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ELEKTRİK DAĞITIM SİSTEMLERİNDE BİRLEŞİK DALGACIK-SİNİR 

AĞI TABANLI SINIFLAYICI 

ÖZET 

 

Bu çalışmada, dağıtım sistemlerinde hibrid “Dalgacık-Yapay Sinir Ağı (YSA) 
tabanlı” bir yaklaşımla arıza sınıflama işlemi gerçeklenmiştir. 34.5 kV “Sağmalcılar-

Maltepe” dağıtım sistemi PSCAD/EMTDC yazılımı kullanılarak arıza sınıflayıcı için 
gereken veri üretilmiştir. Tezin amacı, on farklı kısa-devre sistem arızalarını 

tanımlayabilecek bir sınıflayıcı tasarlamaktır. Sistemde kullanılan arıza işaretleri      
5 kHZ lik örnekleme frekansı ile üretilmiştir. Farklı arıza noktaları ve farklı arıza 
oluşum açılarındaki hat-akımları ve hat-toprak gerilimlerini içeren sistem arızaları ile 

bir veri-tabanı oluşturulmuştur. “Çoklu-çözünürlük İşaret Ayrıştırma” tekniği 
kullanılarak altı-kanal akım ve gerilim örneklerinden karakteristik bilgi çıkarılmıştır. 

PSCAD/EMTDC ile üretilen veri bu şekilde bir ön işlemden geçirildikten sonra 
YSA-tabanlı bir yapı ile sınıflama işlemi gerçekleştirilmiştir. Bu yapının görevi 
çeşitli sistem ve arıza koşullarını kapsayan karmaşık arıza sınıflama problemini 

çözebilmektir. Bu çalışmada, Kohonen‟in öğrenme algoritmasını kullanan bir 
“Kendine-Organize Harita” ile “Eğitilebilen Vektör Kuantalama” teknikleri 

kullanılmıştır. Bu “dalgacık-sinir ağı” tabanlı arıza sınıflayıcı ile eğitim kümesi için 
% 99-100 arasında ve sınıflayıcıya daha önce hiç verilmemiş test kümesi ile de        
% 85-92 arasında sınıflama oranları elde edilmiştir. Elde edilen başarım oranları 

literatürdeki sonuçlara yakındır. Geliştirilen birleşik “dalgacık-sinir ağı” tabanlı 
sınıflayıcı elektrik dağıtım sistemlerindeki arızaların belirlenmesinde iyi sonuçlar 
vermiş ve iyi bir performans sağlamıştır. 
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COMBINED WAVELET-NEURAL CLASIFIER FOR POWER 

DISTRIBUTION SYSTEMS 

SUMMARY 

 

In this study an integrated design of fault classifier in a distribution system by using a 
hybrid “Wavelet-Artificial Neural Network (ANN) based” approach is implemented. 

Data for the fault classifier is produced by using PSCAD/EMTDC simulation 
program on 34.5 kV “Sagmalcılar-Maltepe” distribution system in Istanbul. The 

objective is to design a classifier capable of recognizing ten classes of three-phase 
system faults. The signals are generated at an equivalent sampling rate of 5 KHz per 
channel. A database of line currents and line-to-ground voltages is built up including 

system faults at different fault inception angles and fault locations. The characteristic 
information over six-channel of current and voltage samples is extracted by the 

“Wavelet Multi-resolution Analysis” technique, which is a preprocessing unit to 
obtain a small size of interpretable features from the raw data. After preprocessing 
the raw data, an ANN-based tool was employed for classification task. The main idea 

in this approach is solving the complex fault (three-phase short-circuit) classification 
problem under various system and fault conditions. In this project, a self-organizing 

map, with Kohonen‟s learning algorithm and type-one learning vector quantization 
technique is implemented into the fault classification study. The performance of the 
wavelet-neural fault classification scheme is found to be around “99-100%” for the 

training data and around “85-92%” for the test data, which the classifier has not been 
trained on. This result is comparable to the studied fault classifiers in the literature. 
Combined wavelet-neural classifier showed a promising future to identify the faults 

in electric distribution systems.  
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1. INTRODUCTION 

The quality of electric power has become an important issue for electric utilities and 

their customers. Customers, in particular, have become less tolerant of power quality 

disturbances and faults because these phenomena degrade the performance and 

efficiency of customer loads. 

In order to improve the quality of power, electric utilities continuously monitor 

power delivered at customer sites. Disturbance waveforms are captured and recorded 

continuously using power monitoring instruments. 

Existing methods to analyze and identify power disturbances are delicate and 

laborious since the primary methods are based on visual inspection of the 

waveforms. So, power quality engineers are swamped with an enormous amount of 

data to inspect [1]. 

It would be desirable if the data collection process could be further automated and 

the monitoring device not only monitors and records the disturbances, but also 

classifies them according to appropriate criteria. This would help to immediately 

detect a disturbance or fault and then make the appropriate decision to eliminate the 

fault. Therefore, this would minimize the customer displeasure and provide to obtain 

optimum efficiency from the power system. 

1.1 Introduction and Background 

One of the most common techniques utilized for fault analysis is one based on the 

symmetrical components theory [2]. This technique requires computation of 

symmetrical components phasors, resulting in positive, negative, and zero sequence 

phasors. The computation of phasors requires appropriate processing considerations. 

The most important considerations in computing power system phasors are the 

sampling rate, antialising filters, and data window. The sampling rate is determined 
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by the method used for phasor computation such as Fourier transform. The 

antialising filters are used to band limit the frequency spectrum of the input current 

and voltage to meet the sampling theorem, which states that the sampling frequency 

should be at least twice the highest frequency in the spectrum. The data window 

consideration relates to the number of samples required to compute a phasor. The 

most common data window is one cycle. When symmetrical component phasors are 

calculated; known theory of fault analysis is applied to determine fault occurrence 

and fault type. 

Fault type and phase classification utilizes the negative and zero sequence 

components (magnitude and phase) of the currents and voltages, to classify the fault 

type and phase [3]. Under normal and symmetrical fault (three line-to-ground) 

conditions, the zero and negative sequence components in the line currents are nearly 

zero. The presence of only the negative sequence component in the fault current 

indicates that a line-to-line fault has occurred. The presence of negative and zero 

components indicates that a fault of single line-to-ground or double line-to-ground 

has occurred [4].  

Another approach that can be used for fault classification is to utilize samples of 

currents and voltages directly without computation of phasors and related 

symmetrical components. There is no need to perform extensive filtering to obtain 

phasors. Instead, transient waveform data can be utilized directly to perform the 

required processing. In addition, the data window does not need to satisfy particular 

rules present for the phasor calculation. This approach is based on the use of artificial 

neural networks [2]. 

An artificial neural network (ANN) is a parallel, distributed, information processing 

structure consisting of processing elements, which can possess a local memory and 

carry out localized information processing operations [5]. Each processing element 

has a single output connection that branches into as many connections as desired 

(each carrying the same signal, that the processing element produced). The 

processing element output signal can be of any mathematical type desired. All of the 

processing that goes on within each processing element must be completely local; 

i.e., it must depend only upon the current values of the input signal arriving at the 

processing element by the connections and upon values stored in the processing 
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element‟s local memory. The key elements of most neural net descriptions are 

distributed representation, the local operations, and nonlinear processing. ANNs are 

primarily used in situations in which only a few decisions are required from a 

massive amount of data and situations in which a complex nonlinear mapping must 

be learned. Main applications of neural computing include:   

 Functional approximation, 

 Clustering, 

 Data compression, 

 Optimization, 

 Topological mapping. 

ANNs are useful in cases where the nature of the input-output functional relationship 

is neither well defined nor easily computable. Furthermore, ANNs are able to 

compute the answer quickly by using associations learned from previous experience. 

When an ANN is fully trained, it is capable of mapping an unfamiliar input vector to 

an arbitrary surface. In other words, an artificial neural net generalizes instead of 

performing “table-lookup”. ANNs have been successfully applied to various pattern 

classification problems in terms of their learning ability, high discrimination power, 

and generalization ability. Classification, by definition, means to assign a physical 

object or event into one of several prespecified classes based on the extraction of 

significant features and the processing or analysis of these features [6]. In this 

respect, ANN technique provides the ability to classify the faulted phase/phases by 

identifying different patterns of the associated voltages and currents.  

Recently, artificial intelligence (AI) techniques that include artificial neural networks 

(ANNs), fuzzy logic, genetic algorithms, and expert systems have been used to solve 

many nonlinear classification problems [7]. Since each branch has its own 

advantages/disadvantages, for any complex classification task, it is essential to 

compare all possible AI techniques and then choose the one appropriate for solving a 

specific problem. For example, in the case of fault classification, an ANN on its own 

or an ANN integrated with fuzzy logic or genetic algorithm for training purposes can 

be employed; it should be mentioned that an ANN on its own requires a longer 
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training time compared to the latter approach, but it is important to note that once 

trained and provided the size of the ANN is not too large, its testing and application 

is fast and hence a fault classifier based solely on an ANN can satisfy the speed 

requirements on an on-line fault classification scheme. Another technique, such as 

that based on combined fuzzy logic and an expert system, has been found to be 

useful for fault detection in power systems but such an approach is not particularly 

well suited for fault classification [8]. Also, though much promise has been shown by 

expert systems technology, a fundamental limitation is the a priori formulation of 

“rules” for the device or system application. In other words, an expert system 

solution to a given problem presumes that some human expert can solve the problem. 

This is not a serious limitation for many problems, since heuristic rules can be 

derived in most cases; however, expert systems cannot be applied to problems for 

which little human expertise exists, as in the case of fault classification with many 

variables and nonlinear characteristics.  

From the view of ANN training techniques, they can be defined as supervised, 

unsupervised, and reinforced learning algorithms. For example, one of the typical 

supervised learning algorithm is error back-propagation (BP), which employs a 

nonlinear regression technique to achieve minimum error goal. Even though it has 

been reported that BP is adequate for though pattern classification problems owing to 

its high discrimination power and excellent generalization ability [6], the number of 

classes to be allowable is too small to apply it directly to large-set classification 

problems without preclassification. In other words, as the number of classes 

increases, the computational complexity of the learning problem quickly reaches 

unmanageable proportions. Furthermore, it is very difficult to determine the structure 

and size of the network for the classification of large-set and complex patterns. It is 

presented in [7] that for a fault classification study, when the voltage and current 

waveforms are preprocessed into nonstationary waveforms, although a fault classifier 

with the supervised training technique can reach the desired global minimum, the 

classification rate is only about 79%. However, when a fault classifier is based on an 

unsupervised (i.e., Kohonen ANN) or combined supervised and unsupervised 

training technique, such as self-organizing mapping (SOM), radial-basis function 

(RBF), Counter Propagation Network (CPN), the classification rate can reach a high 

level of about 95%. The last ANN training technique is reinforced learning 
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algorithm, i.e., a genetic algorithm which is used to search the weight space of a 

multilayer feed-forward ANN without the use of any information. The basic concept 

behind this technique is that complete sets of weights are coded into a string, which 

has an associated fitness finding attribute for the optimal weight. Although the 

reinforced learning performs a global search and therefore minimizes the possibility 

of getting stuck in local minima, the training is very time-consuming; classification 

rate is around 85% [7]. 

It is well known that, there is usually a high volume of recorded event data to be 

processed and classified when dealing with power quality analysis. This makes it 

very difficult and time-consuming to interpret the data and provide useful operations. 

Then, large dimensionality of the data is one general problem that exists. Moreover, 

a major concern arising from the classification of a large data set is the complexity of 

the discrimination process. Due to changes in the disturbance type, duration and its 

frequency components (which may overlap in time), the parameters in the 

discriminant model become highly variable. This leads to a considerable 

deterioration in classification performance of the classifier. To overcome this 

problem, it is often necessary to decrease the number of variables and/or data to a 

manageable size [9]. 

Wavelet analysis techniques have been applied with success in a wide variety of 

research areas such as signal analysis, image processing, data compression, de-

noising and numerical solution of differential equations. The wavelet analysis 

techniques have been proposed extensively in the literature as an approach for fault 

detection, localization and classification of different power system transients. 

When a fault occurs in a distribution system, disturbance signals like transients 

would present in the voltage and current signals. These high-frequency parts of the 

signals carry essential information that could be used in classifying the fault types. 

By careful observation of current and voltage waveforms and frequency spectra, 

some characteristics may be identified for each fault type. Wavelet transform 

provides the task of extracting the information in the current and voltage waveforms. 

As a means to reduce the number of inputs into the ANN, Wavelet transform may be 

used to find the reduced model of the event data. 
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1.2 Literature Review 

This section provides a comprehensive literature review of studies related to fault 

classification and power quality disturbance analysis with artificial intelligence 

techniques such as artificial neural networks, fuzzy-logic techniques, and expert 

systems. 

In [10], A. K. Ghosh and D. L. Lubkeman introduced an artificial neural network 

methodology for the classification of waveforms that are captured, as part of a larger 

scheme to automate the data collection process of recorders. They investigated two 

different neural network paradigms: feed-forward neural network (FFNN) and the 

time-delay neural network (TDNN), which has the ability to encode temporal 

relationships found in the input data and exhibit a translation-shift invariance 

property. Also a comparison of these paradigms based on a typical distribution 

circuit configuration is presented by the authors. They showed that the classification 

rate of FFNN (72%) is better than TDNN (57%) under different events simulated by 

EMTP program on a distribution system including different system and fault 

conditions. They also used a modified TDNN architecture and obtained classification 

rate up to (92%). The authors concluded that future work would involve the 

implementation of the classification/data collection scheme in the real systems as a 

part of data monitoring and classifying implementation. 

Another work described in [11] addresses the problems encountered by conventional 

techniques in fault type classification in double-circuit transmission lines, which 

arise due to the mutual coupling between the two circuits under fault conditions, and 

this mutual coupling is highly variable in nature. It is shown that a neural network 

based on combined unsupervised/supervised training methodology provides the 

ability to accurately classify the fault type by identifying different patterns of the 

associated voltage and currents. The authors also compared their technique with a 

supervised training algorithm (back-propagation (BP) network classifier). The 

proposed system was tested under different fault types, location, resistance and 

inception angle; different source capacities and load angles. The authors showed that 

the technique based on hybrid SOM-LVQ network correctly identifies the faulted 
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phases in spite of the presence of the highly variable mutual coupling effect between 

the two circuits. Also they figured out that the performance of the proposed fault 

classification scheme is better than the BP network with supervised learning. They 

declared that the BP network needs much larger number of training sets and the 

training phase of BP is very slow and time consuming. Moreover, retraining the BP 

network with new data associated with contingencies may not converge to the 

desired value. When the learning gets stuck on local minima, the requisite 

performance can never reached. They also included that the number of neurons in the 

Kohonen map is very much dependent on the number of training sets. But, in 

practice, this problem is mitigated by the fact that there is a requirement for a much 

more smaller number of data sets as compared to the BP networks to cover all types 

of practically encountered different fault conditions. 

The study of F. N. Chowdhury and J. L. Arevena presents a modular and integrated 

approach to the problem of fast fault detection and classification [12]. They 

emphasized that although the specific application example studied is a power system, 

their method would be applicable to dynamic systems as well. They proposed a 

model-free case that use the concepts from signal processing and wavelet theory to 

create fast and sensitive fault indicators. The method to create indicators utilizes 

multirate filter banks based on wavelet decomposition of a given data. Then, they 

used the indicators to be analyzed by artificial neural networks to create intelligent 

decision rules. After a detection, the fault indicator is processed by a Kohonen 

network to classify the fault. They included that results of computer experiments 

with simulated faulty transmission lines are satisfactory. They concluded that their 

integrated and modular approach can eventually be developed into a widely 

applicable tool in detection and classification of faults in dynamic systems. 

The study in [13] explores the possibility of using neural networks to identify faults 

that may have occurred in an ac-dc power system. This study showed that based on 

the ability of neural networks to distinguish reliably between different types of faults, 

appropriate control measures can be taken to improve the dynamic performance of 

the ac-dc power system. The authors emphasized that in their study the CPN based 

on Kohonen layer was used for its simplicity, easy training features and good 

statistical model representation of the input environment. They concluded that the 

artificial neural networks could be used to distinguish typical faults (single line-to-
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ground, double line-to-ground, three phases-to-ground, line-to-line faults; dc line 

fault) that can occur in an ac-dc power system. Also they figured out that once the 

work on fault identification has been completed, it is intended to use the resulting 

information to adapt the dc controller parameters to optimize the dynamic behavior 

of the ac-dc power system. 

A study on an artificial neural network to classify power system disturbances 

according to power system response characteristics is presented by K.L. Frick and 

S.K. Starrett in [14]. They used Prony analysis to represent the original time series 

data as a sum of exponential terms defined by frequency, phase, amplitude, and 

damping coefficients. These variables are presented as an input to the competitive 

layer architecture with Kohonen learning rule. They found that there is a correlation 

between the classifications found by the competitive layer neural network and the 

geographic location of the disturbance. They also figured out that the system 

conditions also play a significant role in the disturbance characteristics. 

Fuzzy logic and expert systems have also found applications in power systems for 

fault classification. In the following paragraphs the studies related to fuzzy-logic, and 

expert systems for fault classification will be mentioned. 

In [15] the authors presented a new approach to real-time fault detection and 

classification in power transmission systems using fuzzy-neuro techniques. They 

pointed out that the integration with neural network technology enhances fuzzy logic 

systems on learning capabilities. In this study the symmetrical components in 

combination with three line currents are utilized to detect fault types such as single 

line-to-ground, line-to-line, double line-to-ground and three line-to-ground. The 

authors proved that the proposed approach gives a fast, accurate and robust 

classification for various system conditions. They concluded that the fuzzy-neuro 

model with further refinement could be implemented in an actual power system to 

monitor occurrence of faults and take necessary action.  

In [7], the problems of fault diagnosis in complex parallel transmission systems is 

addressed. In this study, a fuzzy ARTmap (adaptive Resonance Theory) neural 

network is employed and is found to be well suited for solving the fault classification 

problem under various system conditions. They proved that the artificial neural 
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network based on the supervised adaptive resonance theory can identify the faulted 

phase with a high degree of accuracy. The classification technique is compared with 

a Neural Network technique based on the error back-propagation training algorithm, 

and found that the fuzzy ARTmap technique is better suited for solving the fault 

diagnosis problem, the classification rate is higher and also the training times 

required are shorter for the same training sets. They concluded that this proposed 

fault diagnosis technique based on fuzzy ARTmap network is well suited for the 

complex transmission systems than other more conventional ANN-based techniques. 

In [16], a system for the identification of power quality violations is proposed. A 

two-stage system that employs the potentials of the wavelet transform and the 

adaptive neurofuzzy networks is presented in the study. For the first stage, the 

authors used the wavelet multiresolution signal decomposition technique to denoise 

and then decompose the monitored signals of the power quality events to extract their 

detailed information. This stage provides a set of reduced data set for the training 

data. A modified organization map of the neurofuzzy classifier is trained with the 

extracted features to recognize ten event categories. The authors concluded that the 

proposed scheme can be extended to accommodate hybrid disturbed signals which 

can assist as a step towards building an intelligent recorder capable of the detection 

and identification of power quality violation events automatically. 

A hybrid scheme using a Fourier Linear Combiner and a fuzzy expert system for the 

classification of transient disturbance waveforms in a power system is presented in 

[17] by P.K. Dash, S. Mishra, M. M. A. Salama, and a. C. Liew. In this study the 

captured voltage and current waveforms are passed through a Fourier Linear 

Combiner block to provide normalized peak amplitude and phase at every sampling 

instant. These features are than passed on to a diagnostic module that computes the 

truth value of the signal combination and determines the class to which the waveform 

belongs. The authors depicted that the fuzzy expert system yields a robust and 

accurate classification scheme for a variety of simulated waveforms containing 

harmonic distortions and noise. They concluded that the approach is found to be 

computationally simpler than the ANN and Wavelet approaches which are currently 

used for transient disturbance classification. 
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In the following paragraphs the signal processing studies related to Wavelet 

transform and Multiresolution signal decomposition techniques for fault detection 

and classification will be given. 

In [18], the use of the Wavelet transform and Multiresolution signal decomposition 

as an analysis tool to detect and localize transient events and classify different power 

quality disturbances is presented. The authors emphasized that the property of 

Multiresolution signal decomposition (MSD) shows the ability to extract important 

information from the analyzed distorted signal and furthermore separate power 

quality problems that overlap in both time and frequency. They used std_MSD curve 

technique, which is the standard deviation of the MSD coefficients, to construct a 

time-frequency picture of the distorted signal. This technique presents a classification 

role for the operator to detect, localize, and classify different power quality problems. 

They concluded that using std_MSD it is possible to distinguish among similar 

power quality problems. Also it can help in finding the source of disturbance. 

An algorithm for detecting and classifying fault transients in underground cable 

systems based on the use of discrete wavelet transform is presented in [19] by W. 

Zhao, Y.H. Song, and Y. Min. The authors developed an algorithm for fault detection 

and classification based on discrete wavelet analysis on power cables. The authors 

emphasized that the property of multiresolution in time and frequency provided by 

wavelets allows an accurate time location of fault transients while simultaneously 

retaining information about the fundamental frequency and its high-order harmonics, 

which is efficient to extract characteristics of different types of fault in underground 

cable systems. They concluded that it is necessary to fully evaluate the proposed 

technique as part of protection relays or fault locators under a wide range of system 

and fault conditions. 

1.3 Objective of The Thesis 

In this thesis, it is intended to provide a contribution to the fault classification studies 

in the literature to further improve the classification performance and to present a 

new approach to the previous studies. The objective is to design a classifier capable 

of recognizing ten classes of three-phase system faults.  
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The thesis is organized as follows. An introduction to the PSCAD/EMTDC software, 

which is used for generating the data from the 34.5 kV distribution system, is 

presented in Chapter II. Chapter III presents the theoretical aspects of the wavelet 

transform and multi-resolution signal decomposition. Also a comparison between the 

wavelet transform, Fourier transform and short-time Fourier transform are presented 

in this section. Chapter IV illustrates the theoretical aspects of the artificial neural 

networks. The theoretical background is provided in the thesis to help the reader with 

the background of the techniques and also they are referred by other chapters to 

clarify some points. The application of the proposed technique on a distribution 

system is presented and the results are demonstrated in Chapter V. Finally, the 

conclusion is presented in Chapter VI. 
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2. ELECTROMAGNETIC TRANSIENTS SIMULATION PROGRAM  

EMTDC is a transients simulator of electric networks with the capability of modeling 

complex power electronics, controls and the non-linear network. It has been evolving 

since the mid 1970‟s. The acronym stands for “Electro-Magnetic Transients in DC 

systems” since the program was originally developed for studying high-voltage DC 

(HVDC) system. 

The origin of EMTDC is based on the study of Dr. Hermann Dommel‟s paper 

published in the IEEE Transactions of Power Apparatus and Systems in April 1969 

[20]. 

The Manitoba HVDC Research Center created PSCAD/EMTDC in the early 1990s 

for use on Unix workstations. PSCAD is the graphical user interface. With the 

emergence of Windows OS for personal computers and its expanding capabilities, 

the Manitoba HVDC research Center developed a new version of PSCAD known as 

PSCAD/EMTDC Version 3, which is a versatile tool to study AC as well as DC 

power system problems. 

One of the methods of understanding the behaviour of a complex system is to study 

its response for disturbances or parametric variations. Simulation is one way of 

producing these responses. In power systems; these responses can be studied by 

observing either the time domain instantaneous values, time domain “rms” values, or 

the frequency components of the response. 

PSCAD/EMTDC is a simulation tool for analyzing power systems. PSCAD is the 

graphical user interface and EMTDC is the simulation engine. PSCAD/EMTDC is 

most suitable for simulating the time domain instantaneous responses, known as 

electromagnetic transients of electrical systems. The PSCAD Graphical Interface 

enhances the power of EMTDC. It allows to schematically construct a circuit, run a 

simulation, analyze the results, and manage the data in a graphical environment. 



 13 

Simulation is one method of analysis which can be used to examine a complicated or 

non-linear model or process. The operation of that model can be tested by subjecting 

it to disturbances and parameter variations and the stability of its response can be 

observed. In electric power systems, some of the components which EMTDC can 

model are [20]: 

 Resistor, inductor and capacitor circuit elements.  

 Mutually coupled windings such as transformers.  

 Distributed frequency dependent transmission lines and cables.  

 Sources, both Thevenin (voltage) and Norton (current).  

 Switches, breakers, thyristors, diodes.  

 Analogue and digital control functions.  

 AC machines.  

 Meters and measuring functions.  

 Generic DC and AC controls.  

 HVDC, and Static Var Compensator.  

EMTDC is generally used in planning, operation, design, teaching and advanced 

research by engineers, manufactures, consultants, research and academic institutions. 

Examples of typical studies which have been investigated using EMTDC are as 

follows [20]:  

 Studies of AC networks consisting of rotating machines, exciters, governors, 

turbines, transformers, transmission lines, cables, loads.  

