observed in the chicken potato cooled at room temperature. It is seen that the maximum increase is higher during the second cooling compared to the first cooking time; however, this increase was 0.87 log10 cfu/g and did not exceed 1 log10 cfu/g increase limit determined by USDA-FSIS. Thanks to the refrigerator which can provide fast cooling, both freshly cooked hot foods can be put in the refrigerator and cooled rapidly and limit the microbiological growth; as well as keeping the internal temperature of the refrigerator constant, preventing other foods from being exposed to high temperatures as much as possible. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/19738
dc.language Türkçe tr_TR
dc.language.iso tr en_US
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights Kurumsal arşive yüklenen tüm eserler telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights All works uploaded to the institutional repository are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Mikrobiyoloji, Gıda tr_TR
dc.subject Microbiology, Food en_US
dc.title Sıcak gıdalarda soğutma hızının mikrobiyolojik gelişim üzerine etkisi tr_TR
dc.title.alternative Effect of cooling rate on microbiological development in hot foods en_US
dc.type Master Thesis en_US
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
506161528.pdf
Boyut:
1.54 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.06 KB
Format:
Item-specific license agreed upon to submission
Açıklama