Elektrik Dağıtım Sistemlerinde Birleşik Dalgacık-sinir Ağı Tabanlı Sınıflayıcı
Elektrik Dağıtım Sistemlerinde Birleşik Dalgacık-sinir Ağı Tabanlı Sınıflayıcı
dc.contributor.advisor | Uçak, Canbolat | tr_TR |
dc.contributor.author | Dağ, Oben | tr_TR |
dc.contributor.department | Elektrik Mühendisliği | tr_TR |
dc.contributor.department | Electrical Engineering | en_US |
dc.date | 2002 | tr_TR |
dc.date.accessioned | 2015-05-12T12:47:24Z | |
dc.date.available | 2015-05-12T12:47:24Z | |
dc.description | Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2002 | tr_TR |
dc.description | Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2002 | en_US |
dc.description.abstract | Bu çalışmada, dağıtım sistemlerinde hibrid “Dalgacık-Yapay Sinir ağı (YSA) tabanlı” bir yaklaşımla arıza sınıflama işlemi gerçeklenmiştir. 34.5 kV “Sağmalcılar-Maltepe” dağıtım sistemi PSCAD/EMTDC yazılımı kullanılarak arıza sınıflayıcı için gereken veri üretilmiştir. Tezin amacı, on farklı kısa-devre sistem arızalarını tanımlayabilecek bir sınıflayıcı tasarlamaktır. Sistemde kullanılan arıza işaretleri 5 kHZ lik örnekleme frekansı ile üretilmiştir. Farklı arıza noktaları ve farklı arıza oluşum açılarındaki hat-akımları ve hat-toprak gerilimlerini içeren sistem arızaları ile bir veritabanı oluşturulmuştur. “Çoklu-çözünürlük işaret ayrıştırma” tekniği kullanılarak altı-kanal akım ve gerilim örneklerinden karakteristik bigi çıkarılmıştır. PSCAD/EMTDC ile üretilen veri bu şekilde bir ön islemden geçirildikten sonra YSA-tabanlı bir yapı ile sınıflama islemi gerçekleştirilmiştir. Bu yapının görevi çeşitli sistem ve arıza koşullarını kapsayan karmaşık arıza sınıflama problemini çözebilmektir. Bu çalışmada, Kohonen’in öğrenme algoritmasını kullanan bir “Kendine-Organize harita” ile “eğitilebilen vektör kuantalama” teknikleri kullanılmıştır. Bu “dalgacık-sinir ağı” tabanlı arıza sınıflayıcı ile eğitim kümesi için % 99-100 arasında ve sınıflayıcıya daha önce hiç verilmemiş test kümesi ile de %85-92 arasında sınıflama oranları elde edilmiştir. Elde edilen başarım oranları literatürdeki sonuçlara yakındır. Geliştirilen birleşik “dalgacık-sinir ağı” tabanlı sınıflayıcı elektrik dağıtım sistemlerindeki arızaların belirlenmesinde iyi sonuçlar vermiş ve iyi bir performans sağlamıştır. | tr_TR |
dc.description.abstract | In this study an integrated design of fault classifier in a distribution system by using a hybrid “Wavelet- Artificial neural network (ANN) based” approach is implemented. Data for the fault classifier is produced by using PSCAD/EMTDC simulation program on 34.5 kV “Sagmalcılar-Maltepe” distribution system in Istanbul. The objective is to design a classifier capable of recognizing ten classes of three-phase system faults. The signals are generated at an equivalent sampling rate of 5 KHz per channel. A database of line currents and line-to-ground voltages is built up including system faults at different fault inception angles and fault locations. The characteristic information over six-channel of current and voltage samples is extracted by the “wavelet multi-resolution analysis” technique, which is a preprocessing unit to obtain a small size of interpretable features from the raw data. After preprocessing the raw data, an ANN-based tool was employed for classification task. The main idea in this approach is solving the complex fault (three-phase short-circuit) classification problem under various system and fault conditions. In this project, a self-organizing map, with Kohonen’s learning algorithm and type-one learning vector quantization technique is implemented into the fault classification study. The performance of the wavelet-neural fault classification scheme is found to be around “99-100%” for the training data and around “85-92%” for the test data, which the classifier has not been trained on. This result is comparable to the studied fault classifiers in the literature. Combined wavelet-neural classifier showed a promising future to identify the faults in electric distribution systems | en_US |
dc.description.degree | Yüksek Lisans | tr_TR |
dc.description.degree | M.Sc. | en_US |
dc.identifier.uri | http://hdl.handle.net/11527/1368 | |
dc.publisher | Fen Bilimleri Enstitüsü | tr_TR |
dc.publisher | Institute of Science and Technology | en_US |
dc.rights | İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. | tr_TR |
dc.rights | İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.subject | Arıza Sınıflama | tr_TR |
dc.subject | Dalgacık Analizi | tr_TR |
dc.subject | Yapay Sinir Ağları | tr_TR |
dc.subject | Dağıtım Sistemleri | tr_TR |
dc.subject | Fault Classification | en_US |
dc.subject | Wavelet Analysis | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | and Distribution Systems | en_US |
dc.title | Elektrik Dağıtım Sistemlerinde Birleşik Dalgacık-sinir Ağı Tabanlı Sınıflayıcı | tr_TR |
dc.title.alternative | Combined Wavelet-neural Clasifier For Power Distribution Systems | en_US |
dc.type | Thesis | en_US |
dc.type | Tez | tr_TR |