 Relay coordination.  

 Transformer saturation effects.  

 Insulation coordination of transformers, breakers and arrestors.  
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 Impulse testing of transformers.  

 Sub-synchorous resonance (SSR) studies of networks with machines, 

transmission lines and HVDC systems.  

 Filter design and harmonic analysis  

 Control system design and coordination of HVDC; including STATCOM and 

VSC.  

 Studies to determine the worst case over voltage due to lightining strikes, 

faults or breaker operations.  

 Investigate the pulsing effects of diesel engines and wind turbines on electric 

networks. 
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3. TIME-FREQUENCY ANALYSIS  

3.1 Introduction 

The aim of signal analysis is to extract relevant information from a signal )(tf  by 

transforming it from one domain to another. The transformation of a function is a 

mathematical operation that results in a different representation of it. One example is 

Fourier Transform (FT) that gives superposition of functions by the building blocks 

or basis functions: sines and cosines. As an illustration to Fourier Transform, a prism 

acts as a transformer by decomposing sunlight into its visual spectrum of different 

colors (frequencies). So a transform reveals the composition of a signal in terms of 

the building blocks, or basis functions (of the transformed domain) that are not 

readily available from the original signal [21].  

Fourier series are ideal for analyzing periodic signals, since the harmonic modes used 

in the expansions are themselves periodic. By contrast, the Fourier analysis is a far 

less natural tool because it uses periodic functions to expand non-periodic functions. 

Two possible substitutes are the windowed Fourier Transform and the Wavelet 

Transform [22].  

While classical Fourier analysis manages to deal with periodic and stationary signals, 

it is inadequate to analyze non-stationary signals, signals with discontinuities and 

transients. The limitations of Fourier analysis are that they require all time functions 

involved to be periodic, and the Fourier analysis does not consider frequencies that 

evolve in time.  

The analysis of non-stationary signals often involves a compromise between how 

well transitions or discontinuities can be located, and how finely long-term behavior 

can be identified. A typical example is the choice of window length in the Short 

Time (windowed) Fourier Transform (STFT). In STFT, the signal is divided into 



 16 

small enough segments, where these segments (portions) of the signal can be 

assumed to be stationary. For this purpose, a window function is chosen [23].  

Another concept in non-stationary signal analysis is the Wavelet Analysis. In 

contrast to a Fourier sinusoidal signal, which oscillates forever, a wavelet is localized 

in time and it lasts for only a few cycles. The wavelet transform (WT), like the 

STFT, provides an understandable transient signal representation corresponding to a 

time-frequency plane. This plane gives time and frequency related information of 

analyzed signal. WT is more efficient than Fourier analysis when a signal is 

dominated by transient behavior and discontinuities. Wavelet algorithm process data 

at different scales or resolutions such that a rough approximation of the signal might 

look stationary, while at a detailed level, for instance with small window, 

discontinuities may become apparent. Moreover, unlike STFT, which uses a single 

analysis window, the WT uses short windows at high frequencies and long windows 

at low frequencies. Thus the windowing of wavelet transform is adjusted 

automatically for low or high frequencies. The result in wavelet analysis is to see 

both the forest and the trees [24].  

The basic concept in wavelet analysis is to select an appropriate wavelet prototype 

(or kernel) function, called an analyzing wavelet or mother wavelet, and then 

perform an analysis using shifted and scaled versions of the mother wavelet. Time 

(or space) analysis is performed with a contracted (high frequency) version of the 

prototype wavelet, while frequency analysis is performed with the dilated (low 

frequency) version of the same mother wavelet.  

Since the original signal or function can be represented in terms of a wavelet 

expansion, the operations can be performed using just the corresponding wavelet 

coefficients.  

Wavelet transforms have been proven to be very efficient in signal analysis. This 

efficiency comes from the reduction in the number of coefficients as the scaling 

factor increases. The wavelet expansion separates signal components that overlap in 

both time and frequency. Wavelets can be designed to fit different applications. The 

calculation of the discrete wavelet transform is well matched to digital computer 

[23].  
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3.1.1 Historical Perspective  

The French mathematician Joseph Fourier asserted in 1807 that any 2-periodic 

function )(tf  can be expressed as an infinite sum of periodic complex exponential 

functions [25]. He showed that )(tf  is the sum  
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Fourier‟s assertion played an essential role in the evolution of the functions in 

mathematics. After 1807, by exploring the meaning of functions, Fourier series 

convergence, and orthogonal systems, mathematicians gradually were led from their 

previous notion of frequency analysis to the notion of scale analysis. This provides 

analyzing )(tf  by creating mathematical structures that vary in scale. The procedure, 

briefly, is as follows: first construct a function and shift it by some amount then 

change its scale. Apply that structure in approximating a signal. Repeat the 

procedure. Take that basic structure, shift it, and scale it again. Apply it to the same 

signal to get a new approximation, and so on [25].  

The first mention of wavelets appeared in an appendix to the thesis of A. Haar in 

1909. One property of the Haar wavelet is that it has compact support, which means 

that it vanishes outside of a finite interval. Unfortunately, Haar wavelets are not 

continuously differentiable, which limits their applications [25].  
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In the 1930s, several groups working independently researched the representation of 

functions using scale-varying basis functions. Paul Levy, a physicist, investigated 

Brownian motion, a type of random signal by using a scale-varying basis function 

called the Haar basis function in 1930. He found that the Haar basis function is 

superior to Fourier basis functions for studying small-complicated details in the 

Brownian motion [25].  

The beginning of the wavelet transform as a specialized field can be traced to the 

work of Grossman and Morlet in 1984. Their motivation in studying wavelet 

transforms was provided by the fact that certain seismic signals can be modeled 

suitably by combining translations and dilations of a simple, oscillatory function of 

finite duration called a wavelet [26].  

In 1985, Stephane Mallat gave wavelets an additional jump-start through his work in 

digital signal processing. Mallat discovered some relationships between quadrature 

mirror filters, pyramidal algorithms, and orthonormal wavelet bases [25].  

In 1993, Y. Meyer constructed the first wavelets. Unlike Haar wavelets, Meyer 

wavelets are continuously differentiable; however, they do not have compact support 

[25].  

In 1996, Ingrid Daubechies used Mallat‟s work to construct a set of wavelet 

orthonormal basis functions that have become the cornerstone of wavelet 

applications today [25].  

In the next section, the fundamentals of Fourier Transform and its variances will be 

given. Besides that, the similarities and dissimilarities between Fourier Transform 

and Wavelet Transform will also be described.  

3.1.2 Fourier Transforms  

The Fourier Transform‟s utility lies in its ability to analyze a signal in the time 

domain for its frequency content. The transform works by first translating a function 

in the time domain into a function in the frequency domain. The signal can then be 

analyzed for its frequency content because the Fourier coefficients of the transformed 

function represents the contribution of each sine and cosine function at each 
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frequency. The reconstruction of the signal can be done with Fourier coefficients by 

inverse Fourier transform that gives a mapping from the frequency domain to the 

time domain.  

The Discrete Fourier Transform (DFT) estimates the Fourier Transform of a function 

from a finite number of its sampled points. The DFT has symmetry properties almost 

exactly the same as the Continuous Fourier Transform [25].  

The classical Fourier Transform is a standard tool for stationary and periodic signals 

[24]. However, in the case of non-periodic signal, the summation of the periodic 

functions (sine and cosine) does not accurately represent the signal. And in the case 

of non-stationary signal, the classical FT does not give a good performance to adapt 

any abrupt change in the signal.  
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Figure 3.1 The illustration of frequency response for stationary and nonstationary 
signals (a) Stationary signal )(tf , (b) Non-stationary signal )(tg  (c) FT of )(tf ,  (d) 
FT of )(tg  

Figure 3.1 illustrates the case of non-stationary signal problem in classical Fourier 

Transform. Figure 3.1a represents a stationary signal, )(tf  with two frequency 

components of 5 and 20 Hz., all-occurring at all times. And Figure 3.1c is the FT of 
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)(tf ; that the two peaks in the figure correspond to two different frequencies. 

Another signal )(tg  with the same frequency components, 5 and 20 Hz. respectively, 

occurring at different times is given in Figure 3.1b, and Figure 3.1d represents its FT. 

It is clear that the FT of )(tf  is almost the same with the FT of )(tg . (The ripples in 

both of the Figure 3.1c and Figure 3.1d show that, those frequencies also exist in the 

signal; but the reason they have small amplitude is because, they are not major 

spectral components of the given signal.) To summarize, FT cannot distinguish the 

two signals very well. According to FT both of the signals are the same since they 

contain the same frequency components. Therefore, FT is not suitable for analyzing 

non-stationary signals. 

The Windowed Fourier Transform (WFT) is a solution to the problem of better 

representing the non-periodic and non-stationary signals. WFT has the ability to give 

information about signals simultaneously in time and frequency domains. With WFT 

the input signal is segmented into sections, and each segment is analyzed for its 

frequency content separately. The idea is to introduce a local frequency parameter 

(local in time) so that the local FT looks at the signal through a window over which 

the signal is approximately stationary. So the effect of the window is to localize the 

signal in time [24].  

To approximate a function by samples, and to approximate the Fourier integral by 

the discrete Fourier transform, requires applying a matrix whose order is the number 

of sample points ( n ). Since multiplying an ( nn ) matrix by a vector costs on the 

order of ( 2n ) arithmetic operations, the problem gets quickly worse as the number of 

sample points increase. If the samples are uniformly spaced, then the Fourier matrix 

can be factored into a product of just a few sparse matrices, and the resulting factors 

can be applied to a vector in total of order ( nn log ) arithmetic operations. This is the 

so-called Fast Fourier Transform [23].  
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3.1.3 Wavelet Transform Versus Fourier transform  

3.1.3.1 Similarities  

The mathematical properties of the matrices involved in the FFT and Discrete 

Wavelet Transform (DWT) are similar. The inverse transform matrix for both the 

FFT and the DWT is the transpose of the original. So, both of the transforms can be 

viewed as a rotation in function space to a different domain. For the FFT, this 

domain contains basis functions that are sines and cosines. For the wavelet 

transform, this domain contains more complicated functions called wavelets, mother 

wavelets, or analyzing wavelets.  

Besides that, the basis functions for both of the FFT and DWT are localized in 

frequency, which makes mathematical tools such as power spectra and scalograms 

useful for picking out frequencies and calculating power distributions.  

3.1.3.2 Dissimilarities  

A limitation of STFT is the fact that only one single window is used for all 

frequencies. So, once a window is chosen for STFT, then the time-frequency 

resolution is fixed over the entire time-frequency plane because the same window is 

used for all frequencies. This is shown in Figure 3.2b, while Figure 3.2a shows the 

basis functions of the STFT. For instance, if the signal is composed of small bursts 

associated with long quasi-stationary components, then each type of component can 

be analyzed with good time resolution or frequency resolution, but not both.  

Another important case related to STFT is the Uncertainty Principle, which prevents 

the possibility of having arbitrarily high resolution in both time and frequency. It 

lower bounds the time-bandwidth product of possible basis functions by  

)4/1( T                                                                          (3. 3) 

where T  and   are the resolution in time and frequency of the STFT analysis 

[26]. Equation 3.3 is referred to as the uncertainty principle, or Heisenberg inequality 

(see Appendix 6). It means that one can only trade time resolution for frequency 

resolution, or vice versa in STFT. 
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Figure 3.2 Basis functions and time-frequency resolution of the STFT. (a) Basis 
functions, (b) Coverage of time-frequency plane [24] 

 However by varying the window used, it is possible to trade resolution in time for 

resolution in frequency [23]. In order to isolate discontinuities in signals one would 

like to have some basis functions which are very short, while some long ones are 

required to obtain fine frequency analysis. One possibility for this task is having 

short high frequency basis functions, and long low frequency basis functions. This is 

exactly what is achieved with the WT, where the basis functions are obtained from a 

single kernel (prototype) wavelet by translation and dilation [23].  

The time-frequency resolution of the WT involves a different tradeoff to the one used 

by the STFT; at high frequencies the WT is sharper in time, while at low frequencies, 

the WT is sharper in frequencies. The basis functions and time-frequency resolution 

of the WT is given in Figure 3.3. The middle functions in Figure 3.2a and Figure 

3.3a are identical, and hence the time-frequency resolutions of the two methods are 

the same at that frequency. 
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Figure 3.3 Basis functions and time-frequency resolution of the WT. (a) Basis 
functions, (b) Coverage of time-frequency plane [24] 

As described above to overcome the resolution limitation of the STFT, the resolution 

T and   chosen to vary in the time-frequency plane. When the analysis is viewed 

as a filter bank, the time resolution must increase with the central frequency of the 

analysis filters. So this makes   proportional with , as c , where c is a 

constant. The analysis filter bank is then composed of band-pass filters with constant 

relative bandwidth (known as Constant-Q analysis). So instead of the frequency 

responses of the analysis filter to be regularly spaced over the frequency axis (this is 

the case of STFT shown in Figure 3.4a), they are regularly spread in a logarithmic 

scale as shown in Figure 3.4b [26].  

The Heisenberg inequality in Equation 3.3 will still be satisfied for the WT, but now, 

the time resolution becomes arbitrarily good at high frequencies, while the frequency 

resolution becomes arbitrarily good at low frequencies. One example of this is the 

case of two very close bursts that can always be eventually separated in the analysis 

by going up to higher analysis frequencies in order to increase time resolution. This 
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kind of analysis works best if the signal is composed of high frequency components 

of short duration plus low frequency components of long duration, which is often the 

case with signals encountered in practice [24]. 

 

 

 

 

 

                                                              (a) 

 

 

 

 

                                                                (b) 

Figure 3.4 Division of the frequency domain, (a) for the STFT (uniform coverage), 
and (b) for the WT (logarithmic coverage) [24] 

Another important point is about the size of the cells in time-frequency planes in 

Figure 3.2b and Figure 3.3b. In STFT the time and frequency resolutions are 

determined by the width of the analysis window, which is selected once for the entire 

analysis, i.e., both time and frequency resolutions are constant. Therefore the time-

frequency plane consists of squares in the STFT case.  

Regardless of the dimensions of the cells, the areas of all cells, both in STFT and 

WT, are the same and determined by Heisenberg's inequality. The area of a cell is 

fixed for each window function (STFT) or mother wavelet (WT), whereas different 

windows or mother wavelets can result in different areas. However, Equation 3.3 

implies that all areas are lower bounded by )41(  . That is, the areas of the cells 

cannot be reduced arbitrary due to the Heisenberg's uncertainty principle. On the 

other hand, for a given mother wavelet the dimensions of the cells can be changed, 

while keeping the area the same. This is exactly what wavelet transform does.  
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As the main idea of time-frequency analysis is described, in the next sections of part 

three the mathematical formulations for both FT and Wavelet analysis will be given.  

First the STFT and its features in mathematical point of view, afterwards the Wavelet 

analysis and synthesis with respect to CWT, and discrete-time WT will be defined.  

And finally the Multi-resolution Analysis, DWT, and digital filters with respect to 

pyramid scheme, sub-band coding and DWT in octave band filters will be described.  

3.2 Short-Time (Windowed) Fourier Transform (STFT)  

Given a signal )(tf , the standard Fourier Transform (FT) is [27],  

  dtetfFf tj


 





 )(
2

1
)(                                                        (3. 4) 

for every Rt  where R is the set of real numbers.   )(Ff  gives a representation of 

the frequency content of )(tf , but information related to time-localization of, e.g., 

high frequency bursts cannot be seen from   )(Ff . Time localization can be 

provided by first windowing the signal )(tf  to obtain a well-localized slice of )(tf , 

and then taking its FT as,  

  dsetsgsftfF sjwin






  )()(),(                                          (3. 5a) 

that gives the windowed Fourier transform of )(tf .  

 

The reconstruction formula is [27],  

  dtdetsgtfFsf sjwin 


)(),(
2

1
)(   









                             (3. 5b) 

In order for the STFT to make sense, as well as for the reconstruction formula to be 

valid, it is necessary that g(s) is a square integrable function [22], i.e. )(2 RLg  (see 

Appendix 3 for vector spaces):  
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1)()(
22

 




dssgsg                                                                (3. 6) 

If t and   are assigned regularly spaced values as 
0ntt   and 

0 m , where 

 nm,  range over the set of integers, ℤ, and 000 t are fixed, then the discrete 

version of Equation 3.5a becomes  

dsetnsgsffF
sjmwwin

nm 





 0)()()( 0,

                                          (3. 7) 

Figure 3.5 shows the schematic representation of this procedure: for fixed n, 

)(, fF win

nm  corresponds to the Fourier coefficients of )()( 0tnsgsf   in Equation 3.7. 

If the window function g is compactly supported, then with appropriately chosen 0 , 

the Fourier coefficients are sufficient to characterize and to reconstruct 

)()( 0tnsgsf  . Changing n amounts to shifting the slices by steps of 0t  and its 

multiples, allow the recovery of all of the f from )(, fF win

nm .  

In the Figure 3.5 the function )(tf  is multiplied with the window function )(tg , and 

the Fourier coefficients of the product )(tf )(tg  are computed; this procedure is then 

repeated for translated versions of the window, ( )( 0ttg  , )2( 0ttg  , ).  

Consequently, the WFT localizes a signal simultaneously in time and frequency by 

looking at it through a window that is translated in time, and then translated in 

frequency (i.e., modulated in time).  

 

 

 

Figure 3.5 The Windowed Fourier Transform [27] 
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The FT tells whether a certain frequency component exists or not. This information 

is independent of where in time this component appears. FT gives perfect frequency 

resolution, but no time information. FT is not suitable if the signal has time varying 

frequency, i.e., the signal is non-stationary, as described in Section 3.1.2.  

If the spectrum of a signal is time dependent, it is then necessary to use sufficiently 

short segments of it to compute the spectrum. In STFT, the signal is divided into 

small enough segments (windowing), where these segments of the signal can be 

assumed to be stationary. For this purpose, a window function )(tg  is chosen. The 

windowing procedure is represented in Figure 3.5.  

The problem with the STFT is width of the window function that is used. (The width 

of the window function is known as the support of the window. If the window 

function is narrow, than it is known as compactly supported [27].) Choosing the 

window function is a hard task in STFT. Narrow windows give good time resolution, 

but poor frequency resolution. Wide windows give good frequency resolution, but 

poor time resolution; furthermore, wide windows may violate the condition of 

stationarity. The problem is a result of choosing a window function, once and for all, 

and using that window in the entire analysis [21].  

3.3 Wavelet Analysis and Synthesis  

If a real or complex value function )(t  satisfies the following two properties, then 

it is a mother wavelet or wavelet function [27]:  

i. The function integrates to zero: 

0)( 




dtt                                                                                  (3. 8) 

ii. It‟s square integrable, )()( 2 RLt  , or has finite energy:  






dtt
2

)(                                                                              (3. 9) 
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Property 2 implies that most of the energy in )(t  is restricted to a finite duration. 

Property 1 is suggestive of a function that is oscillatory or that has a wavy 

appearance. Property 1 is the admissibility condition and forces the Wavelet function 

to have a band-pass nature. So the transform will be able to zoom in the singularities 

of the signal to be analyzed.  

3.3.1 Continuous Wavelet Transform (CWT)  

Let )(tf  be a square integrable function, denoted as )()( 2 RLtf  . The CWT or 

continuous-time wavelet transform of )(tf  with respect to a wavelet )(t  is [26],  

dt
a

bt

a
tfbaW 







 
 






1

)(),(                                              (3. 10) 

where a and b are real and   defines complex conjugate. Therefore, the wavelet 

transform is a function of two variables. Both )(tf  and )(t  belong to )(2 RL , the 

set of square integrable functions, also called the set of energy signals (by Cauchy in 

1997).  

In Equation 3.10 the basis (or mother) function )(t  is defined as  








 


a

bt

a
tba

1
)(,                                                              (3. 11) 

Then, combining Equations 3.10 and 3.11 yields  

 dtttfbaW ba







  ,)(),(                                                            (3. 12) 

In Equation 3.11 when a=1 and b=0, )()(0,1 tt  .  

The normalizing factor of a1  ensures that the energy stays the same for all a and 

b; that is,  
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dttdttba 
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, )()(                                                           (3. 13) 

for all a and b. For any given value of a, the function )(, tba  is a shift of )(0, ta  by 

an amount b, along the time axis. So, the variable b represents time shift or 

translation. )(0, ta , that is a time-scaled and amplitude-scaled version of )(t  is 

denoted as  











a

t

a
ta

1
)(0.                                                                   (3. 14) 

Due to determining the amount of time scaling or dilation, the variable a is referred 

to as the scale or dilation variable. As an illustration, two dilations of the Morlet 

(modulated Gaussian) wavelet are shown in Figure 3.6.  

A Morlet wavelet is constructed by modulating a sinusoidal function by a Gaussian 

function [27]. A Morlet wavelet has infinite duration and it is a member of wavelets 

that are not supported compactly. However, most of the energy in Morlet wavelet is 

limited to a finite interval. The real value of Morlet wavelet is [26]  














  tet t

2ln

2
cos)(

2

                                                            (3. 15) 

 

 

                              (a)                                                               (b) 

Figure 3.6 A Morlet wavelet dilated by factors of (a) a = 1/2 and (b) a = 3 [R1] 
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Figure 3.6a shows the illustration of the real value of Morlet wavelet. More than 99% 

of the total energy of the function is confined to an interval 5.2t  sec. 

If a>1, there is a stretching of )(t  along the time axis, while if 0<a<1, there is a 

contraction of )(t . Since CWT is generated using dilates and translates of the 

single function; )(t , the wavelet for the transform, is referred to as the mother 

wavelet.  

The effect of dilation on time and frequency resolution is examined above. The CWT 

also involves translation of the wavelet. The translation parameter b affects the 

location of the wavelet, whereas the duration or bandwidth is affected by the dilation 

“a” [26]. If the )(t  is such that the Equation 3.10 is invertible, then  

  dadb
a

tbaW
C

tf ba

a b

2,

1
)(),(

1
  









                                 (3. 16) 

is the inverse CWT that gives a mapping from the set of W(a,b) back to )(2 RL .  

C  is a constant that depends on )(t . The constant has value  




 




 


d
w

C

2
)(

                                                              (3. 17) 

and is such that 0< C < which in turn imposes an admissibility condition on )(t . 

For C <, )(t  must be such that  

 )(w , for any                                                                 (3. 18) 

and 0)0(  , implying that  

0)(  dtt                                                                                 (3. 19) 

means )(t  cannot have nonzero „dc‟ (average).  
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The admissibility condition stated here is a sufficient condition that leads to the 

expression in Equation 3.16. It is not a necessary condition to obtain a mapping from 

the set of W(a,b) back to )(2 RL  [26].  

Another important point about the CWT is that, W(a,b) can be thought of as the inner 

product of the signal with the basis functions (see Appendix 2 for information on 

inner product of a function). Therefore, the definition of the W(a,b) in Equation 3.10, 

shows that the wavelet analysis is a measure of similarity between the basis functions 

(wavelets) and the signal. (Here the similarity is in the sense of similar frequency 

content.) The calculated CWT coefficients refer to the closeness of the signal to the 

wavelet at the current scale.  

This case points on the correlation of the signal with the wavelet at a certain scale. If 

the signal has a major component of the frequency corresponding to the current 

scale, then the wavelet (the basis function) at the current scale will be similar or close 

to the signal at the particular location where this frequency component occurs. 

Therefore, the CWT coefficient computed at this point in the time-scale plane will be 

a relatively large number.  

3.3.2 Discretization of Time-Scale Parameters  

Both the STFT and WT are highly redundant when the frequency-time parameters 

(,T) and scale-translation parameters (a,b) are continuous. In Equation (3.10), both 

(a,b) are continuous variables and there is a redundancy in the CWT representation 

of )(tf . There is certainly no need to compute W(a,b)  for all possible (a,b). 

Additionally, it is of practice necessity that (a,b) take on only a finite number of 

values. The idea is, if the sampling of (a,b) is sufficiently dense then )(tf  can be 

recovered from W(a,b) with (a,b) discrete, since there is already a parallelism in the 

perfect recovery of a signal from its samples taken at or above the Nyquist rate. The 

transforms are usually evaluated on a discrete grid on the time-frequency and time-

scale plane, respectively, corresponding to a discrete set of continuous basis 

functions. There are various ways of discretizing time-scale parameters (a,b). Since 

two scales 10 aa   roughly correspond to two frequencies 10 ff  , the wavelet 

coefficients at scale 1a  can be sub-sampled at 
thff )/( 10  rate of the coefficients at 
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scale 
0a , according to Nyquist‟s rule. Therefore the time-scale parameters chosen to 

discretized on the sampling grid drawn in Figure 3. 7. Depending on the type of 

)(t  and the sampling grid of (a,b), sometimes duals (see Appendix 5 for 

information) are required for perfect reconstruction [21]. 

A special case occurs when (a,b) are samples of a dyadic grid, when certain )(t  

produce orthonormal basis functions aabt /)/)((  , with (a,b) discrete. 

Therefore, )(tf  can be exactly synthesized as a weighted sum of these orthonormal 

basis functions [21].  

When (a,b) is discrete and given by  

maa 0   , manbb 00   m, n integer,                                             (3. 20) 

the discrete parameter wavelet transform (wavelet coefficients) is  

dtttfnmDPWT mn )()(),(                                                     (3. 21) 

where 

)()( 00
2

0 nbtaat m

m

mn  


                                                       (3. 22) 

and 0a  and 0b  are constants that determine the sampling intervals. The translation 

step b depends on the dilation step a, since long wavelets are advanced by large 

steps, and short wavelets are advanced by small steps. Both )(tf  and )(t  are 

continuous functions of time [21].  

For the sake of computational efficiency the constants 0a  and 0b  are taken as 0a =2 

and 0b =1 ( ma 2 , mnb 2 ) so that  

)2(2)( 2 ntt m

m

mn  


                                                          (3. 23) 
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for )(2 RL , and nm, ℤ. With this octave time scaling and dyadic translation, 

the sampled values of (a,b) are as shown in the dyadic grid of Figure 3.7. 

Since the FT of aat /)(  is aaaw )/( , the center frequency and bandwidth of 

a wavelet are both scaled by 1/a for a time scaling of a. So for all mother wavelets,  




 Q
f

f

bandwidth

frequencycentre _
constant                                   (3. 24) 

giving rise to the so-called “Constant-Q” or “Constant Relative-bandwidth” analysis 

capability of wavelets [21]. 

The basic difference between STFT and WT is that STFT, which gives time-

frequency representation, uses a single analysis window with constant bandwidth. 

However in WT, wavelet functions (daughter or baby wavelets) are localized in time 

and frequency domains and are generated from a single kernel function (mother 

wavelet) by dilation and translation. So WT uses short windows at high frequencies 

and long windows at low frequencies. In STFT, if the analyzing functions are not 

wide enough, they are unable to capture the low frequency information and wider 

they get, they loose short time duration changes in the signal. So it is felt that the 

analyzing functions should have a constant center frequency to bandwidth ratio 

(constant-Q). The mother wavelet can be thought of as a band-pass filter. The 

bandpass filters have constant relative bandwidth or constant-Q property. 

 
time shift, b

scale, m=log a

 

Figure 3.7 Dyadic sampling grid in the time-scale plane. Each node corresponds to a 
wavelet basis function with scale m2  and shift b=

mn 2  [28] 

To overcome the resolution limitation of the STFT, it is possible to derive time and 

frequency resolutions vary in the time-frequency plane in order to obtain a         

multi-resolution analysis. When the analysis is viewed as a filter bank, then f  must 

increase with the central frequency of the analysis filters. This yields to Equation 



 34 

3.24. The analysis filter bank is then composed of band-pass filters with constant 

relative bandwidth. Therefore, instead of the frequency responses of the analysis 

filter to be regularly spaced over the frequency axis (as for the STFT) case, they are 

regularly spread in a logarithmic scale (see Figure 3.4). 

When Equation 3.24 is satisfied, f and also T  changes with the center frequency 

of the analysis filter. (they still satisfy the Heisenberg inequality given in         

Section 3.1.3.2). But now, the time resolution becomes arbitrarily good at high 

frequencies, while the frequency resolution becomes arbitrarily good at low 

frequencies. 

The reconstruction formula for )(tf  is [28]  

)(),()( , tnmDPWTctf
m n nm                                         (3. 25) 

where 
c  is a constant that does not depend on the signal. Evidently, if 0a  is close 

enough to 1 and if 0b  is small enough, then the wavelet functions are defined to be 

over-complete. Equation 3.25 is then still very close to Equation 3.16 and signal 

reconstruction takes place within non-restrictive conditions on )(t . On the other 

hand, if the sampling is sparse, e.g. the computation is done octave by octave ( 0a =2), 

a true orthonormal basis will be obtained only for very special choices of )(t  [28].  

Two examples of orthonormal discrete parameters (dyadic sampling) can be given as 

Haar wavelets and Shannon wavelets. The Haar wavelet has good time localization 

but poor frequency localization. Its spectrum is non-zero for  . It does not have 

compact support in the frequency domain. In contrast, the Shannon wavelet has non-

compact support in time and decays only as fast as t/1 , so it has poor time 

localization. Its frequency localization is good because it has the spectrum of an ideal 

band-pass filter. There are orthonormal wavelets that are between these two given 

types, giving both acceptable localizations in time and frequency [21].  

There are several benefits of the orthonormal basis in dyadic-orthonormal wavelet 

transform which is obtained by 0a =2 and 0b =1. The first is that there will be no 
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information redundancy among the decomposed signals due to the orthonormal 

properties. The second is that with this choice of 
0a and 

0b  there exists an elegant 

algorithm, which is known as the multi-resolution signal decomposition technique, to 

decompose a signal into scales with different time and frequency resolution [28].  

3.3.3 Wavelet Frames 

The theory of wavelet frames [see Appendix 5 for information about frames in vector 

spaces] permits one to balance redundancy, i.e. sampling frequency in Figure 3.7.  

The energy of the wavelet coefficients; DPWT(m,n) relative to the signal )(tf , in a 

Hilbert space, lies between two positive frame bounds A and B  

f

nm

f EBnmDPWTEA .),(.
2

,

                                               (3. 26) 

with  BA0 , where fE  is the energy of the signal )(tf  [24]. Equation 3.26 

is known as Parseval relation. The Wavelet function satisfying Parseval relation 

constitutes a frame. Once the Parseval and the admissibility conditions are satisfied, 

the transform is complete; the signal can be reconstructed from transformation 

coefficients. 

3.4 Multi-resolution Analysis, Discrete WT and Digital Filters 

A wavelet is a band-pass filter from a signal processing point of view [28]. In the 

dyadic case given by Equation 3.23, it forms an octave band filter. So, the wavelet 

transform can be interpreted as constant-Q filtering (given by Equation 3.24) with a 

set of octave-band filters followed by sampling at the respective Nyquist frequencies. 

Therefore, by adding higher octave bands, details or resolution is added to the signal.  

In the discrete time case, two methods were developed independently which lead 

naturally to discrete wavelet transforms. They are sub-band coding and pyramidal 

coding. In this section sub-band coding, pyramidal coding and discrete wavelet 

transform (DWT) will be described respectively. 
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An important point in DWT is the “scale” and the “resolution” parameters. Scale is 

related to the size of the signal, while resolution is related to the amount of detail 

present in the signal. For large scales, dilated wavelets take “global views” of a    

sub-sampled signal, while for small scales, contracted wavelets analyze small details 

in the signal. The resolution and scale change in discrete time is given in               

Figure 3.8. 

x(n) y(n)halfband

lowpass

resolution: halved

scale: doubled

x(n) y(n)
halfband

lowpass

resolution: halved

scale: doubled

x(n) y(n)
halfband

lowpass

resolution: unchanged

scale: halved

2

2

 

              Figure 3.8 Resolution and scale changes in discrete time [28] 

3.4.1 The Pyramid Algorithm 

Given an original sequence  nx , n ℤ, derive a lower resolution signal by low-pass 

filtering with a half-band low-pass filter having impulse response )(ng . Following 

the Nyquist‟s rule, it is possible to down-sample by two (see Appendix 7 for     

down-sampling operation), hence doubling the scale in the analysis. This results in a 

signal )(ny  given by  







r

rnxrgny )2()()(                                                             (3. 27) 

The resolution change is obtained by the low-pass filter (loss of high frequency 

detail). The scale change is due to sub-sampling by two, since a shift by two in the 

original signal )(nx  results in a shift by one in )(ny . 
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Based on this low-pass and sub-sampled version of )(nx , an approximation to the 

original signal will be found. This is done by first up-sampling )(ny  by two (see 

Appendix 8 for up-sampling operation): 

)()2( nyny  , and 0)12(  ny                                              (3. 28) 

Then, )(ny  is interpolated with a filter with impulse response )(ng  to obtain the 

approximation )(na : 







r

rnyrgna )()()(                                                             (3. 29) 

If )(ng  and )(ng  were “perfect” half-band filters, then the Fourier transform of 

)(na  would be equal to the Fourier transform of )(nx . That is, )(na  would be a 

perfect half-band LP approximation to )(nx .  

In general case, )(na  is not equal to )(nx . So, the difference between )(na  and 

)(nx  is as follows;  

)()()( nanxnd                                                                       (3. 30) 

)(nx  can be reconstructed by adding )(nd  and )(na . As it can be seen in         

Figure 3.9, derivation of a low-pass, sub-sampled approximation )(ny , from which 

an approximation )(na  to )(nx  is derived by up-sampling and interpolation. Then, 

the difference between )(na  and )(nx  is computed as )(nd . Perfect reconstruction 

is obtained by adding )(nx  back. However, there is some sort of redundancy, 

because a signal with sampling rate Sf  is mapped into two signals )(nd  and )(ny  

with sampling rates Sf  and 2/Sf , respectively. In the case of a perfect half-band LP 

filter, )(nd  contains exactly the frequencies above 2  of )(nx , and therefore 

)(nd , can be sub-sampled by two as well without loss of information [24]. 

The separation of the original signal )(nx  into a coarse approximation )(na  plus 

some additional detail )(nd  is important. Because of the resolution change involved 
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(low-pass filtering followed by sub-sampling by two produces a signal with half the 

resolution and at twice the scale of the original), this method is part of the          

multi-resolution signal analysis. The scheme can be iterated on )(ny , creating a 

hierarchy of lower resolution signals at lower scales. Because of that hierarchy and 

the fact that signals become shorter, this scheme is called signal pyramids. 

g(n) 2 2 g'(n)

+

2

g'(n)

+

y(n)

+

-
a(n)

d(n)

y'(n)

x(n)x(n)

 

Figure 3.9 The pyramid scheme [24] 

The pyramid scheme creates a redundant set of samples. One stage of a pyramid 

decomposition leads to both a half rate low-resolution signal and a full rate 

difference signal, resulting in an increase, in the number of filters by fifty percent. 

The redundancy problem (oversampling) can be avoided if the samples )(ng  and 

)(ng  meet certain conditions [28]. 

3.4.2 Sub-band Coding  

A different scheme is sub-band coding where no such redundancy appears as there is 

in the pyramidal scheme. The LP, sub-sampled approximation is obtained exactly as 

in the case of multi-resolution pyramid scheme; but instead of a difference signal, the 

added detail as a high-pass filtered version of )(nx , followed by sub-sampling by 

two, is computed. So, the original signal is mapped into a LP approximation and an 

added detail signal. The added detail to the LP approximation has to be a HP signal, 

and if )(ng  is an ideal half-band LP filter, then an ideal half-band HP filter )(nh  

will lead to a perfect representation of the signal into two sub-sampled versions.  

An important point is that it is not necessary to use ideal filters, and )(nx  can be 

recovered from its two filtered and sub-sampled versions. (Lets call them )(0 ny  and 

)(1 ny  respectively.) To do so, both are upsampled and filtered by )(nh  and )(ng  
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respectively, and finally added together as shown in Figure 3.10. Unlike the pyramid 

scheme the reconstructed signal )(nx


is not identical to )(nx  unless the filters meet 

some specific constraints. Filters that meet these constraints have „perfect 

reconstruction‟ (PR) property. More information related to this topic can be found in 

[28].  

In the Figure 3.10 the filters )(nh  and )(ng  are FIR filters. And the relation between 

the HP and LP filters in this concept is given by,  

)()1()1( ngnLh n                                                             (3. 31) 

where L is the filter length (which is even). The modulation by n)1(  transforms 

indeed the LP filter into a HP one [24].  

The filter bank in Figure 3.10, computes convolutions followed by sub-sampling by 

two, evaluate inner products of the sequence )(nx  and the sequences 

 )2(),2( rnhrng  . Hence  

 
n

rngnxry )2()()(0
                                                            (3. 32a) 

 
n

rnhnxry )2()()(1
                                                         (3.32b) 

Since the filter responses form an orthonormal set (see Appendix 4 for information 

about orthogonality and orthonormality), it is very simple to reconstruct )(nx  as  

 





r

o rnhryrngrynx )2()()2()()( 1
                         (3. 33) 

that is, as a weighted sum of the orthogonal impulse responses, where the weights are 

the inner products of the signal with the impulse responses.  
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Figure 3.10 Sub-band coding scheme [24] 

In the Figure 3.10 two sampled approximations; one corresponding to low and latter 

to high frequencies are computed. Re-interpolating the approximations and summing 

them obtain the reconstruction signal. The filters on the left form an analysis filter 

bank, whereas the ones on the right is a synthesis filter bank.  

3.4.3 The Discrete Wavelet Transform  

Decomposition of a sequence )(nx  into two subsequences at half rate, or half 

resolution, by means of orthogonal filters is defined in Section 3.4.2. This process 

can be iterated on either or both subsequences [24]. In particular to achieve finer 

frequency resolution at lower frequencies, the scheme on the lower band is iterated 

only. If )(ng  is a good half-band LP filter, )(nh  will also be a good half-band HP 

according to Equation 3.31. So, one iteration of the scheme on the first low-band 

creates a new low-band that corresponds to the lower quarter of the frequency 

spectrum. Each further iteration halves the width of the low-band, but due to sub-

sampling by two, its time resolution is halved as well. At each iteration, the current 

high band portion corresponds to the difference between the previous low-band 

portion and the current one, which is a pass-band  [24]. The procedure is represented 

in Figure 3.11, and the frequency resolution is as in the Figure 3.4b.  
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Figure 3.11 Block diagram (Filter bank tree) of the DWT implemented with discrete 
time filters and sub-sampling by two. The frequency resolution is given by        
Figure 3.4b  [24] 
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There is an important difference between the discrete scheme and the continuous 

time WT. In the discrete time case, the role of the wavelet is played by the HP filter 

)(nh  and the cascade of sub-sampled LP filters followed by a HP filter. These filters, 

which correspond to octave band filters, unlike in the CWT, are not exact scaled 

versions of each other. In particular, because of being in discrete time, scaling is not 

as easily defined:  it involves interpolation as well as time expansion. However, 

under certain conditions, the discrete system converges to a system where subsequent 

filters are scaled versions of each other. Actually, this convergence is the basis for 

construction of continuous time compactly supported wavelet bases [27]. 

The equivalent filter or the iterated low-pass filter corresponding to the lower branch 

in Figure 3.11, will be described in the following paragraphs.  

The z-transform of the half-band filter in the lower branch of Figure 3.11 is, 

 
n

nzngzG )()(                                                                      (3. 34) 

Sub-sampling by two followed by filtering with G(z) is equivalent to filtering with 

)( 2zG . So, the first two steps of low-pass filtering can be replaced by a filter with    

z-transform G(z). )( 2zG , followed by sub-sampling by four. Calling )(zG i  the 

equivalent filter to i stages of low-pass filtering and sub-sampling by two (a total 

sub-sampling by i2 ),  
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with an impulse response of )(ng i  is obtained. As i infinitely increase, this filter 

becomes infinitely long. Instead, consider a function )(xf i , which is piecewise 

constant on intervals of length i2/1  and has value )(2 2/ ng ii  in the interval 

[ ii nn 2/)1(,2/  ]. That is, )(xf i  is a staircase function with the value given by the 

samples of g and intervals, which decrease as i2 . It can be verified that the function 

is supported (see Appendix 3 for “support” property) on the interval [0,L-1], where L 

is the length of the filter g(n), For i going to infinity, )(xf i can converge to a 



 42 

continuous function )(xgc
, or a function with finitely many continuities, or not 

converge at all. A necessary condition for the iterated functions to converge to a 

continuous limit is that the filter G(z) should have a sufficient number of zeros at    

z= -1, or half sampling frequency. Using this condition, one can construct filters, 

which are both orthogonal and converge to continuous functions with compact 

support. (See Appendix 3 for “compact-support” property) Such filters are called 

regular filters. The above condition can be interpreted as a flatness condition on the 

spectrum of G(z) at half sampling frequency. Wavelet filters are chosen so as to be 

regular. Moreover the Daubechies orthonormal filters are deduced from “maximally 

flat” low-pass filters [24]. 

The )(xgc  is the final (limit) function to which )(xf i  converges. Because it is the 

product of low-pass filters, the final function is itself low-pass and is called a 

”scaling function” (also shown as )(x ) because it is used to go from a fine scale to 

a coarser scale. Because of the product in Equation 3.35, from which the scaling 

function is derived, )(xgc  satisfies the following two-scale difference equation [24]: 







n

cc nxgngxg )2()()(                                                         (3. 36) 

Figure 3.12 shows scaling functions that satisfy two-scale difference equations. It 

shows how a scaling function can be obtained from a linear combination of its scaled 

versions. 

Equation 3.36, gives the scaling function of the iterated low-pass filter. From     

Figure 3.11 it is shown that also a band-pass filter is obtained in the same way as the 

low-pass filter, except for a final high-pass filter. Hence, the wavelet function )(xhc     

(also shown as )(x ) is obtained as 
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that also satisfies a two scale equation. If the filters h(n) and g(n) form an 

orthonormal set with respect to even shifts, then the functions )( lxgc   and 
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)( rxhc   form an orthonormal set. Because they also satisfy two scale difference 

equations, the set forms an orthonormal basis for the set of square integrable 

functions )(2 ZL  [28]. 

 

 

(a) 

 

     

(b) 

Figure 3.12 Scaling function )(x  as a linear combination of scaled and shifted 
versions )2( nx  . (a) Hat function (not an orthonormal example), (b) the Daub-4 
wavelet obtained from a regular orthogonal filter [28] 

As mentioned above, wavelet filters are chosen so as to be regular. This means that 

the piecewise constant function associated with the discrete wavelet sequence )(nh j  

of z-transform )()( 2 jj zHzG  converges, as j indefinitely increases, to a regular 

limit function )(xhc . Equivalently, the piecewise constant function associated with 

the discrete “scaling” sequence g(n) of a z-transform )(zG j  converges to a regular 

limit function )(xgc . “Regular” means that the continuous-time wavelet )(xhc  (or 

the scaling function )(xgc ) is at least continuous, or better, once or twice 

continuously differentiable [28]. 
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3.4.4 The Multi-resolution Analysis (MRA) 

The multi-resolution analysis of functions was introduced by Meyer and Mallat [29], 

and provides a better view of understanding the wavelet decomposition.  

The MRA is a tool that utilizes the DWT to represent a time-varying signal in terms 

of its frequency components. It essentially maps a one-dimensional (1D) signal of 

time into a two-dimensional (2D) signal of scale and time. The goal of MRA is to 

develop representations of a complicated signal )(tf  in terms of its orthonormal 

basis, which are the scaling and the wavelet functions. These functions can be scaled 

and translated to decompose )(tf  and represent it at different resolutions (scales). 

So, using MRA, the time domain signal )(tf  can be mapped into the wavelet 

domain and represented at different resolution levels in terms of wavelet coefficients.  

Assume that there is a ladder of spaces such that: 

 21012   VVVVV                                                      (3. 38) 

with the property that if iVxf )(  then ZrVrxf i

i   ,)2( , and 1)2(  iVxf . 

Let‟s call iW  the orthogonal complement of iV  in 1iV . This is written as 

iii WVV 1                                                                               (3. 39) 

Thus, iW  contains the “detail” necessary to go from iV  to 1iV . Iterating        

Equation 3.39, 

  3211 iiiii WWWWV                                             (3. 40) 

is obtained, that is, a given resolution can be attained by a sum of added details. 

Assume that there is an orthonormal basis for 0V  made up of a function )(xgc  and its 

integer translates. Since 10 VV , )(xgc  can be written in terms of the basis in 1iV , 

Equation 3.36 is satisfied: 
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Then it can be verified that the function )(xhc
 in Equation 3.37, with the relation in 

Equation 3.31, and its integer translates form an orthonormal basis for 
0W . Because 

of Equation 3.40, )(xhc
 and its scaled and translated versions form a wavelet basis 

[28]. 

Assume that there is an approximation of a signal at a resolution corresponding to 

0V . Then a better approximation is obtained by adding the details corresponding to 

0W . This amounts to a weighted sum of wavelets at that scale. Hence, by iterating 

this idea, a square integrable signal can be seen as the successive approximation or a 

weighted sum of wavelets at finer scale. 

In this section, it is shown that the Short Time Fourier Transform and the Wavelet 

Transform represent alternative ways to divide the time-frequency and time-scale 

planes respectively. The main advantages of Wavelet Transform are that it can zoom 

into time discontinuities, and that orthonormal bases localized in time and frequency 

can be constructed. WT provides looking at a signal at various scales and analyzing it 

with various resolutions. For large scales, dilated wavelets take global views of a 

sub-sampled signal, while for small scales, contracted wavelets analyze small details 

in the signal. In the discrete case, the WT is equivalent to a logarithmic filter bank, 

with the added constraint of regularity on the low-pass filter. 

One of the best-developed application areas of Wavelets is in signal compression. 

Discrete Wavelet Transforms have essential sub-band coding systems and sub-band 

coders are successful in speech and image compression [28]. 
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4. ARTIFICIAL NEURAL NETWORKS 

4.1 Introduction 

Artificial Neural Networks (ANN) represent an engineering discipline concerned 

with non-programmed adaptive information processing systems that develop 

associations (transforms or mappings) between objects in response to their 

environment. That is, they learn from examples. ANNs are a type of massively 

parallel computing architecture, based on brain-like information encoding and 

processing models. They can exhibit brain-like behaviors such as learning, 

association, categorization, generalization, feature extraction, and optimization.  

A more formal definition of an ANN according to Haykin [5] is:  

“A neural network is a massively parallel distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It 

resembles the brain in two respects:  

i. Knowledge is acquired by the network through a learning process.  

ii. Inter-neuron connection strengths known as synaptic weights are used to store 

knowledge.”  

             

The key element of the ANNs is the novel structure of the information processing 

system. An ANN is composed of a large number of highly interconnected processing 

elements (neurons) working in unison to solve specific problems. The ANN achieves 

its ability to learn and then recall that learning through the weighted interconnections 

of those processing elements. Given noisy sensory inputs, they build up their internal 

computational structures through experience rather than pre-programming according 

to a known algorithm. The interconnection architecture can be very different for 

different networks. Architectures can vary from feed-forward, and recurrent 

structures to latticed structures.  
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4.1.1  The Biological Neural Network  

The basic computational unit in the nervous system is the nerve cell, or neuron. The 

human brain is composed of a very large number (about a hundred billion) of 

neurons, massively interconnected (with an average of several thousand 

interconnects per neuron). The structure of a neuron is represented in Figure 4.1.  
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Figure 4.1 The basic structure of a neuron 

A neuron is made up of a nucleus, a cell body (soma), dendrites (inputs) and an axon 

(output). The cell body is a place for the mechanisms that provide the cell its energy 

and cause the activation. The neuron collects signals from others through a host of 

fine structures called dendrites. Once the total input signal received at the cell body 

from the dendrites exceeds a certain level (the firing threshold), the neuron activates 

and fires an electrochemical signal through a long, thin structure known as an axon, 

which splits into thousands of branches. This event is also called depolarization, and 

is followed by a refractory period, during which the neuron is unable to fire. The 

action potential is generally a one-millisecond electrical pulse of 0.1 mV amplitude. 

The axon endings almost touch the dendrites or cell body of the next neuron. At the 

junction of the signal-sending axon and the signal-receiving dendrite lies a small gap 

called a synapse. When the action potential reaches a synapse at the end of the axon, 

the electrical signal is converted to a chemical signal to be communicated across the 

synaptic gap to the post synaptic neuron. At the membrane of the postsynaptic 

neuron, the chemical signal is converted back to an electrical signal to be conveyed 

along the dendrite to the soma. A synapse can either be excitory or inhibitory. Input 

from an excitory synapse increases the internal activation level of the neuron while 

input from an inhibitory synapse reduces it [30]. The neurons learn to react to certain 
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signals; the synaptic connections between neurons either get stronger or weaker. The 

strength of the synaptic connection determines how strong the receiving neuron finds 

the signal. The signals from different neurons are thus weighted differently based on 

the strength of the synaptic connections. If the total effect of all the received signals 

is adequate, the neuron is activated and it will begin to send a signal to the other 

neurons via its axon.  

4.1.2  Historical Background  

Neural network simulations appear to be a recent development. However, this field 

was established before the advent of computers, and has survived at least one major 

setback and several eras.  

The modern age of ANNs began by the classic paper of McCulloch and Pitts in 1943. 

They described a logical calculus of neural networks. Their formal model of a neuron 

was assumed to follow an “all-or-none” law. McCulloch and Pitts showed that with a 

sufficient number of such simple units, and synaptic connections set properly and 

synchronously, a network can compute any computable function [5].  

In 1948, Wiener‟s famous book Cybernetics, describing the concepts for control, 

communication, and statistical signal processing, was published. The second edition 

of this book published in 1961, adds a new material on learning and self-

organization.  

In 1949, Hebb‟s book The Organization of Behavior, which presents an explicit 

statement of a physiological learning rule for synaptic modification, was published. 

Hebb proposed that the connectivity of the brain is continually changing as an 

organism learns differing functional tasks.  

In 1952, Ashby‟s book, Design for a Brain: The Origin of Adaptive Behavior was 

published, which was concerned with the basic notion that, adaptive behavior is not 

inborn but rather learned, and by learning the behavior of a system usually changes 

for the better.  

In 1954, Gabor proposed the idea of a nonlinear adaptive filter. He went on to build 

such a machine that learning was accomplished by feeding samples of a stochastic 
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process into the machine, together with the target function that the machine was 

expected to produce.  

In 1956, Taylor initiated the work on associative memory. This was followed by the 

introduction of the learning matrix by Steinbuch in 1961. This matrix consists of a 

planar network of switches interposed between arrays of sensory receptors and motor 

effectors.  

In 1957, Bellmann reported his work on the dynamic programming, which provides 

the mathematical formalism for sequential decision-making.  

In 1958, Rosenblatt introduced a new approach to the pattern recognition problem in 

his work on the perceptron, a novel method of supervised learning. Frank Rosenblatt 

used the perceptron to solve some image recognition problems [30].  

In 1960, Widrow and Hoff introduced the least mean-square (LMS) algorithm and 

used it to formulate the Adaline (adaptive linear element). The difference between 

the Adaline and the perceptron lies in the training procedure. One of the earliest 

trainable-layered neural networks with multiple adaptive elements was the Madaline 

(multiple adaline) structure proposed by Widrow in 1962.  

In 1965, Nillson‟s book, Learning Machines, was published, which concerns the 

linearly separable patterns in hyper surfaces. In 1967, Amari used the stochastic 

gradient method for adaptive pattern classification [31].  

In 1969, Minsky and Papert published their book, which concerns the use of 

mathematics to demonstrate that there are fundamental limits on what single layer 

perceptrons can compute. They also stated that, there was no reason to assume that 

any of the limitations of single layer perceptrons could be overcome in the multilayer 

version.  

An important activity that did emerge in 1973 was self-organizing maps using 

competitive learning. Von Der Malsburg demonstrated self-organization with some 

computer simulations. In 1976, Willshaw and Von Der Malsburg published the first 

paper on the formation of self organizing maps, motivated by topologically ordered 

maps in the brain.  
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In 1980, Grossberg established a new principle of self-organization known as ART 

(Adaptive Resonance Theory). The theory involves a bottom-up recognition layer 

and a top-down generative layer. If the input pattern and learned feedback pattern 

match, a dynamical state called adaptive resonance takes place. [5]  

In 1982, Hopfield used the idea of an energy function to formulate a new way of 

understanding the computation performed by recurrent networks with symmetric 

synaptic connections. He established the connection between neural networks and 

physical systems of the type considered in statistical mechanics.  

Another important development in 1982 was the publication of Kohonen‟s paper on 

self-organizing maps using a one or two dimensional lattice structure, which was 

different from the earlier work by Willshaw and Von Der Malsburg. Many 

applications have been developed since Kohonen first proposed the Kohonen 

networks. Kohonen networks have been applied in the field of combinatorics, for 

example, to solve the Traveling Salesman Problem with the elastic net algorithm. 

Teuvo Kohonen has carried out some research on the application of topology 

preserving networks in such diverse fields as speech recognition and structuring of 

semantic networks [30].  

In 1983, Cohen and Grossberg established a general principle for assessing the 

stability of a content-addressable memory that includes the continuous time version 

of the Hopfield network. Also in 1983, Kirkpatrick, Gelatt, and Vecchi described a 

new procedure called Simulated Annealing, rooted in statistical mechanics, for 

solving combinatorial optimization problems. The simulated annealing has been used 

for many years in the field of numerical optimization. The technique is a special case 

of the Monte Carlo method [30].  

In 1985, Ackley, Hinton, and Sejnowski developed the Bolztmann Machine, which 

was the first successful realization of a multilayer neural network. Their learning 

algorithm was the first proposed for stochastic networks and allowed dealing with 

hidden units in the networks of Hopfield type [5].  
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In 1986, Rumelhart, Hinton, and Williams reported the development of the 

backpropagation algorithm; which has been a major influence in the use of 

backpropagation learning. The back-propagation algorithm has emerged as the most 

common learning algorithm for the training of multilayer perceptrons [5].  

In 1988, Linsker described a new principle for self-organization in a perceptual 

network. The principle is designed to preserve maximum information about input 

activity patterns, subject to such constraints as synaptic connections and synapse 

dynamic range. Linsker used abstract concepts rooted in information theory to 

formulate the maximum mutual information (Infomax) principle. Also in 1988, 

Broomhead and Lowe described a procedure for the design of layered feed-forward 

networks using Radial Basis functions (RBF), which provide an alternative to 

multilayer perceptrons.  

In 1989, Mead‟s book, Analogue VLSI and Neural Systems, was published. It 

provides an unusual mix of concepts drawn from neurobiology and VLSI 

technology; also includes chapters on silicon retina and silicon cochlea. In the early 

1990s, Vapnik invented a computationally powerful class of supervised learning 

networks, called Support Vector Machines, for solving pattern recognition, 

regression, and density estimation problems (Boser, Guyon, and Vapnik, 1992; 

Cortes and Vapnik, 1995; Vapnik, 1995, 1998) [30].  

4.1.3  A Taxonomy of Artificial Neural Networks  

In this section, taxonomy of ANNs according to learning algorithms is given. The 

taxonomy is divided into two tables, Table 4.1 and Table 4.2 respectively, according 

to learning algorithms: supervised and unsupervised learning, which will be given in 

more detail in Section 4.2.4.  

Table 4.1 shows three common network architectures: feed-forward, feedback, and 

competitive which will be given in detail in Section 4.2.3. 
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Table 4.1  Taxonomy according to supervised neural networks [32] 

 

 

 

 

Supervised Neural Networks 

Feedforward Feedback Competitive 

  Linear:  

      Hebbian, Perceptron,   

      Adaline 

  Multilayer Perceptron: 

     Backpropagation 

  RBF Networks: 

      Orthogonal Least Squares  

  Classification only: 

      Learning Vector Quant. 

      Probabilistic NN 

  Regression only: 

      General Regression NN 

  Bi-directional Associative  

    Memory 

  Boltzmann Machine 

  Recurrent Time Series: 

      Backpropagation Through     

      Time, Elman Network, 

      Finite Impulse Response,        

      Jordan Network,  

      Real Time Recurrent  

      Network, Recurrent  

      Backpropagation, Time  

      Delay Neural Networks  

  ARTMAP-1991 

     Carpenter, Grossberg,  

     Reynolds 

  Fuzzy ARTMAP-1992 

     Carpenter, Grossberg,  

     Reynolds, Markuzon,  

     Rosen 

  Gaussian ARTmap-1995 

     Williamson 

  Counter-propagation 

    Hecht-Nielsen-1987/ 88/ 90 

    Fausett-1994 

  Neocognitron-1983 

    Fukushima, Miyake, Ito 
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Table 4.2  Taxonomy according to unsupervised neural networks [32] 
 

 

The definitions of the learning algorithms for both supervised and unsupervised 

learning according to Table 4.1 and Table 4.2 will be given in the Section 4.3 and 

Section 4.4. 

Unsupervised Neural Networks 

Competitive Dimension Reduction Auto-association 

  Vector Quantization:  

      Grossberg-1976 

      Kohonen-1984 

  Self-Organizing Map: 

      Kohonen-1995 

  Adaptive Resonance Th.: 

    ART 1-1987 Carp. /Gross. 

    ART 2-1987 Carp. /Gross. 

    ART 3-1991 Carp. /Gross.       

       and Rosen 

    Fuzzy ART-1991 Carp. / 

       Gross. and Rosen   

  Differential Competitive  

    Learning-Kosko 1992 

   Hebbian 

         Hebbian-1949 

         Fausett-1994 

   Oja-1989 

   Sanger-1989 

   Differential Hebbian 

         Kosko-1992 

  Linear Auto-associator 

         Anderson-1977 

         Fausett-1994 

  Brain State in Box 

         Anderson-1977 

         Fausett-1994 

  Hopfield 

         Hopfield-1982 
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4.1.4  The Benefits and Application Areas of ANNs 

A neural network derives its computing power through its massively parallel-

distributed structure and its ability to learn. Learning refers to producing reasonable 

outputs for inputs not encountered during training. This is also known as 

generalization. This capability makes it possible for neural networks to solve 

complex problems that are currently intractable.  

The ANNs can provide suitable solutions for problems that generally are 

characterised by:  

i. nonlinearities,  

ii. high dimensionality,  

iii. noisy, complex, imprecise, imperfect and error prone sensor data,  

iv. a lack of a clearly stated mathematical solution or algorithm.  

 

The use of ANNs bring several benefits as described below [5]: 

i. Nonlinearity: An artificial neuron can be either linear or nonlinear. The 

nonlinearity is distributed throughout the network. The nonlinearity is an 

important property, particularly if the underlying physical mechanism 

responsible for generation of the input signal is inherently nonlinear.  

ii. Input-Output Mapping: The learning process involves modification of the 

synaptic weights of a neural network by applying a set of labeled training 

samples. Each sample consists of an input signal and a corresponding desired 

response. The network is presented with an example picked at random from 

the set, and the synaptic weights of the network are modified to minimize the 

difference between the actual response and desired response according to a 

learning rule. The training case is repeated several times until the system 

reaches a state where there are no further significant changes in the synaptic 

weights. As a result the network learns from the examples by constructing a 

mapping between the input space and output space.  
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iii. Adaptivity: Traditionally, intelligence within the current computer software is 

the result of the programmers' efforts only. During the laborious design phase 

of a computer software, the future operation of the software is determined. A 

certain set of operations is defined for each input that the program is expected 

to receive. Although this approach can be very effective within the problem 

area to which it is applied, it is usually a very difficult and time-consuming 

process to update the rules as the problem changes. In addition, a totally 

distinct set of heuristic rules is needed for every problem. However the 

ANNs, like biological neural networks, have a built in capability to adapt 

their synaptic weights to changes in the surrounding environment. A neural 

network trained to operate in a specific environment can be easily retrained to 

deal with minor changes in the operating environmental conditions.  

iv. Contextual Information: Knowledge is represented by the structure and 

activation state of an ANN. Every neuron in the network is affected by the 

global activity of all other neurons in the network as in the case of biological 

neural networks. Hence, an ANN deals with contextual information naturally.  

v. Fault Tolerance: An ANN has the potential to be inherently fault tolerant. For 

example, if a neuron or its connecting links are damaged, recall of a stored 

pattern is impaired in quality. However, due to the distributed nature of 

information stored in the network, the damage has to be extensive before the 

overall response of the network is degraded seriously. But in the case of 

traditional computer software, this kind of damage in only one entry of the 

code would cause the failure of the program.  

vi. VLSI Implementation: the massively parallel nature of an ANN makes it 

potentially fast for the computation of certain tasks. This feature makes an 

ANN well suited for implementation using VLSI technology. One particular 

beneficial property of VLSI is that it provides a means of capturing truly 

complex behavior in a highly hierarchical fashion [30].  

Although ANNs has been designed to address certain kinds of problems, there exist 

no definite rule as to what the exact application domains for certain ANNs are. The 

general application areas of ANNs are: robust pattern recognition, filtering, data 



 56 

segmentation, data compression, adaptive control, optimization, modeling complex 

functions and associative pattern recognition. Table 4.3 illustrates the use of well-

known neural networks, and Table 4.4 lists the application areas grouped according 

to the ANN structure [32].  

 

Table 4.3  Application areas of different neural networks [32] 

 

Table 4.4  Application areas of different ANNs grouped by network structure [32] 

 

Application 
Back-

propagation 
Hopfield 

Bolzmann 

machine 

Kohonen 

SOM 

Classification 
    

Image processing 
    

Decision making 
    

Optimization 
    

Structure 

Single layer, 

lateral 

connections 

Topological vector 

map 

Two layer, 

feedforward  

feedbackward 

Multi-layer, 

feedforward 

Network 

type 
Hopfield 

LVQ 

Kohonen SOM 

ART 

Perceptron network, 

Boltzmann machine 

Application 

area 

Autoassociation, 

Optimization 

 

Autoassociation, 

Pattern recognition, 

Data compression, 

Optimization 

Heteroassociation, 

Pattern recognition 

Heteroassociation, 

Pattern recognition, 

Data compression, 

Optimization 
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4.1.5  The Neural Network Design Process 

The neural network design process involves at least five main tasks. These are data 

collection, raw data preprocessing, feature extraction from the preprocessed data, 

selection of an ANN type and topology (architecture), and finally training and testing 

of ANN. 

After suitable data is collected and pre-processed the features are chosen by the 

designer based on the knowledge and experience with the problem. Features should 

be chosen because they are believed to have some correlation to the desired output. It 

can be useful to eliminate redundant or ineffective features. It is also possible to 

determine which sets of features are the most significant by comparative analysis. An 

ANN design should incorporate a minimum of two sets of independent input/ output 

vector pairs representative of the process: There should be training, and testing 

vector sets.  

In the following sections the general theoretical structure of artificial neural networks 

will be given.  

4.2  Fundamentals of ANNs  

4.2.1  The Basic Model of the Neuron 

A neuron is an information-processing unit, which is the fundamental unit of an 

artificial neural network. Its basic model is illustrated in Figure 4.2.  

A neuron is consist of three main elements: 

i. Synapses, each of which is characterized by a weight. Specifically, a signal 

jx  at the input of synapse j connected to neuron k is multiplied by the 

synaptic weight kjw .  

ii. An adder for summing the input signals, weighted by the respective synapses 

of the neuron.  
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iii. An activation function for limiting the amplitude of the output of a neuron. 

The activation function is also referred to as a squashing function in that it 

squashes the permissible amplitude range of the output signal to a finite 

interval.     
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Figure 4.2 A nonlinear model of a neuron [5] 

The model also includes an externally applied bias term, denoted by kb , which has 

the effect of increasing or decreasing the net input of the activation function 

depending on whether it‟s positive or negative. 

In Figure 4.2 ky , the output of the neuron, can be described as, 

)( kk vy                                                                                     (4. 1) 

where kv , the induced local field or activation potential of neuron k is, kkk buv  . 

Here kb  is the bias and ku  is the linear combiner output due to the input signals. The 

linear combiner is formulated as,  





m

j

jkjk xwu
1

                                                                               (4. 2) 

So from Equations 4.1 and 4.2 the output of the neuron is derived as,  

)(
1 k

m

j jkjk bxwy   
                                                               (4. 3) 
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4.2.2 Transfer Function  

The behavior of an ANN depends on both the weights and the input-output function 

(transfer function) that is specified for the neurons [5]. The transfer function, also 

known as activation function, typically falls into one of three categories:  

i. Threshold function: This function is described as,  

1)( v  if  0v                                                                          (4. 4) 

0)( v   if  0v        

The Equation 4.4 is illustrated in Figure 4.3a. This form of threshold function 

with a simple difference in output, is also known as Heaviside (or signum or 

hard-limiter) function. The output of a neuron k is expressed as 

1ky  if  0v                                                                          (4. 5) 

1ky  if  0v                

where kv  is the induced local field of the neuron k that is, 

k

m

j

jkjk bxwv 
1

                                                                        (4. 6) 

Such a neuron is referred to as the McCulloch- Pitts model. In this model, the 

output of a neuron takes on the value of 1 if the induced local field of that 

neuron is nonnegative, and 0 otherwise. This statement describes the all-or 

one property of the model.  

ii. Piecewise Linear function: This function is described as, 

 1)( v   if  21v                                                                  (4. 7) 

vv )(   if  2121  v       
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0)( v   if  21v                      

where the amplification factor inside the linear region of operation is assumed 

to be unity. The Equation 4.7 is illustrated in Figure 4.3b. An important case 

is if the amplification factor of the linear region is made infinitely large, then 

the piecewise linear function reduces to a threshold function given by 

Equation 4.4. 

               

                    (a)                                                    (b) 

                          

                  (c)                                                      (d) 

Figure 4.3 The transfer function: (a) Threshold function (b) Piecewise-linear function 
(c) Logistic function (d) Hyperbolic tangent function 

iii. Sigmoid Function: This function is defined as a strictly increasing function 

that exhibits a balance between linear and nonlinear behavior. Logistic 

function, that is a kind of sigmoid function is defined by 

)exp(1

1
)(

av
v


                                                                      (4. 8) 

where a is the slope parameter. Changing the value of the parameter a, 

provides sigmoid functions of different slopes as shown in Figure 4.3c.  
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Another type of sigmoid function is the hyperbolic tangent function, defined 

by )tanh()( vv  , is shown in Figure 4.3d. The hyperbolic tangent function 

range from –1 to +1, whereas the functions defined by Equation 4.4, 

Equation 4.7, and Equation 4.8 range from 0 to +1. 

4.2.3  Architectures of ANNs 

The artificial neural networks can be classified according to the structure that they 

exhibit. The structure of the neurons in an ANN is related with the learning algorithm 

used to train the network. Thus it is possible to consider that the learning rules used 

in the design of ANNs are structured [5]. 

In general the network architecture can be identified into three fundamental classes: 

i. Single Layer Feed-forward Networks: 

This is the simplest form of a layered network, with an input layer of source 

nodes that projects onto an output layer of neurons. The important point is 

that this network is completely a feed-forward type, so the direction of signal 

flow is from input layer of source nodes (I.L.) to output layer (O.L).      

Figure 4.4 shows a single layer network. Here, the single layer refers to 

output layer of neurons since there is no computation in the input layer of 

source nodes.  

 

I.L. O.L.  

Figure 4.4 A single layer feed-forward neural network 

ii. Multilayer Feed-forward Networks: 

Figure 4.5 represents the structure of a multi-layered feed-forward network. 

This model has one or more hidden layers that are composed of one or more 

hidden neurons. The function of this neurons is to intervene between the input 

and output layers in a useful manner. By adding one or more hidden layers, 
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this model is capable of extracting higher-order statistics. This model is also a 

completely feed-forward type. There are no lateral connections within each 

layer and also no feed-backward connections within the network. The best-

known ANN of this type is the perceptron network. 

 

        I.L.                  H.L.             O.L.  

Figure 4.5 A multilayer feedforward neural network 

iii. Recurrent Networks  

This model is distinguished from feed-forward networks due to its feedback 

loops (at least one). One kind of recurrent network is shown in Figure 4.6a.  

Here the network consists of one single layer of neurons with each neuron 

feeding its output signal back to the inputs of all the other neurons. Another 

possibility is shown in Figure 4.7b, with hidden neurons. Here the feedback 

connections originate from the hidden neurons as well as from the output 

neurons. The presence of feedback loops, has an important role on the 

learning capability of the ANN. The feedback loops involve the use of 

particular branches composed of unit-delay elements that result in a nonlinear 

dynamical behavior.  
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                                           (a)                                                   (b) 

Figure 4.6 Recurrent network with (a) no hidden, (b) hidden neurons [5] 

4.2.4  The Learning Process 

The memorization of patterns and the subsequent response of the network can be 

categorized into two general paradigms [30]: 

i. The first paradigm is Associative Memory: The network learns to produce a 

particular pattern on the set of input units whenever another particular pattern 

is applied on the set of input units. The associative mapping can generally be 

broken down into two mechanisms as the auto-association and the hetero-

association. In the case of auto-association, an input pattern is associated with 

itself and the states of input and output units coincide. This is used to provide 

pattern completion, i.e. to produce a pattern whenever a portion of it or a 

distorted pattern is presented. The second case, the hetero-association is 

related to a recall mechanism: 

 Nearest-neighbor recall mechanism, where the output pattern 

produced corresponds to the input pattern stored, which is closest to 

the pattern presented. 

ii. The second paradigm is Regularity detection: The units learn to respond to 

particular properties of the input patterns. Whereas in associative mapping the 

network stores the relationships among patterns, in regularity detection the 

response of each unit has a particular 'meaning'. This type of learning 

mechanism is essential for feature discovery and knowledge representation.  
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Every neural network possesses knowledge that is contained in the values of the 

connections weights. Modifying the knowledge stored in the network as a function of 

experience implies a learning rule for changing the values of the weights. 

Information is stored in the weight matrix W of a neural network. Learning is the 

determination of the weights. Following the way learning is performed; we can 

distinguish two major categories of neural networks:  

 Fixed Networks, in which the weights cannot be changed. In such networks, 

the weights are fixed a priori according to the problem to solve.  

 Adaptive networks, which are able to change their weights.  

All learning methods used for adaptive neural networks can be classified into two 

major categories: learning with a teacher and learning without a teacher [5].  

4.2.4.1  Learning with a Teacher  

The first major category of learning is learning with a teacher, which is also referred 

to as supervised learning. It incorporates an external teacher, having knowledge of 

the environment, with that knowledge being represented by a set of input-output 

examples, as shown in Figure 4.7. The environment is not known by the neural 

network. During the learning process the teacher is able to provide the neural 

network with a desired response for a given training vector, from the environment. 

The network parameters are adjusted according to the training vector and the error 

signal, which is the difference between the desired response and actual response of 

the system. The aim is to provide the emulation of the teacher by the network. After 

this stage the network can generate desired response without the teacher. This kind of 

learning is error correction learning. 

So, an important issue concerning supervised learning is the problem of error 

convergence, i.e. the minimization of error between the desired and computed unit 

values. The aim is to determine a set of weights, which minimizes the error. One 

well-known method, which is common to many learning paradigms, is the least mean 

square (LMS) convergence. 
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Figure 4.7 Learning with a teacher [5] 

4.2.4.2  Learning without a teacher 

In this category of learning, there is no external teacher to oversee the learning 

process. This category can be divided into two subdivisions: 

i. Reinforcement Learning: The learning of an input-output mapping is 

performed through continued interaction with the environment in order to 

minimize a scalar index of performance. Figure 4.8 illustrates the general 

structure of reinforcement learning. Here, the critic converts a primary 

reinforcement signal received from the environment into heuristic 

reinforcement signal, which is a higher quality reinforcement signal. The aim 

of the system is learning under delayed reinforcement, in other words the 

system observes a temporal sequence of stimuli also received from the 

environment, which provides the generation of the heuristic reinforcement 

signal. The goal of the learning procedure is to minimize the expectation of 

the cumulative cost of actions taken over a sequence of steps. The function of 

the Learning system is to discover these actions and feed them back to the 

environment. Reinforcement learning is closely related to dynamic 

programming, which was developed by Bellmann in the context of optimal 

control theory [5]. 

                

Environment      Critic

Learning

system

Primary

reinforcement  Input
  vector

Actions                                                Heuristic reinforcement

 

Figure 4.8 Reinforcement learning [5] 
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ii. Unsupervised learning: There is no external teacher or critic to oversee the 

learning process. Here the provision is made for a task independent measure 

of the quality of representation that the network is required to learn, and the 

parameters of the network are optimized according to that measure. When the 

network has become tuned to the statistical regularities of the input data, it 

develops the ability to form internal representations for encoding features of 

the input and therefore to create new classes automatically [5]. This is 

illustrated in Figure 4.9. 

Unsupervised learning is also referred to as self-organization, in the sense that 

it self-organizes data presented to the network and detects their emergent 

collective properties. Paradigms of unsupervised learning are Hebbian 

learning and competitive learning. 

 

                                   Input from     Environment        Learning

                                  environment                    system

 

Figure 4.9 Unsupervised learning 

4.3  Supervised Learning 

4.3.1  Hebbian Learning 

Hebb‟s learning rule is the oldest and the most famous of all learning rules. A simple 

definition according to Haykin [5] is:  

 If two neurons on either side of a synapse (connection) are activated 

simultaneously, then the strength of that synapse is selectively increased.  

 If two neurons on either side of a synapse are activated asynchronously, then 

that synapse is selectively weakened or eliminated.  

This type of synapse is called a Hebbian synapse [5]. Hebbian synapse uses a time-

dependent, highly local, and strongly interactive mechanism to increase synaptic 
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efficiency as a function of the correlation between the presynaptic and postsynaptic 

activities.  

The mathematical model of Hebbian learning is denoted by  

)().(.)( nxnynw jkkj                                                                 (4. 9) 

where  is the rate of learning, a positive constant; kjw  is the synaptic weight of 

neuron k with presynaptic and postsynaptic signals denoted by jx  and ky , and kjw  

is the adjustment applied to the synaptic weight at time step n.  

The basic idea behind Hebbian learning is that, two neurons, which are 

simultaneously active, should develop a degree of interaction higher than those 

neurons whose activities are not correlated. In the latter case, the interaction between 

the elements should be very low or zero. 

The Hebbian learning rule underlies most of the self-organizing neural network 

models. Self-organization is a fundamental ability for a neural system to adapt to its 

environmental information structure.  

4.3.2  Perceptron and Adaline  

4.3.2.1  Perceptron   

The perceptron was proposed by Frank Rosenblatt in 1958, as a more general 

computational model than McCulloch-Pitts model (see Equation 4.6). In the original 

Rosenblatt model the computing units are threshold elements and the connectivity is 

determined stochastically. The learning is provided by adapting the weights of the 

network with a numerical algorithm. The perceptron is built around a nonlinear 

neuron, namely, the McCulloch-Pitts model of a neuron. This model consists of a 

linear combiner followed by a hard limiter (see Equation 4.5). Rosenblatt‟s model 

was refined and perfected in 1969, by Minsky and Papert.  

The classical perceptron (Rosenblatt) is in fact a whole network for the solution of 

pattern recognition problems. In its simplest form it consists of an N-element input 

layer (retina), which transmits binary values to a layer of computing units in the 
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projection area. The binary values from projection area feed into M-element layer, 

association (or predicate) area. The goal of the operation of the perceptron is to learn 

a given transformation    1,11,1: 
N

d  using learning samples with input x and 

corresponding output y=d (x). In other words the idea is to train the system to 

recognize certain input patterns in the connection region as shown in Figure 4.10.  

projection area           association area           responses

local connections                  random connections

Retina

 

Figure 4.10 The classical perceptron [30] 

The only difference between McCulloch-Pitts elements and perceptrons is the 

presence of weights in the networks.  

Minsky and Papert refined and perfected Rosenblatt‟s model. In this model (shown 

in Figure 4.11) there is also a retina of pixels with binary values on which patterns 

are projected. Some pixels from the retina are directly connected to logic elements 

called predicates, which can compute any single bit according to the input. These 

predicates transmit their binary values to a weighted threshold element that is in 

charge of reaching the final decision in a pattern recognition problem.  

1P

2P

3
P

nP

1
w

2w

3
w

nw



b



 

Figure 4.11 The perceptron [30] 

In Figure 4.11 the predicates 1P  to nP  deliver information about the points in the 

projection surface that comprise their receptive fields, and the only restriction of 

them is that they produce a binary value and the receptive field cannot cover the 
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whole retina. The system consists in general of n predicates 
1P  to 

nP  and the 

corresponding weights 
1w  to 

nw . The system fires only when,  

 


m

i ii bPw
1

.                                                                              (4. 10) 

where b  is the threshold of the computing unit at the output.  

From Equation 4.3 and Equation 4.5 and Equation 4.6, it is seen that the output of the 

network is either +1 or –1, depending on the input. The network can now be used for 

a classification task: it can decide whether an input pattern belongs to one of two 

classes. If the total input is positive, the pattern will be assigned to class +1, if the 

total input is negative, the sample will be assigned to class –1. the separation 

between the two classes, i.e. for m=2 inputs, will be derived by the equation:  

01111  bxwxw                                                                      (4. 11) 

So this single layer network represents a linear discriminant function [31]. Here, the 

important case is computing the weights and biases for the network. There are two 

general rules for this task: The perceptron learning rule and the delta or LMS (least 

mean-square) rule. Both methods are iterative procedures that adjust the weights.  

For a set of learning samples consisting of an input vector x and a desired output 

vector d(x), the “perceptron learning rule” is stated as follows:  

i. Start with random weights for the connections;  

ii. Select an input vector x from the set of training samples;  

iii. If )(xdy  , so the perceptron gives an incorrect response, modify all 

connections iw  according to ii xxdw )( ;  

iv. Go back to step 2.  

The difference between this procedure and Hebb rule in Section 4.3.1, is that, when 

the network responses correctly, no connection weights are modified. Besides 

modifying the weights, also the bias is modified. The bias term, b, is considered as a 
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connection 
0w  between the output neuron and a „dummy‟ predicate unit, which is 

always on: 10 x  [30]. Given the perceptron-learning rule as stated above, this 

threshold is modified according to:  

0b             if the perceptron responds correctly;                  (4. 12) 

)(xdb         otherwise. 

4.3.2.2  The Adaptive Linear Element (Adaline)  

Widrow and Hoff presented an important generalization of the perceptron training 

algorithm, as the “least mean square” (LMS) learning procedure, also known as the 

delta rule. The main difference with the perceptron rule is the way the output of the 

system is used in the learning rule. The perceptron learning rule uses the output of 

the threshold function (either –1 or +1) for learning. The delta-rule uses the net 

output without further mapping into output values –1 or +1.  

The delta rule was applied to the Adaline, developed by Widrow and Hoff in 1960. 

In a simple physical implementation, this device consists of a set of controllable 

resistors connected to a circuit which can sum up currents caused by the input 

voltage signals as shown in Figure 4.12. Usually the central block, the summer, is 

also followed by a quantizer which outputs either +1 or –1, depending on the polarity 

of the sum [30]. 

In Figure 4.12, if the input conductances are denoted by ,,...,1,0, miwi   and the 

input and output signals by ix  and y. The output of the central block is, 

 


m

i ii bxwy
1

                                                                        (4. 13) 

The purpose of this device is to yield a given value pdy   at its output when the set 

of values mix p

i ,...,3,2,1,   is applied at the inputs. The problem is to determine the 

coefficients ,,...,1,0, miwi   in such a way that the input-output response is correct 

for a large number of signal sets. If an exact mapping is not possible, the average 
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error must be minimized. For Adaline, Widrow introduced the delta rule to adjust the 

weights [30].  

For a single layer network with one output unit with a linear activation function the 

output is,  

 
j

jj bxwy                                                                           (4. 14) 

Equation 4.14 represents the linear relationship between the input and output. By 

thresholding the output value, a classifier such as Widrow‟s Adaline, can be 

constructed. 
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Figure 4.12 The Adaline [30] 

In high dimensional input spaces the network represents a hyper-plane and also 

multiple output units may be defined.  

For a given network, such that a hyper-plane is fitted as well as possible to a set of 

training samples consisting of input values px  and desired (or target) values pd ; the 

output value (for every given input sample) of the network will be )( pp yd  , where 

py  is the actual output. The delta-rule uses an error function based on these 

differences to adjust the weights.  

The error (or total error) function is the summed squared error,  

  
p p

ppp ydEE 2)(
2

1
                                                    (4. 15) 
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where pE represents the error on pattern p. The LMS procedure finds the values of 

all the weights that minimize the error function by a method called gradient descent. 

The idea is to make a change in the weight proportional to the negative of the 

derivative of the error as measured on the current pattern with respect to each weight,  

j

p

jp
w

E
w




                                                                           (4. 16) 

where  is a constant of proportionality. The derivative is,  
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                                                                        (4. 17) 

By using the derivatives of the functions in Equation 4.14 and Equation 4.15 in 

Equation 4.17, the Equation 4.16 can be extracted as “the delta-rule”, 

j

p

jp xw                                                                           (4. 18) 

where ppp yd   is the difference between the target output and the actual output 

of the pattern p. The delta-rule modifies weight appropriately for target and actual 

outputs of either polarity and for both continuous and binary input and output units 

[5].  

4.3.3  The Back-Propagation Algorithm  

The single layer feed forward networks, given above have some advantages and 

disadvantages. The disadvantage is the limited representational power; only linear 

classifiers can be constructed or, in case of function approximation, only linear 

functions can be represented. The advantage is that, due to the linearity of the 

system, the training algorithm converges to the optimal solution, however this is not 

the case for nonlinear systems such as multiple layer networks.  

Minsky and Papert showed that a two layer feed-forward network can overcome the 

restrictions in the single layer perceptron. But they did not present a solution to the 

problem of how to adjust the weights from input to hidden units. Rumelhart, Hinton, 
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and Williams in 1986 solved this problem by introducing back-propagation (BP) 

algorithm [5].Figure 4.13 shows a multilayer feedforward network. Each layer 

consists of units that receive their input from units of a layer directly below and send 

their output to units in a layer directly above the unit. There are no connections 

within the layer.  
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Figure 4.13 A multi- layer network with l layers of hidden units [5] 

Since activation functions of the units in multi-layer feed-forward networks are 

nonlinear the delta rule must be generalized. The activation is a differentiable 

function of the total input given by )( p

k

p

k sy  , in which  
j
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jjk
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k byws . To 

get the generalization of the delta rule, 
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   is obtained from Equation 

4.16. The error measure pE  is defined as the total quadratic error for pattern p at the 

output units;  
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1
, where p

od  is the desired output for unit o and 

pattern p. The summed squared error is 
p

pEE . From here, the update rule 

which is equivalent to the delta rule, is obtained if the weight changes are done 

according to,  

p

j

p

kjjp yw                                                                        (4. 19) 

similar to Equation 4.18.  For any hidden unit h, p  is derived as,  
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And for any output unit o, p  is derived as,  

)()( p

oo

p

o

p

o

p

h syd                                                                 (4. 21) 

So for a learning pattern, the activation values are propagated to the output units, and 

the actual network output is compared with the desired output values, the procedure 

ends up with an error, 
oe , in each of the output units. The goal is to bring 

oe  to zero. 

From the delta–rule, in order to reduce an error, its incoming weights must be 

adapted by hooho yydw )(  . That is step one of the procedure. In order to adapt 

the weights from input to hidden units, the delta rule should be used again, by the 

help of the chain rule. Chain rule distributes the error of an output unit o to all the 

hidden units.  

The application of the generalized delta rule thus involves two phases [31]: During 

the first phase the input x is presented and propagated forward through the network 

to compute the output values p

oy  for each output unit. This output is compared with 

its desired value od , resulting in an error signal p

o  for each output unit. The second 

phase involves a backward pass through the network during which the error signal is 

passed to each unit in the network and appropriate weight changes are calculated.  

An important point is that, the learning procedure requires the change in weight to be 

proportional with wE p  . For practical purposes, a learning rate that is as large as 

possible without causing oscillation is necessary .One way to avoid the oscillation at 

large values of , is to make the change in weight dependent of the past weight 

change by adding a momentum term [30];  

)()1( twytw jk

p

j

p

kjk                                                   (4. 22) 

where t indexes the presentation number and  is a constant, which determines the 

effect of the previous weight change.  
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Figure 4.14 The descent in weight space, (a) for small rate; (b) for large learning rate 
with oscillation: (c) with large rate and momentum included [30] 

The role of the momentum term is showed in Figure 4.14. When no momentum term 

is used, it takes a long time before the minimum has been reached with a low 

learning rate, whereas for high learning rates the minimum is never reached because 

of the oscillation. When the momentum term is included, the minimum will be 

reached faster.  

4.4  Unsupervised Learning  

In the case of supervised learning, the goal is to perform a mapping: mn RRF   

by presenting the network „examples‟ ),( pp dx  with )( pp xFd   of this mapping. 

However, problem exists where such training data, consisting of input and desired 

output pairs are not available, but where the only information is provided by a set of 

input patterns px . In this case the information has to be found within the training 

samples px . Some examples, [33], of such problems are:  

 Clustering: Clustering algorithms attempt to organize unlabelled feature 

vectors into clusters such that points within a cluster are more similar to each 

other than to vectors belonging to different clusters.  

 Vector quantization: When a continuous space has to be discretised, this 

problem occurs. The input of the system is the n-dimensional vector x, the 

output is a discrete representation of the input space. The system has to find 

optimal discretisation of the input space.  

 Dimensionality reduction: the input data are grouped in a subspace that has 

lower dimension than the dimension of the data. The system has to learn an 

optimal mapping, such that most of the variance in the input data is preserved 

in the output data.  
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 Feature extraction: The system has to extract features from the input signal. 

This often means a dimensionality reduction as mentioned above.  

In unsupervised learning, training is done without the presence of the external 

teacher. The unsupervised weight adapting algorithms are usually based on some 

form of global competition between the neurons.  

4.4.1  Competitive Learning  

In competitive learning, the output neurons of an ANN compete among themselves 

to become active. While in the case of an ANN based on Hebbian learning several 

output neurons may be active simultaneously, in competitive learning only one single 

output neuron is active (fired) at any one time. Competitive learning is suitable for 

discovering the statistical features that may be used to classify a set of input patterns 

[5].  

4.4.1.1  Clustering 

The competitive learning is a learning procedure that divides a set of input patterns in 

clusters that are embedded in the input data. A competitive learning network is 

provided only with input vectors and thus implements an unsupervised learning 

procedure. Figure 4.15 shows a simple competitive learning network. 

 

input
output

 

Figure 4.15 A simple competitive learning network 

In Figure 4.15 all output units “o” are connected to all input units “i” with weights 

iow . When an input pattern x is presented, only a single output unit of the network 

(the winner) will be activated. In a correctly trained network, all x in one cluster will 

have the same winner. For the determination of winner and the corresponding 

learning rule, two methods exist [33]:  
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i. Dot Product: For given input vectors x and weight vectors 
iow , which are 

normalized to unit length, each output unit “o” calculates its activation value 

oy  according to the dot product of the input and weight vector:  

xwxwy
T

o

i

iioo                                                                   (4. 23) 

In a next pass, output neuron k is selected with maximum activation,  

koo yyk  :                                                                          (4. 24) 

And the activations are set to 1ky  and 0koy . The output layer is 

referred to as winner-take-all layer. After a winner k is selected by Equation 

4.24, the weights are updated according to,  
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                                          (4. 25) 

The denominator ensures that all weight vectors w are normalized. As a result 

only the weights of the winner k are updated.  

                     

Figure 4.16 Geometric illustration of clustering with normalized vectors. The 
three weight vectors are rotated towards the centers of three different input 
clusters (a) Initial state of the network. (b) Final state of the network [5]       

The procedure used in „dot product‟ is illustrated in Figure 4.16. The weight 

update in Equation 4.25 rotates the weight vector iow towards the input vector 

                 initial weight vector (a) 

                 final weight vector   (b) 

                 pattern vector 
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x. Each time an input is presented, the weight vector closest to this input is 

selected and is rotated towards the input. As a result, weight vectors are 

rotated towards the areas of the clusters in the input. 

ii. Euclidean Measure: Previously it was assumed that both inputs and weight 

vectors are normalized. In Figure 4.17, it is shown that the algorithm would 

fail if un-normalized vectors were used.  
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                                                      (a)                                                 (b) 

Figure 4.17 Determining the winner. (a) Three normalized vectors (b) Three 
vectors with different lengths [5] 

In Figure 4.17a, vectors x and 
1w  are nearest to each other, and their dot 

product cos11 wxwxT   is larger than the dot product of x and 2w . In 

Figure 4.17b, however, the pattern and weight vectors are not normalized, and 

in this case 2w  should be considered the „winner‟ when x is applied. But, the 

dot product 
1wxT  is still larger than 

2wxT .  

To be able to use unnormalized input data, the winning neuron k is selected 

with its weight vector kw  closest to the input pattern x, using the Euclidean 

distance measure:  

xwxwk ok :     o                                                         (4. 26) 

If all vectors were normalized the Equation 4.26 would be reduced to 

Equation 4.23 and Equation 4.24. In Euclidean measure, instead of rotating 
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the weight vector towards the input, the weight update is changed to 

implement a shift towards the input, 

))()()(()()1( twtxttwtw kkk                                            (4. 27) 

)()1( twtw ii     for ki   

where )(t  is a suitable, monotonically decreasing scalar-valued gain 

coefficients 1)(0  t . Then this is the simplest definition of “Competitive 

learning”.  

The competitive learning stems from “cluster analysis”. Assume a sequence of 

statistical samples of a vectorial observable nRtxx  )(  where t is the time 

coordinate, and a set of variable reference vectors  riRmtm i

ii ,,2,1,);(  . 

Assume that the )0(im  have been initialized in some proper way. Competitive 

learning then means that if the input x(t) can be compared in parallel with all the 

)(tmi  at each successive time instant, to be an integer (t=1,2,3,…), then the best 

matching )(tmi  is updated to better comply with x(t). If comparison is based on some 

distance measure d(x, im ), updating must be such that if ki   is the index of the 

best-matching reference vector, then d(x, km )  shall be decreased, and all the other 

reference vectors with ki   left intact. In this way, in the long run, the different 

reference vectors tend to become specifically “tuned” to different domains of the 

input variable x. If the probability density function of  p(x) is clustered, then the im  

tend to describe the clusters. In general, it can be shown that the im  tend to be placed 

into the input space R in such a way that they approximate p(x) in the sense of some 

minimal residual error [33]. 

So, a competitive network performs a clustering process on the input data by 

dividing the input patterns in disjoint clusters such that similarities between input 

patterns in the same cluster are much bigger than similarities between input patterns 

in different clusters. Similarity is measured by a distance function on the input 

vectors. A common criterion to measure the quality of a given clustering is the 
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square criterion, given by 
2

 
p

p

k xwE  where k is the winning neuron when 

input px  is presented. The competitive learning seeks to find a minimum for this 

square error by following the gradient of the error-function 

 
i

p

iki xwE 2)(
2

1
                                                                  (4. 28) 

where k is the winning unit, minimized by the weight update rule in Equation 4.27. 

4.4.1.2  Vector Quantization (VQ) 

The VQ is a classical method in signal processing to produce an approximation to the 

distribution of a single class by a reproduction (codebook) vector [33]. Each 

incoming signal is mapped to the nearest codebook vector, and that vector sent 

instead of the original signal. One way to choose the codebook is to minimize some 

measure of the approximation error averaged over the distribution of the signal, and 

over the training patterns of that class. Taking the measure as the squared distance 

from the nearest codebook vector leads to the k-means algorithm, which aims to 

minimize the sum of squares of distances within clusters. The k-means algorithm is 

applied as follows:  

i. Begin with an arbitrary set of cluster centers in the vector space and assign 

the sample vectors to the nearest centers, 

ii. Compute the sample vector mean of each center, 

iii. Reassign each and every sample vector to the cluster with the nearest mean, 

iv. If the classification of all sample vectors has not changed, stop: else go to  

step 2 

The distance measure is Euclidean and a similarity measure J is used as defined by; 

2

1


 


CN

k ki

ki myJ                                                                     (4. 29)  
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where 
cN  is the number of clusters, 

iy  are the sample vectors, and 
km  are the 

cluster centers or cluster means. For fixed set of sample vectors, J is minimized by 

choosing 
km  to be the sample mean of the kth cluster. When 

km  is fixed. J is 

minimized by choosing the class of 
iy  as the class of the cluster with the nearest 

mean. The set of means or centers is often called the „codebook‟ and the problem of 

choosing the centers is called „code book‟ design. VQ is similar to clustering or 

finding centers of vectors that may be said to be correlated or related in some way. 

The self-organizing map developed by Kohonen [34], maps some given vectors to 

finite set of output nodes, which can be defined as cluster centers for related groups 

of vectors.  

4.4.2  Kohonen Networks  

Given a set of information signals m, an ANN is capable of automatically forming an 

inner representation of signals. In particular, when each signal in m is represented at 

a specific position of neural field, a map of the signals on the neural field is obtained. 

A neural field implies a network in which neurons are arranged on a two-dimensional 

space like cortex. This is called a cortical map or neural map of information [31]. 

The basic properties of a map are; the topological relation between the map and the 

original signal space m, the resolution and stability of a map.  

Willshaw and Von Der Malsburg proposed a self-organizing mechanism of this type 

of a cortical map. Kohonen also proposed a simplified but powerful model, and 

studied its properties. Moreover, he utilized the map to form a vector quantizer, 

emphasizing its discrete characteristics [34].  

4.4.2.1  Kohonen Self-organizing Feature Maps (SOFM)  

A self-organizing map (SOM) is formed of neurons located on a regular, usually one 

or two-dimensional grid. Also higher dimensional grids are possible, but since their 

visualization is difficult, they are not generally used. The neurons are connected to 

adjacent neurons by a neighborhood relation dictating the structure of the map. In the 

two-dimensional case the neurons of the map can be arranged either on a hexagonal 

or a rectangular lattice, as shown in Figure 4.18. 
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                                             (a)                                              (b) 

Figure 4.18 Neighborhood (size 1,2 and 3) of the unit marked with black dot:         
(a) hexagonal lattice, (b) rectangular lattice 

Each unit i in the grid is represented by a prototype vector 
im . The number of map 

units, which typically varies from a few dozen up to several thousands, determines 

the accuracy and generalization capability of the SOM. During training, the SOM 

forms an elastic net that folds onto the cloud formed by the input data. Data points 

lying near each other in the input space are mapped onto nearby map units. So, the 

SOM can be interpreted as a topology preserving mapping from input space onto the 

two dimensional grid of map units.  

The principal goal of SOM is to transform an incoming signal pattern of arbitrary 

dimension into a discrete map, and to perform this transformation adaptively in a 

topologically ordered fashion.  

Figure 4.19 shows the diagram of a two dimensional lattice of neurons commonly 

used as the discrete map. Each neuron in the lattice is fully connected to all the 

source nodes in the input layer. This network represents a feed-forward structure 

with a single computational layer consisting of neurons arranged in rows and 

columns.  

 

Layer of

source nodes

2-D Lattice
 

Figure 4.19 Two-dimensional lattice of neurons 
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The training procedure of SOM is iteratively. At each training step, a sample vector x 

is randomly chosen from the input data set. Distances between x and all the prototype 

vectors are computed. The best matching unit (BMU), which is denoted by b, is the 

map unit with prototype closest to x:  

 i
i

b mxmx  min                                                           (4. 30) 

Then, the prototype vectors are updated. The BMU and its topological neighbors are 

moved closer to the input vector in the input space. The update rule for the prototype 

vector of unit i, according to [34] is  

 )()()()()1( tmxthttmtm ibiii                                         (4. 31) 

where t is time, 0<(t)<1 is time dependent learning rate parameter, )(thbi  is the 

neighborhood kernel function centered on the winner unit. A typical choice of )(thbi  

is the Gaussian function [5]  
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where br  and ir  are positions of neurons b and i on the SOM grid, and )(t  is the 

width of the topological neighborhood function. It is denoted as,  
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t o                                                                   (4. 33) 

where o  is the value of )(t  at the initiation of the SOM algorithm, and 1  is a 

time constant. In Equation 4.31, (t) is  
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where 
2  is another time constant and 

o  is the initial state of learning rate. Both 

(t) and )(t  decrease monotonically with time.  

In the case of a discrete data set and fixed neighborhood kernel, the error function of 

SOM can be shown to be  
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i

M

j

jibi mxhE
1 1

2

                                                              (4. 35) 

where N is number of training samples in the input data set, and M is the number of 

map units. Neighborhood kernel is centered at unit b, which is the BMU of vector ix , 

and evaluated for unit j [33].  

The adaptation of the synaptic weights in the network, computed by Equation 4.31, is 

generated in two phases: an ordering or self-organizing phase followed by a 

convergence phase [34]:  

Self-organizing or ordering phase: It is during the first phase of the adaptive process 

that the topological ordering of the weight vectors takes place. The ordering phase 

may take as many as 1000 iterations of the SOM algorithm, and possibly more.  

Convergence phase: This phase of the adaptive process is needed to fine-tune the 

feature map and to provide an accurate statistical quantification of the input space.  

As described in Section 4.4.1.2, VQ, an input space is divided into a number of 

distinct regions, and for each region a reconstruction vector is defined. When the 

quantizer is presented a new input vector, the region in which the vector lies is first 

determined, and is then represented by the reproduction vector for that region. So, by 

using an encoded version of this reproduction vector for storage or transmission in 

place of the original input vector, considerable savings in storage can be obtained, at 

the expense of some distortion. The collection of possible reproduction vectors is 

called the codebook of the quantizer, and its members are called code words, as 

mentioned earlier in Section 4.4.1.2.  

A VQ with minimum encoding distortion is called a “Voronoi” or “Nearest-neighbor 

quantizer”, since the Voronoi cells about a set of points in an input space correspond 
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to a portion of that space according to the nearest neighbor rule based on the 

Euclidean metric [35,36]. The SOM algorithm provides an approximate method for 

computing the “Voronoi vectors” in an unsupervised manner, with the approximation 

being specified by the synaptic weight vectors of the neurons in the feature map. 

Thus, computation of the feature map may be viewed as the first of two stages for 

adaptively solving a pattern classification problem. The second stage is provided by 

learning vector quantization, which provides a mechanism for the final fine-tuning of 

a feature map [5].  

4.4.2.2  Learning Vector Quantization (LVQ) 

LVQ is a supervised learning technique that uses class information to move the 

Voronoi vectors slightly, so as to improve the quality of the classifier decision 

regions. An input vector x is picked at random from the input space. If the class 

labels of the input vector x and a Voronoi vector w agree, the Voronoi vector w is 

moved in the direction of the input vector x. However, if the class labels of the input 

vector x and the Voronoi vector w disagree, the Voronoi vector w is moved away 

from the input vector x.  

In the case of classifying a number of given input signal sets, into a „finite‟ number 

of categories, several codebook vectors are usually made to represent each class, and 

their identity within the classes is not important. But the important case is the 

decisions made at “class borders”. So, it is then possible to define effective values for 

the codebook vectors such that they directly define optimal decision borders between 

the classes, even in the sense of classical Bayesian decision theory [33]. For this 

reason, Kohonen proposed LVQ1, which will be described below [34].  

According to “LVQ1” algorithm, if several codebook vectors “ im ” are assigned to 

each class, and each of them is labeled with the corresponding class symbol, the class 

regions in the input space are defined by simple nearest neighbor comparison of x 

with the im ; the label of the closest im  defines the classification of x.  

To define the optimal placement of im  in an iterative learning process, initial values 

for them must be first set using any classical VQ method or by the SOM algorithm. 

The initial values in both cases roughly correspond to the statistical density function 
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p(x) of the input. The next phase is to determine the labels of the codebook vectors, 

by presenting a number of input vectors with known classification, and assigning the 

cells to different classes by majority voting, according to the frequency with which 

each 
im  is closest to the calibration vectors of a particular class.  

It is proved [34] that, the classification accuracy is improved if the 
im  are updated 

according to the following algorithm. The main idea is to pull codebook vectors 

away from the decision surfaces to demarcate the class borders more accurately. Let 

cm  be the codebook vector closest to x in the Euclidean metric; this then also defines 

the classification of x. Then apply training vectors x, the classification of which is 

known. Update the )(tmm ii   as follows:  

 )()()()()1( tmtxttmtm ccc                                              (4. 36) 

if x is classified correctly; 

 )()()()()1( tmtxttmtm ccc    

if x is classified incorrectly; 

)()1( tmtm ii     for  ci      

Here )(t  is a scalar adaptation gain (learning rate) ( 1)(0  t ), which is 

decreasing monotonically in time. Since this is a fine-tuning method, its initial value 

should be selected a small value, i.e. 0.01 or 0.02 for 100.000 steps.   

 



 87 

5. IMPLEMENTATION OF THE PROPOSED TOOL FOR DISTRIBUTION 

SYSTEM FAULT CLASSIFICATION 

5.1 Introduction  

This section discusses the implementation of an integrated design of fault classifier 

in a 34.5 kV distribution system by using the hybrid “Wavelet-ANN-based” 

approach. The section is divided into three subsections: The first subsection 

introduces the 34.5 kV test system, all the features of the distribution system and the 

monitored data at PSCAD/EMTDC simulation software. The second subsection 

introduces the features of the wavelet transform module as a preprocessor to extract 

relevant information from the raw data monitored from the test system. Finally the 

last subsection describes the hybrid neural classifier, all the parameters of the feature 

vectors, input-output structures and the results obtained from the ANN-based 

classifier. 

5.2 Simulation of a 34.5 kV Distribution System 

In this thesis a distribution system in Istanbul, Turkey is simulated by the educational 

edition of PSCAD/EMTDC simulation program. This is the 34.5 kV “Sagmalcılar-

Maltepe” distribution system with a 61-bus configuration. Due to software 

limitations and practical reasons, a reduced model shown in Figure 5.1 is used to 

generate the test data. One of the limitations in the software is related to the node 

number. In the actual distribution system the node number is 326. However in this 

version of the simulation program the node number is limited to 200 nodes. The 

system is reduced to be 66 nodes as shown in Figure 5.1 to generate the simulation 

data. 
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Figure 5.1 One-line diagram of the reduced 34.5 kV Sagmalcılar-Maltepe 
Distribution System 

The network parameters of the test system given in Figure 5.1 is provided in 

Appendix B in Table B 1. The test system is a 12-bus distribution system with a base 

power of 100 MVA and a base voltage of 34.5 kV. All of the test data were 

monitored from the secondary of the main step-down transformer (TRF 1) located at 

the Sagmalcılar substation as shown in Figure 5.1, node 2. The objective is to 

monitor the voltage and the current at the 34.5 kV bus and identify the fault classes. 

Each sample of data contained six channels, a set of three line current and three   

line-to-ground voltages, which is typically what a recording device would measure in 

a “real system”. The signals are generated at an equivalent sampling rate of 5 KHz 

per channel, which could be increased if needed. The fundamental frequency of the 

waveforms is 50 Hz. Ten cycles of data per channel with a total time duration of 200 

milliseconds were captured for each sample from which features were extracted. 

Various fault conditions were simulated using the PSCAD / EMTDC software (refer 

to Section 2 for information about the software), which is an ideal tool for fault 

simulation and transient analysis. (The test system layout used in the simulation 

software is provided in Appendix B, Figure B.1). A database of line currents and 

line-to-ground voltages is built up under normal and fault conditions. Specific events 

simulated including system faults at different fault inception angles and fault 

locations. The fault inception angles (FIA) used in the simulations are in the range of       
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o0  ~ o180 . Since the waves are periodic, it is sufficient to study angles in the range 

of o0  ~ o180 . The selected angles are: 0 o , 30 o , 60 o , 90 o , 120 o , 150 o, 180 o . 

Short-circuit faults are simulated at various locations of the test system. The five 

fault locations are shown in Appendix B, Figure B.1. Four main types of system 

faults are generated: single-phase to ground, two-phase fault, two-phase to ground, 

and three-phase to ground fault.  
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Figure 5.2 Typical measured voltage and current patterns. (a) voltage waveforms, (b) 
current waveforms 

Figure 5.2 shows the three-phase line currents and the line-to-ground voltage signals 

for a “phase A-phase B to ground” fault occurred at bus 4 on 0.0636 sec. with a fault 
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inception angle of 90 o . It is possible to investigate various types of disturbances in 

this example. An abrupt change can be observed in both of the current and voltage 

signals at the time 0.0636 sec. Figure 5.2a shows a 15% and 50% sag disturbance on 

the faulted phase voltages “
aV ” and “

bV ” respectively, and a 30% swell disturbance 

on the unfaulted phase “
cV ”. There is some high-frequency (HF) distortion on the 

voltage waveforms, in particular on the faulted “a” and “b” phases at fault 

occurrence time and this is so by virtue of the fact that there is a large step change in 

the “a” phase voltage and the “b” phase voltage when the fault occurs. In addition to 

voltage signals, the faulted line (
aI  and 

bI ) currents increase greater than the current 

( cI ) in healthy line as it can be seen from Figure 5.2b. In the case of double-line-

ground fault, only the faulty line currents increases greatly: the increase in the 

magnitude of the faulted “a” phase current and “b” phase current is larger than “c” 

phase current, as expected. Unlike the voltage waveforms, the current signals are 

relatively distortion free from a HF point of view. The abrupt change observed in the 

current and voltage signal at 0.0636 sec. enables the classification scheme to identify 

the fault phase and fault type.  

Since the waveforms have certain distinct characteristics, any successful 

classification tool would be able to pick out these relevant features and associate the 

waveforms with those of a certain fault class. Here, fault classification is defined as a 

multiclass problem. The ten types of faults (A-g, B-g, C-g, A-B, A-C, B-C, AB-g, 

AC-g, BC-g, ABC-g) produce a ten-class classification problem. Having chosen the 

classes, the next step in developing a classifier is the selection and extraction of 

desired features. This refers to the preprocessing of raw data into a smaller set of 

features that would be the input to the classifier. This is probably the most critical 

step in the analysis. The criterion used in feature selection was to represent the 

important characteristics that distinguish each class from another. Here the “wavelet 

multi-resolution analysis” technique (for information about MRA refer to        

Section 3.4.4) is used as a preprocessing unit to obtain a smaller set of data to 

represent each of the class. The key idea in using wavelet transform analysis for 

classifying fault types is based on the uniqueness of the wavelet transform 

coefficients (WTCs) for each type of signals. The second technique is “descriptive 

statistics” that summarize the data into a small set of numbers that contain most of 
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the relevant information. After the uniqueness of each signal is found, then an   

ANN-based classification tool was employed for classification task. The main idea in 

this approach is solving the complex fault (three-phase short-circuit) classification 

problem under various system and fault conditions. This classification is a pattern 

recognition problem where the process must be able to discriminate various fault 

classes. The ANN technique provides the ability to classify the classes by identifying 

different patterns of the associated voltages and currents. The performance of the 

proposed fault classification scheme is evaluated based on a database of about 350 

sample cases simulated under different fault types, fault inception angles and various 

fault locations monitored from the 34.5 kV test system given in Figure 5.1 and   

Appendix B, Figure B.1.  

In the next sections the preprocessing module and the ANN-based classification 

technique will be described.  

5.3 Feature Detection and Extraction 

The neural network approach to the detection and classification of system faults 

consists of three general tasks; generating sets of line current and line-to-ground 

voltages, using these sets to train a neural network, and testing the network on 

separate sets of line currents and line-to-ground voltages. The preprocessor is an 

internal part of this scheme. Training cases were generated using an electro-magnetic 

transient simulation program on a distribution system as described in the Section 5.2. 

To enhance the competence of the classifier system, it is necessary to pre-process the 

event signals to extract characteristic information. Also, it is impractical to use the 

raw waveforms directly as input for a neural network. Thus, certain characteristics of 

the waveforms must be identified and reduced to quantitative form in order for the 

network to distinguish between faulty conditions. 

5.3.1 Introduction 

Feature extraction is a pre-processing operation that transforms a pattern from its 

original form to a new form suitable for further analysis. It reduces the high 

dimensionality of the initial system description. The feature extraction method 

proposed in this thesis is based on the “wavelet MRA technique”, and the 
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distribution of the energy of given signal within different frequency sub-bands. In 

addition to the MRA technique, the “descriptive statistics” analyze is also used to 

obtain the measure of dispersion of the signals and the detail coefficients. As a result, 

the raw data generated by EMTDC is mapped into a small size of interpretable 

features. 

The MRA is a tool that utilizes the DWT to represent a time-varying signal in terms 

of its frequency components. It essentially maps a one-dimensional signal of time 

into a two-dimensional signal of time and scale. Wavelet analysis involves 

representing signals in terms of simpler, fixed building blocks (wavelets) at different 

scales and positions. The main idea is to develop representations of a complicated 

signal )(tf  in terms of its orthonormal basis, which are the scaling and the wavelet 

functions. These two functions are translated and scaled to produce wavelets at 

different locations (positions) and on different scales (durations). Fine-scale wavelets 

are narrow and brief; coarse-scale wavelets are wide and long lasting. The wavelet 

functions represent the high frequencies corresponding to the detailed parts of a 

given signal, and scaling functions represent the signal‟s low frequencies or smooth 

parts. These functions can be scaled and translated to decompose )(tf  and represent 

it at different resolutions or scales. This decomposition technique is called multi-

resolution signal decomposition (MSD). 

The purpose of feature extraction task is to identify specific signatures of the fault 

types in the system. The wavelet transform breaks down the signal into different 

time-frequency scales. Each scale represents the signal in the corresponding         

sub-band. By using wavelet analysis, the sub-band information can be extracted from 

the simulated waveforms, which contain useful fault features. Some bands are 

intensive to some types of fault. The energy content of the scale signals relative to 

the given signal changes depending upon the type of disturbance. By analyzing these 

features of the detail signals, different types of fault can be detected and classified. 

In the proposed feature extraction method, disturbance detection is performed in the 

wavelet domain rather than time or frequency domain. Using the MSD technique, it 

is possible to decompose the given signal into different resolution levels. Any 

changes in the smoothness of the signal can be detected and localized at the finer 

resolution levels. The detection and localization behavior of five-level MSD of a 
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current signal is shown in Figure 5.3. (The “analysis” block is defined in Figure 5.4). 

The input signal is the 
bI  current for a three-phase to ground fault in bus-4 with a 

FIA of 150 o. Here, the MSD approach is based on a dyadic-orthonormal wavelet 

transform analysis with Daubechies‟ wavelet with a ten-coefficient filter having five-

vanishing moments. The value of “vanishing-moments” determines the constants 

leading to zeros in the wavelet spectrum. For example it can be seen from Figure 5.3 

that regions of the given signal that are constant lead to corresponding zeros in the 

associated wavelet spectrum. Generally regions that are linear, quadratic, and cubic, 

etc. lead to zeros in the wavelet spectrum, which improves the scale decompositions, 

because scales tend to separate and localize better. This generalization is known as 

the property of vanishing moments [38]. As the number of vanishing moments, 

hence the number of filter coefficients grows the coarse approximation becomes 

smoother and the small-scale oscillations are separated better. The choice of number 

of filter coefficient depends on the type of signal analyzed. More vanishing moments 

lead to better localization of scales and poorer time localization. After examinations 

of several types of wavelets like Daubechies 4, Daubechies 8, Daubechies 10, 

Daubechies 40; Daubechies 10 is chosen in this thesis and used in the entire analysis. 
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Figure 5.3 Five-level MSD of a distorted signal 
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As shown in Figure 5.3, a five-scale signal decomposition is performed to ensure that 

all disturbance features in both high and low frequency are extracted. The given 

input signal is decomposed into other signals, which represent a smoother version 

and detailed versions of the original signal. The output of the wavelet transform is six 

decomposed scale signals with different level of resolution. Therefore, the distorted 

signal is represented as a sum of wavelets. It is seen from Figure 5.3 that the first 

finer decomposition levels of the distorted signal may be adequate to detect and 

localize the disturbance. However, the other coarser resolution levels are also used to 

extract more features that can help in the classification scheme. 
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Figure 5.4 One stage MSD using convolution and decimation by factor 2 

The input signal in Figure 5.3 has 1001 sample points lasting 0.2 sec. The signal 

consists of 10 cycle data, each cycle lasting 0.02 sec. The detail signal in scale 1, 

)(1 nd , has 510 sample points due to decimation by a factor of two, as shown in 

Figure 5.4.  The other detail signals have 264, 141, 80, 49 sample points for )(2 nd , 

)(3 nd , )(4 nd , )(5 nd  respectively. The approximation signal at the output of last 

“analysis” module is )(5 nc  with 49 sample points. The input signal has been 

sampled at 5 KHz. Thus, a five-scale decomposition of a signal yields 5 detailed 

signals having a frequency band of 2.5-1.25 KHz at scale 1; 1.25-0.625 KHz at   

scale 2; 625-312.5 Hz at scale 3; 312.5-156.25 Hz at scale 4; 156.25-78.125 Hz at 

scale 5 and one smooth signal contains frequency band 78.125 Hz to DC level.  

All of the six channels ( aV , bV , cV , aI , bI , cI ) were decomposed by the five-level 

MSD with Daubechies 10 filters for the entire simulation in this thesis. The six 
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channel‟s data and their sub-bands have the characteristics described in the previous 

paragraphs.  

In addition to “wavelet MRA technique” briefly described in the previous 

paragraphs, the “descriptive statistics” analyze is also used to obtain the measure of 

dispersion of the signals and the detail coefficients. Descriptive statistics are a way to 

summarize the data into a small set of numbers that contain most of the relevant 

information. Statistical information like standard deviation, variance and other 

average quantities like maximum amplitudes of line currents and line-to-ground 

voltages and their sub-band information obtained by five-level MSD were also 

extracted. These parameters are different for each fault class, thus they are unique 

identifying features. 

For each set of six channel data 27 parameters are computed. Generally, the 

computed parameters are the current for three phases before and immediately after 

the fault occurred, energy of the current signals over the five detailed components, 

power and energy of the voltage channels for each phase. The detailed description of 

the parameters is given in the Section 5.3.4. 

The “data pre-processing” scheme is represented in Figure 5.5. The pre-processor 

extracts pertinent information over 10 cycles of operation. The voltage and current 

signals monitored from the secondary of the main step-down transformer (TRF 1) in 

Figure 5.1 are fed into signal-processing unit. These modules extract the features 

required by the fault detection and classification network. Figure 5.5 shows the 

different modules belonging to the signal-processing unit. Module I extracts the five-

level MSD detail coefficients of three current channels. The statistical information 

and other average quantities are extracted by the Module II and Module III: Module 

II extracts the distribution of the energy of the sub-bands obtained by the Module I. 

Module III extracts the statistical information and average quantities of the three 

channel voltage and the three channel current information. The “feature collector” 

module collects the information produced by the previous three modules. The 

information is then put in the order by feature collector module and produced a 

feature vector of 27 parameters. The detailed parameters of the feature vector will be 

provided in the Section 5.3.4. 
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Figure 5.5 Data processing and feature extraction architecture 

5.3.2 Parseval’s Theorem 

As mentioned in the previous section, feature extraction is a pre-processing 

operation, which transforms a pattern from its original form to a new form suitable 

for further processing. The features extracted by the Module I in Figure 5.5 are 

processed by a second module to extract the energy distribution of the given pattern. 

Parseval‟s theorem relates the energy of the distorted signal to the energy in each of 

the expansion components and their wavelet coefficients if the selected scaling 

function and the wavelet function form an orthonormal basis. This means that the 

energy of the signal )(tf  can be partitioned in terms of the expansion coefficients as 

in [18]: 
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where )(kd j  is the detail coefficients at scale j and )(0 kc  presents the last 

approximate coefficients as shown in Figure 5.4.  

The energy of the current signals will be partitioned at different resolution levels by 

the property of Parseval‟s theorem. The standard deviation at different resolution 
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levels of the decomposed signal can be considered as a measure of the energy as it 

was used in [9] and [18] as a feature to classify different power quality problems. 

The energy of the detail coefficients, where extracted at different resolution levels, is 

used to generate the translation invariant feature vector. The term “translation 

invariant” denotes that the features remain unchanged if the position of the distortion 

changes.  

This property is used as a feature to classify different fault classes. The process is 

shown in Figure 5.5 with Module I and Module II. In the first step the three channel 

current waveforms are decomposed into different resolution levels by module I. In 

the second step the distribution of the signal energy for each detail version at 

different resolution levels is computed by Module II. So, the energy of the signals at 

different frequency ranges are decomposed and represented, which gives an idea 

about the frequency content of the signal and is used as a feature to classify different 

fault classes.  

5.3.3 Some Other Important Features 

In addition to the features extracted by modules one and two, other discriminative 

features like voltage signal power and statistical information is obtained by     

Module III as shown in Figure 5.5. 

The voltage waveforms for “A-g” fault and “ABC-g” fault at bus-4 with a fault 

inception angle of 30 o  are given in Figure 5.6a and Figure 5.6b, respectively. The 

two distorted signals belong to cV  channel. Figure 5.6a shows a 50% swell 

disturbance and Figure 5.6b shows a 50% sag disturbance. These are slow varying 

disturbances. For both of the disturbances, the abrupt change in the magnitude of 

signals when fault occurs is seen at scales 1, 2, 3, and 4. The rapid oscillation 

disturbances (high frequency) in voltage sag in Figure 5.6b are seen in scales 1 and 2. 

The change in the magnitude of the signals is best seen in scales 4 and 5. Although 

these two waveforms belong to two different disturbance classes, their detail 

components have similar characteristics. And it is difficult to separate single-phase to 

ground faults and three-phase to ground faults, since the difference between the two 

fault classes are the sag and swell disturbances. Besides that, the MSD technique is 

not adequate in detecting slowly varying events like voltage sags, swells, and outages 
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owing to the poor time resolution at low frequency [16]. This limitation of the MSD 

can be overcome by tracking the voltage signal power, which is its mean square 

value [16]. 
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     (a)                                                                (b) 

Figure 5.6 The five-level MSD analysis with Daubechies-10. (a) The voltage swell 
disturbance signal. (b) The voltage sag disturbance signal 

5.3.4 The Feature vector 

In the previous paragraphs the functions of the modules in Figure 5.5 were described. 

In this section the feature vector, which is obtained at the last step of data pre-

processing in Figure 5.5 will be explained. 

The distribution system shown in Figure 5.1, is simulated using EMTDC/PSCAD 

simulation software for the purpose of generating line current waveforms and      

line-to-ground voltage waveforms under various fault conditions. A database of three 

channel line currents and three channel line-to-ground voltages is built up for various 

types of faults at different locations and fault inception angles. Then, a data set of six 

channel waveforms is created for further processing by the data pre-processor. One 

channel consists of a 10 cycle signal generated at an equivalent sampling rate of       

5 KHz (fundamental frequency of 50 Hz) with 1001 sample points lasting             

200 msec. Thus, the six-channel data set is a data matrix of (1001,6). 

The characteristic information over six-channel current and voltage samples is 

extracted by the data pre-processor shown in Figure 5.5. The six-channel data set is 
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then reduced to a feature vector of a small set with 27 parameters. Accordingly, the 

event feature vector parameters are as follows: 

i. The maximum modulus current for each three channel before the fault occurs, 

ii. The maximum modulus current for each three channel immediately after the     

fault occurs, 

iii. Energy of each current channel over the 0.078-0.156 kHz band range, 

iv. Energy of each current channel over the 0.156-0.312 kHz band range, 

v. Energy of each current channel over the 0.312-0.625 kHz band range, 

vi. Energy of each current channel over the 0.625-1.250 kHz band range, 

vii. Energy of each current channel over the 1.250-2.500 kHz band range, 

viii. The signal power for each three channel voltage waveforms, 

ix. The energy for each three channel voltage waveforms, 

As described in Section 5.3.2, the standard deviation of the DWT coefficients at the 

resolution levels of five-level MSD serves as a representative of the current signal 

energy partitioning and hence to aid in classification task as it is used in [9] and [18] 

as a feature to classify different power quality problems. The standard deviation of 

five-level detail coefficients of each current signal channel is computed, yielding 

fifteen parameters. 

The magnitude change in the current waveforms is used as a feature to aid in 

classification of fault classes. This yields six parameters for three cannel current 

waveforms. 

To detect and separate slowly varying events like voltage sags and swells, the 

voltage signal power is computed for three channels as it was used in the [16] to 

classify power quality disturbances. The calculated mean square value for three 

channel voltage waveforms yields three parameters for feature vector. 
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Furthermore to enhance the competence of the classifier system and to extract more 

relevant information the standard deviation of voltage channels is computed, which 

yields three parameters for the feature vector. 

Altogether, the feature extraction task is a combination of the “wavelet multi-

resolution analysis” technique and the “descriptive statistics” to extract characteristic 

information from the raw data set and produce a reduced data set of feature vector for 

being input to the neural network. 

In the following paragraph the structure of input vectors will be given and the 

detailed parameters will be described. 

As described above, a feature vector consists of 27 parameters, which will be given 

to the input layer of the neural network. The structure of a feature vector is as 

follows: 

 277654321 ;...;;;;;;; ffffffffFV                                             (5. 2) 

Here the parameters 
21, ff  correspond to maximum modulus value before and 

immediately after the fault for aI ; parameters 43 , ff  correspond to maximum 

modulus value before and immediately after the fault for bI ; parameters 65 , ff  

correspond to maximum modulus value before and immediately after the fault for 

cI . The parameters 1110987 ,,,, fffff  correspond to standard deviation for five-level 

MSD sub-bands for aI . Similarly the parameters 1615141312 ,,,, fffff  correspond to 

standard deviation for five-level MSD sub-bands for bI ; and the parameters 

2120191817 ,,,, fffff  correspond to standard deviation for five-level MSD sub-bands 

for cI . The parameters 242322 ,, fff  correspond to mean square value of absolute 

value of aV , bV  and cV ; finally the parameters 272625 ,, fff  correspond to standard 

deviation aV , bV  and cV . 

The discriminative features of the input vector can be obtained by the neural 

classifier, which has the property to solve non-linear problems. All of the 
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components in the input vector give important features of each fault classes and 

consequently classification with an appropriate algorithm can give adequate results. 

By repeatedly executing EMTDC data sets and reducing the resulting samples to 27 

element vectors, the data pre-processor in Figure 5.5 collect training sets for the 

neural classifier. In the next section the neural classification algorithm and the 

classification results for the complex fault (short-circuit) classification problem under 

various system and fault conditions will be explained. 

5.4 Adaptive Pattern Classification 

5.4.1 Introduction 

As mentioned in Section 5.2, the fault classification scheme in this thesis is defined 

as a multi-class problem with ten types of faults (A-g, B-g, C-g, A-B, A-C, B-C,  

AB-g, AC-g, BC-g, ABC-g).  

A literature search shows that most of the ANN studies for fault classification are 

based on multilayer, feed-forward nets. In the case of the typical supervised       

back-propagation (BP) network, sets of associated input-output pairs are presented to 

the ANN that learns a model of the mapping between input and output. However, 

training of a BP network is very time consuming, needs very large training sets, and 

easily gets stuck on local minima. Furthermore, it can be difficult to retrain the ANN 

with new training data. Therefore it may not be sufficient for the task of fault 

classification. 

Another approach for the ANN application for fault classification is using data     

self-organization obtained through the use of unsupervised learning. Here the task of 

the classification network is to cluster the faults into separate classes. So, it is a 

pattern recognition problem. Self-organization refers to the specific learning method 

without external examples. This is also called unsupervised learning. Given a set of 

input patterns, neighboring processing units (neurons) in a self-organizing net 

develop into detectors of specific categories of patterns. So, each local neuron-group 

acts as a decoder for the inputs [5]. After the learning phase through unsupervised 

learning, then the ANN is ready for the classification task, where the features 
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selected from the input data are assigned to individual classes. Although a            

self-organizing map is equipped to perform the role of classification, it is 

recommended in literature [5,34] that for best performance it should be accompanied 

with a supervised learning scheme. Computation of the self-organizing map (feature 

map) may be viewed as the first of two stages for adaptively solving a pattern 

classification problem. The second stage is provided by learning vector quantization, 

which performs a mechanism for the final fine-tuning of a feature map. The 

combination of a self-organizing map and a supervised learning scheme forms an 

adaptive pattern classification that is hybrid in nature [5].  

In this thesis, a self-organizing map (SOM), with Kohonen‟s learning algorithm 

[34,39] and learning vector quantization [LVQ] technique [34] is implemented into 

the fault classification study. The SOM is intended to discover significant patterns or 

features from a set of feature vectors obtained by the data preprocessor, as 

demonstrated in Figure 5.5. SOM obtains the information hidden in high dimensional 

data that is otherwise difficult to interpret. The SOM converts the complex nonlinear 

relationship between high-dimensional data into a simple geometric relationship on a 

low-dimensional display. So it is a vector quantization technique: it compresses the 

information, while preserving the most important topological relationship of the 

primary data elements. The SOM is especially suitable for data analysis because it 

has important visualization properties. It creates a set of prototype vectors 

representing the data set and carries out a topology preserving projection of the 

prototypes from d-dimensional input space onto a low-dimensional grid. This 

ordered grid can be used as a convenient visualization surface for showing different 

features of the SOM and the data, i.e. the cluster structure. The visualization of high 

dimensional data and discovery of categories is known as exploratory data analysis 

[40]. It is emphasized in [34] that the map is only intended to visualize topological 

relationships of signals. The maps should not be used for pattern recognition or other 

decision processes, because it is possible to increase the recognition accuracy by a 

significant amount if the maps are fine tuned, i.e. by the learning vector quantization 

algorithms. 

After the hidden patterns in a set of feature vectors are discovered and initial 

classification is performed by the SOM, the LVQ technique is applied to improve the 

quality of the classifier. LVQ, developed by Kohonen, is a technique based on a 
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supervised learning algorithm. The purpose of LVQ is to group a set of related input 

signals into a finite number of categories based on similarity of the input signals, 

thereby fine-tuning the initial map, with the number of such categories 

predetermined by the SOM. 

The whole fault classification scheme with the hybrid neural network structure is 

demonstrated in Figure 5.7. The hybrid neural network forms a two-level 

classification approach. The whole feature extraction-classification system forms a 

pyramid, where the number of patterns and connections decrease. The primary 

benefit of the two-level approach is the reduction of the computational cost.   
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Figure 5.7 The Adaptive Pattern Classification 
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The major blocks of the system in Figure 5.7 are: 

i. Data preprocessor that extracts the feature vectors from the raw six-channel 

signals as described in Section 5.3.1 and Figure 5.5.  

ii. Self-Organizing Map: Unsupervised layer that clusters the data vectors taken 

from “data preprocessor” to separate clusters. 

iii. Learning Vector Quantization: Supervised layer carrying out the classification. 

5.4.1.1 Input-Output Structures 

The training data set for the hybrid classification scheme in Figure 5.7 is generated 

by EMTDC/PSCAD simulation software. It is aimed to have a classifier capable of 

recognizing ten classes of system faults. A three-phase power system, shown in 

Figure 5.1, was chosen for the purpose of generating line currents and line-to-ground 

voltages under different fault conditions as described in Section 5.2. A set of 350 

cases were generated by changing fault type, fault inception angle, and fault location. 

For each fault condition the raw data is preprocessed by the three modules in    

Figure 5.5 and then 350 input vectors with 27 variables were generated. Thus, there 

are a total of 27 input units, which include the invariant parameters obtained by the 

data preprocessor demonstrated in Figure 5.5. All of the different cases were then 

divided into two sets, one to be used for neural-network training and the other for 

testing. The training set consists of 250 training examples (25 examples per class) 

with ten fault classes, five fault locations, and five inception angles in the range of 

0 o ~ 120 o. The test set consists of 100 examples (10 examples per class) with ten 

fault classes, five fault locations, and two inception angles 150 oand 180 o . 

Verification of training results is performed so that the ANN is first tested with 

training patterns, which were used in training, then with samples, which were not 

used in training. 

An important point related to most of the neural network models, is about the choice 

of input data set. It would often be absurd to use primary signal elements, such as 

temporal samples of current and voltage waveforms for the components of input 

vector directly.  It may not be possible to achieve any invariance in perception unless 

the primary information is first transformed, using various convolutions with, i.e. 



 105 

wavelet transforms or other nonlinear functionals of the signals, as components of 

input vector [34]. Which particular choice of functionals should be used for 

preprocessing in fault classification is described in Section 5.3. So, it is generally 

necessary to use some kind of preprocessing to extract a set of invariant features for 

the components of the input vector.  

The normalization of the data can be thought of the second phase of data 

preprocessing. Normalization is not necessary in principle, but it may improve 

numerical accuracy because the resulting vectors then tend to have the same dynamic 

range. Normalizing the variables of an input vector is important so that none of them 

has an overwhelming influence on the training result. Since the SOM algorithm in 

this thesis uses Euclidean metric to measure distances between vectors, scaling of 

variables is of special importance. If one variable has values in the range of 

(0,…,100) and another in the range of  (0,…,1) the former will almost dominate the 

map organization because of its greater impact on the distances measured.  

The normalization method used in this thesis is based on the “logarithmic 

transformation” [40]. This is useful if the values of the variable are exponentially 

distributed with a lot of small values, and increasingly smaller number of big values 

as it is the case in this thesis. This transformation gives more resolution to the low 

end of that vector component. The logarithmic transformation is a non-linear 

transformation: 

)1)min(ln(  xxx                                                                   (5. 3) 

where “ln” is the natural logarithm. The resulting values will be non-negative [40]. In 

the entire train and test cases of fault classification scheme in this thesis, 

“logarithmic transformation” is used to normalize the input vectors.  

As it is indicated above, the data set for neural classifier consists of a database of 350 

vectors with 27 invariant variables. Thus, the input vector for neural classifier has 27 

input units. Moreover, since the problem is a multi-class problem with ten-classes, 

the hybrid system has 10 output units that each belonging to one fault class. For the 

three-phase distribution system studied here, ten types of faults are to be classified by 

the neural network (Table 5.1). 
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Table 5.1   Fault classifier categories 

Category Fault Type Label 

1 Phase A to Ground Fault AG 

 2 Phase B to Ground Fault BG 

3 Phase C to Ground Fault CG 

4 Phase A to Phase B Fault AB 

5 Phase B to Phase C Fault BC 

6 Phase A to Phase C Fault AC 

7 Phase A-B to Ground Fault ABG 

8 Phase B-C to Ground Fault BCG 

9 Phase A-C to Ground Fault ACG 

10 Phase A-B-C to Ground Fault ABCG 

 

In the next sections the structure of the “Adaptive Pattern Classifier” will be given. 

Both of the models in hybrid system will be described in separate subsections, and 

the classifier performance will be demonstrated with an example simulation. Also a 

comparison of all the simulation results with varying parameters in both of the SOM 

and LVQ will be demonstrated. 

5.4.2 SOFM Algorithm 

The Self-Organizing Feature Map (SOFM) is a neural network motivated by the 

biological nervous system. The various cortices in the cell mass of the animal brain 

contain many kinds of maps such that a particular location of the neural response in a 

map often directly corresponds to a specific modality and quality of sensory signal. 

Similarly, in an artificial Kohonen‟s feature map the nodes are specifically tuned to 

various input signal patterns or classes of patterns through self-organization. 

Kohonen‟s analogy is that both in the animal brain and the artificial feature map, the 



 107 

internal representation of information is organized spatially and the maps are formed 

adaptively through unsupervised learning [41]. 

The SOFM is a vector quantization method that places the prototype vectors on a 

regular low-dimensional grid in an ordered fashion. The purpose of Kohonen‟s self-

organizing feature map is to capture the topology and probability distribution of 

input data. The main idea is to store a large set of input vectors by finding a smaller 

set of prototypes, so as to provide a good approximation to the original input space. 

The basis of the idea is rooted in vector quantization theory, which produces an 

approximation to probability density function of the vectorial input variable using a 

finite number of codebook vectors. Once the codebook is chosen, the approximation 

of input variable involves finding the reference vector that is closest to the input 

variable. After the SOM algorithm converges, the feature map computed by the 

SOFM algorithm displays important statistical characteristics of the input data [34].  

The SOM consists of neurons organized on a regular low-dimensional grid. Each 

neuron is a d-dimensional weight vector (prototype vector, codebook vector, model 

vector) where d is equal to the dimension of the input vectors. The neurons are 

connected to adjacent neurons by neighborhood relation that dictates the topology or 

structure of the map. The SOM can be thought of as a net, which is spread to the data 

cloud [34]. The SOFM training algorithm moves the weight vectors so that they span 

across the data cloud and so that the map is organized. The feature map computed by 

the SOFM algorithm is topologically ordered in the sense that the spatial location of 

a neuron in the lattice corresponds to a particular domain or feature of input patterns 

[5]. The topological ordering property is that when the synaptic weight vector of a 

winning neuron moves toward the input vector, it also has the effect of moving the 

synaptic weight vectors of the closest neurons along with the winning neuron so that 

the map becomes topologically ordered. 

The SOFM reflects variations in the statistics of the input distribution. Regions in the 

input space from which sample vectors are drawn with a high probability of 

occurrence are mapped onto larger domains of the output space, and therefore with 

better resolution than regions in the input space from which sample vectors are 

drawn with a low probability of occurrence. This is the “density matching” property 

of the feature map [5]. So, this property implies that if a particular region of the input 
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space contains frequently occurring stimuli, it will be represented by a larger area in 

the feature map than a region of the input space where the stimuli occur less 

frequently. 

The topology preserving mapping algorithm of Kohonen is an iterative process for 

training a class of neural networks [34]. The learning procedure is unsupervised or 

self organizing and is used to train a network of units or neurons that are arranged in 

a low-dimensional sheet-like structure. In this thesis, a two-dimensional structure for 

the network is used (as shown in Figure 5.8), but also the application of one or more 

dimensional structure is possible. 

 

Two-dimensional

Kohonen layer

)( 1tNb

)( 2tNb

1I 2I nI
Input layer

 

Figure 5.8 A two-dimensional Kohonen layer with ),(tNb  topological neighborhood 
where 21 tt   

In the SOFM, there are four issues that need to be decided in the beginning of the 

algorithm. They are the number of neurons, dimensions of the map grid, map lattice 

and shape. 

 The number of neurons should usually be selected as big as possible, with the 

neighborhood size controlling the smoothness and generalization of the mapping. 

However, as the size of the map increases, the training phase becomes 

computationally heavy. In this thesis, the default number of neurons is selected 

according to an empiric formula of Kohonen [42]. The default number of neurons is 

selected to be ))(*5( n  where n is the number of training samples. In the 

simulations, the number of map units is between 80-110. 

In the simulations in this thesis, a sheet shaped map is used according to [42], 

however it may be possible to use toroid and cylinder shapes according to data 

structure. For the selected sheet shaped maps in this thesis, side length along one 
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dimension is longer than the other, e.g. (8,10), so that the map can orientate itself 

properly. 

The local topology type of the map can be selected to be either rectangular or 

hexagonal (see Section 4.4.2.1 Figure 4.18 for different lattice structures). The 

important difference between rectangular and hexagonal lattices is that in the former 

all 8 neighbors of a neuron are at the same distance and in the latter 6 neighbors of a 

neuron are at the same distance, as shown in Figure 4.18. In this thesis, both of the 

lattice structures are used in simulations to obtain different neighborhood relations.  

Another important issue that has to be determined before the SOFM algorithm 

proceeded is the neighborhood function, which was described in Section 4.4.2.1. The 

neighborhood function determines how strongly the neurons are connected to each 

other. The simplest neighborhood function is the bubble function, which is constant 

over the whole neighborhood of the winner unit and zero elsewhere. Generally, at 

each learning step, all the cells within bN  are updated, whereas cells outside bN are 

left intact. bN  is the neighborhood set of the best matching unit (BMU), which is 

denoted by b. The neighborhood bN  is centered on that unit for which the best match 

with an input pattern is found according to Equation 4.30 given in Section 4.4.2.1. 

The width or radius of bN  can be time-variable, in fact, for good ordering of map, 

the bN  should be large in the beginning of the training process (the “ordering 

phase”), and then shrink with time so that toward the end of the process (the 

“convergence phase”), bN should include only the closest neighbors of the winning 

neuron b [34]. Also, it has been demonstrated that in biological neurons, there is 

lateral interaction, which means that when a neuron is firing, it excites other neurons 

in its closest neighborhood more than those farther away from it [41]. To incorporate 

this feature in the algorithm, usually the neighborhood around the winning neuron is 

made to decay gradually [34]. One of the typical choices is to let the amplitude of the 

topological neighborhood (centered on the winning neuron) decay according to 

Gaussian function, which was described in Section 4.4.2.1 with Equation 4.32. In 

this way, the weight update is the strongest for the winning neuron, and becomes 

weaker with increasing lateral distance. 
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In this thesis, the neighborhood function is chosen to be an “Epanechicov function” 

according to Kohonen [42]. Also “gaussian”, “cut-gaussian”, and “bubble” functions 

[42] were used as neighborhood function, but the performance obtained by 

“epanechicov function” was better then former. So, it is used in the whole 

simulations. The “epanechicov” neighborhood function is 

 2)(1,0max)( bitbi dth                                                           (5. 4) 

where )(t  is the width of the topological neighborhood function at time t, 

ibbi rrd   is the distance between map units b and i on the map grid as shown in 

Figure 5.8. Also, )(t  is given in Section 4.4.2.1 in Equation 4.33. 

The training of SOM is usually performed in two phases. In the first phase, relatively 

large initial learning rate and neighborhood radius are used. In the second phase both 

learning rate and neighborhood radius are small right from the beginning. This 

procedure corresponds to first tuning the SOM approximately to the space as the 

input data and then fine-tuning the map as described in Section 4.4.2.1. 

The SOFM algorithm can be implemented in two ways: as sequential and batch 

training algorithms. In the traditional sequential training, samples are presented to the 

map one at a time, and the algorithm gradually moves the weight vectors towards 

them as described in Section 4.4.1.2. In the batch training, the data set is presented to 

the SOM as a whole, and the new weight vectors are weighted averages of the data 

vectors. 

In an attempt to accelerate the computation of the SOM, the batch algorithm [42] is 

used in this thesis. In batch map principle, the whole training set is gone through at 

once and only after this the map is updated with the net effect of the samples. 

Actually, the updating is done by replacing the prototype vector with a weighted 

average over the samples, where the weighting factors are the neighborhood function 

values. In each training step, the data set is partitioned according to the Voronoi 

regions of the map weight vectors, i.e. each data vector belongs to the data set of the 

map unit to which it is closest; this set is called the Voronoi set. After this, the new 

weight vectors are calculated as: 
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where  kjk mxb  minarg  is the index of the BMU of data sample jx . The new 

weight vector is a weighted average of the data samples, where the weight of each 

data sample is the neighborhood function value )(thib
 at its BMU “b” [38]. This is 

the way batch algorithm has been implemented in this thesis. 

In batch version of the SOFM algorithm the order in which the input patterns are 

presented to the network has no effect on the final form of the feature map, and there 

is no need for a learning-rate schedule. But the algorithm still requires the use of a 

neighborhood function [5]. 

Finally, the “batch algorithm” can be summarized as follows [42]: 

If all observation samples  Ntx ,,2,1)(   are available prior to computations, they 

can be applied as a batch in the SOFM algorithm, whereby the following 

computational scheme can be used: 

i. Initialization: Choose random values for the initial weight vectors )0(im  

(model vectors). The only restriction is that the )0(im  be different for 

 lj ,,2,1  , where l is the number of neurons in the lattice. 

ii. Similarity: For each map unit i, collect a list of all those observation samples 

x(t), whose most similar model vector belongs to the neighborhood set iN  of 

node i. 

iii. Updating: Take for each new model vector the mean over the respective list. 

And, update the im  according to Equation 5.7. 

iv. Continuation: Continue with steps 2 and 3 until the im  can be regarded as 

stationary, or until the end of the iteration time. 

In the following paragraphs of this section simulation results for the training data set 

described in Section 5.4.1.1 will be demonstrated by SOFM algorithm. Also the 
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topological relationships of fault classes will be visualized and analyzed by the 

visualization properties of the map. 

A SOM was trained using the batch-training algorithm for the training set described 

in Section 5.4.1.1. The data set consists of 250 example cases with 27 variables. The 

data set is normalized according to “logarithmic transformation”. The neighborhood 

function is selected to be “epanechicov” function, which was given in Equation 5.4. 

A sheet shaped map with hexagonal lattice structure is used in this simulation. The 

default number of map units is ( ))(*5( n =80) according to the empiric formula of 

Kohonen [42]. It is selected to be 110 in this simulation to further compare the 

results with default size of the map. The selected map size is (10,11) so, side length 

along one dimension is longer than the other that make map orientated properly. The 

initial radius of the bN  is nine, to make the bN  cover the majority of the neurons in 

the (10,11) map. Special caution is required in the choice of the initial radius of the 

)0(bb NN  . If the initial neighborhood is too small to start with, the map will not be 

ordered globally. This phenomenon can be avoided by starting with a fairly wide 

)0(bb NN   and letting it shrink with time. In this simulation the radius of bN  is 

decreased from the value nine (covering the majority of the neurons) to one 

(covering neuron b and its six neighbors) with )(t  given in Equation 4.33. Before 

the training, initial values are given to the prototype vectors of the self-organizing 

map. Properly accomplishing the initialization allows the SOM algorithm to 

converge faster to an appropriate solution. Typically the map can be initialized by 

one of the three-initialization procedures [42]: 

i. random initialization, where the map weight vectors are initialized with small 

random values 

ii. sample initialization, where the map weight vectors are initialized with 

random samples drawn from the input data set 

iii. linear initialization, where the map weight vectors are initialized in an orderly 

fashion along the two greatest eigenvectors of the covariance matrix of the 

training data [42].  
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In the simulations in this thesis, random and linear initializations have been 

implemented. 

In the SOFM batch algorithm, the training is performed in two phases. In the first 

phase, relatively large initial neighborhood radius is used, and in the second phase 

neighborhood radius is small right from the beginning as described above. This 

procedure corresponds to first tuning the SOM approximately to the same space as 

the input data and then fine-tuning the SOM approximately to the same space as the 

input data. 

Another important property before training the map is the total training time or the 

number of training steps (iteration). The number of training steps should be at least 

ten times the number of map units in the first phase. And the length of second phase 

is at least four times that of the first phase [42]. In this simulation the number of 

training steps is selected to be “1100” steps in the first phase of SOM algorithm, and 

“4400” steps in the second phase. So totally “5500” steps is considered in the 

simulation. 

Each neuron in the SOM has actually two positions: one in the input space (the 

prototype vector) and another in the output space (on the map grid). Thus SOM is a 

vector projection method defining a nonlinear projection from the input space to a 

lower-dimensional output space [42]. In this thesis the input space is a                    

27-dimensional vector, and the output space is a 2-dimensional map. The SOFM 

gives topological relations of different classes on the 2-dimensional map by 

examining the features of the input vector in a nonlinear fashion. These properties 

are visualized in Figure 5.9 and Figure 5.10.  

Figure 5.9a shows the average quantization error (QE) of the map at the second 

phase of the learning. The average quantization error, denoted by Equation 4.35, is a 

measure of the quality of the map [42]. It is the average distance from each data 

vector to its best matching unit (the closest model vector). It is data-dependent: it 

measures the map in terms of the given training data. The initial value of the QE was 

“1.890” in the beginning of the first phase and  “0.340” at the beginning of the 

second phase of training the map. Finally at the end of the training it reached to 

“0.1648”. In the first phase, initial neighborhood radius was relatively large (nine). In 
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the second phase neighborhood radius is small (one) right from the beginning as 

described above. The iteration time step was 1100 and 4400 for first and second 

phase respectively. So, in the first phase the value of the QE changed faster than the 

second phase. Since, the second phase corresponds to fine-tuning the map. 
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Figure 5.9 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the 
distribution of prototype vectors on the input space. (c) Final state of the distribution 
of prototype vectors on the input space 

Figure 5.9b and Figure 5.9c shows the distribution of the prototype vectors on the 

input space. An important issue should be clarified at this point that although the 

prototype vector and the input vector is a 27-dimensional vector, to be able to plot 

them on the 2-dimensional space, the first two components of the vectors are 

selected. Figure 5.9b shows the linear initialization of the prototype vectors of the 

map. During training, the map organizes itself and folds to the training data as shown 

in Figure 5.9c. The feature map reflects variations in the statistics of the input 

distribution. During training the prototype vector most similar to a data vector is 
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modified so that it is even more similar to it. This way the map learns the position of 

the data cloud. Also, not only the most similar prototype vector, but also its 

neighbors on the map are moved towards the data vector. This way the map self-

organizes. Another case is that, the region of the input space containing frequently 

occurring stimuli is represented by a larger area in the feature map than a region of 

the input space where the stimuli occur less frequently. This reflects the so called 

“density matching” property of the feature map [5]. So, the density of the prototype 

vectors assigned to an input region approximates the density of the input occupying 

this region. In other words, after training has been completed, the map reflects the 

statistical characteristics of the inputs. And, the prototype vectors tend to be ordered 

according to their mutual similarity (topology preserving property). This second 

issue will be clarified in the next two figures. 

An initial idea of the number of the clusters in the SOM, as well as their 

relationships, is usually acquired by visual inspection of the map. For the trained 

Kohonen map, the properties of the clusters can be further explained by analyzing 

the weight vectors (prototype vectors) of the neurons in the clusters corresponding to 

the given data. The most widely used methods for visualizing the cluster structure of 

the SOM are distance matrix techniques, especially the unified distance matrix [43]. 

The unified distance matrix (U-matrix) shows distances between prototype vectors of 

neighboring map units and thus shows the cluster structure of the map..  

 

                          

Figure 5.10 U-matrix of the (10,11) SOM of the training data set 
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Figure 5.10 shows the U-matrix of the SOM of the training dataset in input space. In 

the U-matrix, dark color indicates large distance between neighboring map units 

(indicates class borders). Clusters are typically uniform areas of low areas with light 

color. The colorbar in Figure 5.10 shows the meaning of the light and dark colors 

with respect to the map. From the U-matrix, one can clearly distinguish several 

separate areas. There are ten clusters, which were given in Table 5.1. The neurons 

with the same color belong to the same category. Since the SOFM algorithm gives a 

rough approximation to the probability density function of the data cloud, the borders 

between some clusters are not very clear. Also, it is seen from Figure 5.10 that the U-

matrix visualization has much more hexagons than the map size (10,11). This is 

because distances between map units are shown, and not only the distance values at 

the map units. 

Another visualization method is hit histograms [42]. They are formed by taking a 

data set, finding the BMU of each data sample from the map, and increasing a 

counter in a map unit each time it is the BMU. The hit histogram shows the 

distribution of the data set on the map. In Figure 5.11a multiple hit histograms are 

shown simultaneously to investigate whole training data set using the map. Here the 

hit histograms of ten data sets are shown with respect to color code on the U-matrix. 

Here U-mat uses interpolated shading of colors [42]. (Interpolation is a process for 

estimating values that lie between known data points). The size of the hit histogram 

determines how many times the corresponding map unit is selected BMU. 

It is not easy to visualize the structure of the data and distinguish each of the clusters 

clearly when the category information is not available as seen in Figure 5.10. Since 

the category information of the data is available, it is possible to label each unit in the 

map by the class label of the patterns, which are projected onto the map. As shown in 

Figure 5.11b, when the class labels are assigned to the map units after training, the 

map clearly shows that the data is clustered and thereby demonstrates the topology 

preserving property of the SOFM algorithm. 
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Figure 5.11 (a) The hit histograms on the U-matrix. (b) The labeled SOM 

Each node in the feature map is ”labeled” to learn what category of inputs it denotes. 

This labeling of nodes of a feature map is accomplished by presenting a number of 

input patterns whose class memberships are known, although these labels were not 

referred to during the learning. In this simulations 250 input patterns that had been 

used for training the feature map were presented to the trained map in order to 

determine the classes denoted by the nodes of the feature map. The class of an input 

pattern determines the label of the node it activates in the feature map. For example, 

if an input pattern that represents the “category 5” according to Table 5.1, activates a 

node in the feature map then this node is labeled to denote this category. If a node of 

the feature map is activated by the input patterns of different classes, the label of the 

node is decided by majority voting. In this case all of the map units are given a 

counter of each label. And when the map unit wins a given data vector, the 

corresponding counter is increased. After presenting all of the data vectors, the 

higher counter determines the label of the map unit. If two or more counters are 

equal, then the map unit is not labeled [34].  

By comparing Figure 5.1a and Figure 5.1b it is possible to see the topology 

preserving property of the map. The map units labeled with the same category are 

generally clustered together. Since the SOFM algorithm gives a rough approximation 
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to the probability density function of the data cloud, some of the clusters, especially 

“category 5” and the “category 8”, are not well separable on the feature map. 

According to Kohonen [34], if the SOM is to be used as a pattern classifier that the 

map units are grouped into subsets, each of which correspond to a class of patterns, 

then the problem becomes a decision process. One should not use the maps as such 

for pattern recognition or decision processes, because it is possible to increase the 

recognition accuracy by a significant amount if the maps are fine tuned according to 

supervised learning algorithms. The SOFM algorithm is intended to approximate 

input signal values, or their probability density function, by codebook vectors. If the 

signal sets are to be classified into a number of categories, then several codebook 

vectors are usually represent each class, and decisions made at class borders will be 

important but the identity of the codebook vectors within the classes is no longer 

important. It is possible to define values for the codebook vectors that they directly 

define the decision borders between the classes. In this thesis “Type One-Learning 

Vector Quantization (LVQ1) algorithm [34] is used as a supervised classifier that 

uses class information to move the Voronoi vectors slightly to improve the quality of 

the classifier decision regions. 

5.4.3 Fine-tuning of Map By Type-1 Learning Vector Quantization (LVQ1) 

The learning vector quantization (LVQ1) is called a binary output pattern classifier 

since its output is either zero or one. It is a supervised version of the self-organizing 

map networks, suitable particularly for pattern recognition problems. 

The LVQ1 neural network consists of a single layer of nodes. The weight vectors for 

these nodes are termed “codebook vectors”, since they serve as the reference vectors 

against which the input is matched. With total lateral inhibition among all nodes, 

only one node remains active for a given input, providing a binary output. This active 

node has the codebook vector “closest” to the input sample. Here, the closeness 

measure is the Euclidean distance, which was explained in Section 4.4.1.2. 

To define the optimal placement of the codebook vectors, initial values for them 

must first be set using randomly initialization or the Self-Organizing Map algorithm. 

The initial values in the second method roughly correspond to the overall statistical 
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density function of the input. The next phase is to determine the labels of the 

codebook vectors, by presenting a number of input vectors with known classification, 

and assigning the cells to different classes by majority voting, according to the 

frequency with which each codebook vector is closest to the calibration vectors of a 

particular class. The detailed description of labeling the map units was described in 

the previous section. 

After the codebook vectors are assigned to each class, and each of them is labeled 

with the corresponding class symbol, the class regions in the input space are defined 

by a simple nearest-neighbor comparison of the codebook vectors with the input data 

vectors. The label of the closest codebook vector defines the classification of the 

given input data. The LVQ1 algorithm was described in Section 4.4.2.2. The idea in 

LVQ1 algorithm is to pull the codebook vectors away from the decision borders, to 

demarcate the class borders more accurately. The training phase of the LVQ1 is said 

to achieve convergence when the tuned LVQ recognizes input signals with nearly 

100% accuracy. The next step is then testing the system with a new set of patterns 

that were never presented to the pattern classification network. 

The “LVQ1” can be summarized as follows [5]: 

i. Initialization: Assign random values for the initial weight vectors )0(im  

(model vectors) using randomly initialization or the Self-Organizing Map 

algorithm. 

ii. Calibration: Determine the labels of the codebook vectors, by presenting a 

number of codebook vectors with known classification 

iii. Updating: Update the )(tmm ii   according to the rule in Equation 4.36. 

iv. Continuation: Continue with step 3 until the end of the iteration time. 

It is desirable for the learning rate in Equation 4.36 given in Section 4.4.2.2 to 

decrease monotonically with the number of iterations. Since LVQ1 is a fine-tuning 

method, the initial value should be small, i.e. 0.01 or 0.02 and decrease to zero [34]. 

In this thesis, several functions for the learning rate was used, such as power series, 

linear, inverse-of-time functions. In all cases, the learning rate function was defined 
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on the interval [0,1] and was monotonically decreasing with time. In the following 

paragraph the learning rate functions used in this thesis will be described. 

 

 

Figure 5.12 Different learning rate functions: linear (solid line), power series (dot-
dashed) and inverse-of-time (dashed) functions 

The learning rate )(t  is a scalar adaptation gain ( 1)(0  t ), which is decreasing 

monotonically in time. The learning rate functions are defined as [42] 

)/1()( 0 Ttt                                                                          (5. 6a) 

Ttt /

00 )/()(                                                                         (5.6b) 

)/1001()( 0 Ttt                                                                     (5.6c) 

for “linear”, “power series”, and “inverse-of-time” functions respectively. Here 0  is 

the initial value of the learning rate,   is the final value of the learning rate, T is the 

training length and t is the time steps. These are illustrated in Figure 5.12. According 

to Kohonen, [34] the initial learning rate is taken between 0.01 or 0.02. The final 

value of the learning rate is approximately zero (0.00005  0). In this thesis all of 

these functions are used, and since better classification rate is obtained with the 

“inverse” function, it is used in the whole simulations as the learning rate function. 
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In the following paragraphs of this section simulation results for the training-test data 

set described in Section 5.4.1.1 will be described. The codebook vectors obtained by 

the self-organizing map in the previous section (Section 5.4.2) will be used as the 

initial values of the codebook vectors in the LVQ1, as described in the first step of 

the LVQ1 algorithm.  

The “inverse function” shown in Figure 5.12, is used as the learning rate function. 

The initial learning rate is “0.01”. 

Another important parameter is the number of training steps that determines how 

many times training sequence is performed. According to Kohonen [42], LVQ1 

algorithm may be stopped after a number of steps, that is “30-50” times the number 

of codebook vectors. In this simulation the selected map size was (10,11): there were 

“110” map units (codebook vectors). In this simulation the number of training steps 

is selected to be “35*mu=3850”, where “mu” is the number of codebook vectors. 

Before proceeding to the next step and analyzing the test results, the “adaptive 

pattern classification” network will be illustrated.  
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Figure 5.13 Adaptive pattern classification with combined unsupervised-supervised 
learning 
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Since the problem is a multiclass problem with ten types of faults as given in the 

Table 5.1, and learning vector quantization is a binary output pattern classifier; there 

is ten units in the output layer of the LVQ1 structure.  

The combined unsupervised/supervised training architecture is illustrated in      

Figure 5.13. The pattern classification task can be described in two steps with respect 

to Figure 5.13. In pattern classification, the first and most important step is feature 

extraction. The techniques to extract relevant information from the raw data were 

described in Section 5.3. Here the SOFM can be thought as a second feature 

extractor to further examine the data and class characteristics. So, the objective of the 

SOFM is to select a reasonably small set of features, in which the essential 

information of the input data is concentrated. The self-organizing map is suitable for 

the task of feature extraction, as described in Section 5.4.1 and Section 5.4.2. The 

second step in pattern classification is the actual classification, where the features 

selected from the input data are assigned to individual classes. It is recommended by 

Kohonen [34] to combine a supervised learning scheme, especially the LVQ for the 

second stage of classification with the SOFM for pattern recognition problems. The 

combination of self-organizing map and a supervised learning scheme forms 

“Adaptive Pattern Classification”, which has hybrid architecture [5]. 

 

 

Figure 5.14 (a) The hit histograms on the U-matrix. (b) The labeled SOM 



 123 

Figure 5.14 shows the hit histograms on the U-matrix and the labeled map after fine-

tuning the SOFM (described in Section 5.4.2) with LVQ1 algorithm. As seen from 

the Figure 5.14a the final state of the map gives a better approximation to the input 

data, and the cluster borders are represented better than Figure 5.11a. Also, as it is 

seen in Figure 5.14b of the map units not labeled in the first phase of adaptive pattern 

classification are now labeled with the class labels, and thus the clusters are 

represented better than the case in Figure 5.11b. Then another measure of the map is 

the count of labeled map units or cells. In rough training of the SOM the number of 

map units that are not labeled is “51”, and after fine-tuning the SOM with LVQ1 the 

number of the map units that are not labeled decreased to “40”. Also when the results 

of the labeled maps in Figure 5.11b and Figure 5.14b are compared it can be seen 

that “category 5” and the “category 8” are better represented and the border between 

this two clusters is better demarcated. Moreover, some of the map units‟ labels are 

changed because they were incorrectly labeled by the SOFM algorithm in the first 

phase of pattern classification. These results reflect the properties of the LVQ1 

algorithm. In order to clarify this point, it would be better to describe the main idea 

of the LVQ1. LVQ employs supervised competitive learning, based on the “winner 

takes all” strategy, to find the output node, which best matches the input pattern [5]. 

If the input pattern‟s class differs from the best-matched neuron‟s class, the best-

matched neuron is moved away from the exemplar. If the best matched neuron gives 

the same class as that of the input pattern, then the best matched neuron is moved 

closer to the input pattern vector. As a result the borders between the data clusters 

can be demarcated better, and the map can better approximate the given data, 

furthermore the initially incorrectly labeled map units can be labeled with the correct 

class label.  

To obtain the classification rate of the pattern classification network, the following 

simple procedure is followed according to [44]. The data set (unlabeled) to be 

classified is submitted to the trained prototype vectors. And the labels with respect to 

nearest neighboring rule of LVQ are assigned to the given input vectors. In other 

words, the codebook vectors best matching to each input vector gives its label to this 

input vector. To ensure that the prototypes really represent the “right” classes, the 

labels given to each vector in the data set is compared with the “actual” labels of 

each vector in the data set. If the labels of a vector before and after classification is 
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the same, then the binary output “1” is produced. However, if the labels differ, that is 

the pattern vector is “incorrectly” classified, than a binary output “0” is produced. 

According to this procedure, all of the input vectors in the data set are given a label. 

And the sum of the incorrectly labeled vectors determine the misclassification rate of 

the pattern classifier.  

To further clarify the measure of classification rate, the procedure is given below: 

i. Obtain the unlabeled pattern vector from the data set to be classified. 

ii. Label the pattern vector according to nearest neighbor rule of LVQ algorithm. 

iii. Compare the identifier of the pattern vector by comparing its given label and 

actual label. 

iv. If the labels are the same then produce “1”. 

v. Else if the labels are different then produce “0”. 

vi. Proceed with the other pattern vectors in the data set from step 2 to 5. 

vii. Count the “errors”, which represent the pattern vectors incorrectly labeled. 

viii. Find the error percentage of the classifier for the given data set. 

For the data set described in Section 5.4.1.1 and the simulation described in this 

section, the misclassification rate for the training data set is “1%” and the 

misclassification rate for the test data is “15%”. So the classification performance of 

the Adaptive pattern classifier is “99%” for the training data, and “85%” for the test 

data. 

There are several simulations performed in this thesis, and the maximum 

classification rate is “92%” for the test data, which was never given to the “hybrid” 

pattern classifier during the training phase. In the following section, the results of the 

simulations with varying parameters will be given and the performance of the hybrid 

classifier will be described. 
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5.4.4 Simulation Results 

In this thesis it is aimed to design a classifier capable of recognizing ten classes of 

three-phase system faults. The ten types of faults to be classified in this thesis are 

described in Table 5.1 in Section 5.4.1.1. The fault classifier model was illustrated 

and described in Figure 5.7 in Section 5.4. 

In this section several simulations with varying parameters related to the hybrid 

pattern classifier illustrated in Figure 5.7 and Figure 5.13 will be given. The 

simulations include six cases, which are obtained with the best performance overall 

the simulations. As the network parameters related to these six cases are explained, 

the test results are given in a table as well. 

The simulations are performed on a platform with the following properties: 

 CPU: Pentium III-MMX Processor at 1 GHz. 

 Memory: SDRAM with 3x256 MB. 

 Operating System: Windows 2000 Professional Edition. 

 MATLAB Version 6.0.0.88 (R12). 

 Preprocessor: Wavelet Toolbox Version 2.0   (R12). 

 Adaptive Pattern Classifier: SOM Toolbox Version 2.0 [42]. 

Feature detection and extraction with the “wavelet multi-resolution analysis” 

technique was performed using the “Wavelet Toolbox Version 2.0” in “Matlab 6.0”. 

The classification of ten-fault classes is based on the “SOM Toolbox”, which is a 

freely available Matlab package developed by “Helsinki University of Technology” 

[42]. 

The six simulation cases are described in the following paragraphs.  

The common properties of the simulations are as follows. The simulations include 

several map sizes between “80” map units to “110” map units. A sheet shaped map 

with a local topology of rectangular and hexagonal structure is used for the 

simulations. The map sizes are (8,10), (9,10), and (11,10). The initial values of the 
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prototype vectors of SOM are given according to random initialization and linear 

initialization as described in Section 5.4.2. The neighborhood function for SOFM 

algorithm is chosen to be an “Epanechicov function” given by Equation 5.4. The 

SOFM algorithm is implemented in batch training algorithm. The number of training 

steps for the SOFM algorithm was between “4000” and “5500” iterations, which will 

be described in more detail in the following paragraphs. For the LVQ1 algorithm the 

initialization of the codebook vectors is performed according to the final state of the 

SOFM corresponding to each simulation. The learning rate function for LVQ1 

algorithm is selected to be the “inverse-of-time” function given by Equation 5.6c. 

The initial learning rate is “0.01” for all cases. The number of training steps for the 

LVQ1 algorithm was between “2800” and “3850” iterations, which will be described 

in more detail in the following paragraphs. For all simulations the data set described 

in Section 5.4.1.1 is used. First the hybrid classifier (shown in Figure 5.7 and    

Figure 5.13 in more detail) is trained with the training set that consists of 250 

training examples (25 examples per class). Afterwards it is tested with the test set 

that consists of 100 training examples (10 examples per class). (The data set was 

normalized according to “logarithmic transformation” before being used in adaptive 

pattern classifier).  The rated performance of the test data is between “85%” and 

“92%”. 

The following six paragraphs describe the parameters of the six simulation cases. 

The first simulation case (will be denoted by “SIM_1”) consists of a sheet shaped 

map with a local topology of hexagonal structure of (8,10) map. The initial values of 

the map units are given according to random initialization. “Epanechicov function” is 

used as the neighboring function for the SOFM batch algorithm. In the first phase of 

SOFM algorithm the initial neighborhood radius was seven and in the second phase 

neighborhood radius is one. So, the bN  is large in the beginning of the training 

process, and then shrink with time so that toward the end of the process, bN  includes 

only the closest neighbors of the winning neuron b. bN  is the neighborhood set of 

the best matching unit (BMU), which is denoted by b. The number of training steps 

should be at least ten times the number of map units in the first phase. And the length 

of second phase is at least four times that of the first phase [42]. So, in this respect, 

the number of training steps is selected to be “800” steps in the first phase of SOM 
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algorithm, and “3200” steps in the second phase. So totally “4000” steps is 

considered in the simulation. The initial value of the QE (that was described in the 

simulation in Section 5.4.2) was “2.415” in the beginning of the first phase and  

“0.475” at the beginning of the second phase of training the map. Finally at the end 

of the training it reached to “0.2376”. The quantization error in the second phase of 

SOM algorithm, initial state of the distribution of prototype vectors on the input 

space, and final state of the distribution of prototype vectors on the input space are 

illustrated in the Figure C.1 in Appendix C. As seen from Figure C.1b and        

Figure C.1c after training has been completed, the map reflects the statistical 

characteristics of the input space. The feature map tends to imitate the distribution of 

the data cloud. After adaptation of the map with the SOFM algorithm, it is calibrated 

according to “majority voting” as described in Section 5.4.2 and Section 5.4.3. The 

classification task is performed with LVQ1 algorithm as described in Section 5.4.3. 

In this simulation the number of training steps is selected to be “35*mu=2800”, 

where “mu” is the number of codebook vectors. The classification performance of 

the Adaptive pattern classifier is “100%” for the training data, and “89%” for the test 

data. The hit histograms on the U-matrix and the labeled map before and after fine-

tuning the SOFM with LVQ1 algorithm are illustrated in the Figure C.2 and     

Figure C.3 in Appendix C. It is seen that the cluster border demarcation is better 

approximated after training the SOFM with LVQ1 algorithm. The clusters are better 

represented on the U-mat with the “hit-histograms”. Since there is some correlation 

between the cluster labeled with “BC” and the cluster labeled with “BCG”, the 

separation between them is not very clear on the U-mat, but from the labels and “hit-

histograms” it seems that they correspond to two different clusters. Moreover, as 

seen from Figure C.2b and Figure C.3b the number of missing labels (or the map 

units not assigned to any of the clusters) is decreased after fine-tuning the feature 

map with LVQ1. This is because the LVQ1 provides a better approximation to the 

data cloud. So the map units without cluster labels are now assigned to clusters. 

The second simulation case (will be denoted by “SIM_2”) consists of a sheet shaped 

map with a local topology of rectangular structure of (8,10) map. The initial values 

of the map units are given according to linear initialization. “Epanechicov function” 

is used as the neighboring function for the SOFM batch algorithm. In the first phase 

of SOFM algorithm the initial neighborhood radius was seven and in the second 
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phase neighborhood radius is one. The number of training steps is selected to be 

“800” steps in the first phase of SOM algorithm, and “3200” steps in the second 

phase. So totally “4000” steps is considered in the simulation. The initial value of the 

QE was “1.893” in the beginning of the first phase and  “0.421” at the beginning of 

the second phase of training the map. Finally at the end of the training it reached to 

“0.2132”. The quantization error in the second phase of SOM algorithm, initial state 

of the distribution of prototype vectors on the input space, and final state of the 

distribution of prototype vectors on the input space are illustrated in the Figure C.4 in 

Appendix C. As seen from Figure C.4b and Figure C.4c after training has been 

completed, the map reflects the statistical characteristics of the input space. The 

feature map tends to imitate the distribution of the data cloud. After adaptation of the 

map with the SOFM algorithm, it is calibrated according to “majority voting”. The 

classification task is performed with LVQ1 algorithm. In this simulation the number 

of training steps is selected to be “35*mu=2800”, where “mu” is the number of 

codebook vectors. The classification performance of the Adaptive pattern classifier is 

“99%” for the training data, and “92%” for the test data. The hit histograms on the 

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1 

algorithm are illustrated in the Figure C.5 and Figure C.6 in Appendix C. It is seen 

that the cluster border demarcation is better approximated after training the SOFM 

with LVQ1 algorithm. The clusters are better represented on the U-mat with the  

“hit-histograms”. Since there is some correlation between the cluster labeled with 

“AB” and the cluster labeled with “ABG”, the separation between them is not very 

clear on the U-mat, but from the labels and “hit-histograms” it seems that they 

correspond to two different clusters. Also it is seen from the U-mat plots in       

Figure C.5a and Figure C.6a that there is some relation between “AC” and “ACG”. 

Moreover, as seen from Figure C.5b and Figure C.6b the number of missing labels 

(or the map units not assigned to any of the clusters) is decreased after fine-tuning 

the feature map with LVQ1. This is because the LVQ1 provides a better 

approximation to the data cloud. So the map units without cluster labels are now 

assigned to clusters. 

The third simulation case (will be denoted by “SIM_3”) consists of a sheet shaped 

map with a local topology of hexagonal structure of (9,10) map. The initial values of 

the map units are given according to random initialization. “Epanechicov function” is 



 129 

used as the neighboring function for the SOFM batch algorithm. In the first phase of 

SOFM algorithm the initial neighborhood radius was eight and in the second phase 

neighborhood radius is one. The number of training steps is selected to be “900” 

steps in the first phase of SOM algorithm, and “3600” steps in the second phase. So 

totally “4500” steps is considered in the simulation. The initial value of the QE was 

“2.523” in the beginning of the first phase and  “0.365” at the beginning of the 

second phase of training the map. Finally at the end of the training it reached to 

“0.236”. The quantization error in the second phase of SOM algorithm, initial state 

of the distribution of prototype vectors on the input space, and final state of the 

distribution of prototype vectors on the input space are illustrated in the Figure C.7 in 

Appendix C. As seen from Figure C.7b and Figure C.7c after training has been 

completed, the map reflects the statistical characteristics of the input space. The 

feature map tends to imitate the distribution of the data cloud. After adaptation of the 

map with the SOFM algorithm, it is calibrated according to “majority voting”. The 

classification task is performed with LVQ1 algorithm. In this simulation the number 

of training steps is selected to be “35*mu=3150”, where “mu” is the number of 

codebook vectors. The classification performance of the Adaptive pattern classifier is 

“100%” for the training data, and “89%” for the test data. The hit histograms on the 

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1 

algorithm are illustrated in the Figure C.8 and Figure C.9 in Appendix C. It is seen 

that the cluster border demarcation is better approximated after training the SOFM 

with LVQ1 algorithm. The clusters are better represented on the U-mat with the  

“hit-histograms”. Since there is some correlation between the cluster labeled with 

“BC” and the cluster labeled with “BCG”, the separation between them is not very 

clear on the U-mat, but from the labels and “hit-histograms” it seems that they 

correspond to two different clusters. Also it is seen from the U-mat plots in       

Figure C.8a and Figure C.9a that there is some relation between “AC” and “ACG”. 

Moreover, as seen from Figure C.8b and Figure C.9b the number of missing labels 

(or the map units not assigned to any of the clusters) is decreased after fine-tuning 

the feature map with LVQ1. This is because the LVQ1 provides a better 

approximation to the data cloud. So the map units without cluster labels are now 

assigned to clusters. 
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The forth simulation case (will be denoted by “SIM_4”) consists of a sheet shaped 

map with a local topology of rectangular structure of (9,10) map. The initial values 

of the map units are given according to linear initialization. “Epanechicov function” 

is used as the neighboring function for the SOFM batch algorithm. In the first phase 

of SOFM algorithm the initial neighborhood radius was eight and in the second 

phase neighborhood radius is one. The number of training steps is selected to be 

“900” steps in the first phase of SOM algorithm, and “3600” steps in the second 

phase. So totally “4500” steps is considered in the simulation. The initial value of the 

QE was “1.891” in the beginning of the first phase and  “0.376” at the beginning of 

the second phase of training the map. Finally at the end of the training it reached to 

“0.1691”. The quantization error in the second phase of SOM algorithm, initial state 

of the distribution of prototype vectors on the input space, and final state of the 

distribution of prototype vectors on the input space are illustrated in the Figure C.10 

in Appendix C. As seen from Figure C.10b and Figure C.10c after training has been 

completed, the map reflects the statistical characteristics of the input space. The 

feature map tends to imitate the distribution of the data cloud. After adaptation of the 

map with the SOFM algorithm, it is calibrated according to “majority voting”. The 

classification task is performed with LVQ1 algorithm. In this simulation the number 

of training steps is selected to be “35*mu=3150”, where “mu” is the number of 

codebook vectors. The classification performance of the Adaptive pattern classifier is 

“99%” for the training data, and “91%” for the test data. The hit histograms on the 

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1 

algorithm are illustrated in the Figure C.11 and Figure C.12 in Appendix C. It is seen 

that the cluster border demarcation is better approximated after training the SOFM 

with LVQ1 algorithm. The clusters are better represented on the U-mat with the  

“hit-histograms”. Since there is some correlation between the cluster labeled with 

“AB” and the cluster labeled with “ABG”, the separation between them is not very 

clear on the U-mat, but from the labels and “hit-histograms” it seems that they 

correspond to two different clusters. Moreover, as seen from Figure C.11b and 

Figure C.12b the number of missing labels (or the map units not assigned to any of 

the clusters) is decreased after fine-tuning the feature map with LVQ1. This is 

because the LVQ1 provides a better approximation to the data cloud. So the map 

units without cluster labels are now assigned to clusters. 
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The fifth simulation case (will be denoted by “SIM_5”) consists of a sheet shaped 

map with a local topology of hexagonal structure of (11,10) map. The initial values 

of the map units are given according to linear initialization. “Epanechicov function” 

is used as the neighboring function for the SOFM batch algorithm. In the first phase 

of SOFM algorithm the initial neighborhood radius was nine and in the second phase 

neighborhood radius is one. The number of training steps is selected to be “1100” 

steps in the first phase of SOM algorithm, and “4400” steps in the second phase. So 

totally “5500” steps is considered in the simulation. The initial value of the QE was 

“1.890” in the beginning of the first phase and  “0.34” at the beginning of the second 

phase of training the map. Finally at the end of the training it reached to “0.1648”. 

The quantization error in the second phase of SOM algorithm, initial state of the 

distribution of prototype vectors on the input space, and final state of the distribution 

of prototype vectors on the input space are illustrated in the Figure 5.9. As seen from 

Figure 5.9b and Figure 5.9c after training has been completed, the map reflects the 

statistical characteristics of the input space. The feature map tends to imitate the 

distribution of the data cloud. After adaptation of the map with the SOFM algorithm, 

it is calibrated according to “majority voting”. The classification task is performed 

with LVQ1 algorithm. In this simulation the number of training steps is selected to 

be “35*mu=3850”, where “mu” is the number of codebook vectors. The 

classification performance of the Adaptive pattern classifier is “99%” for the training 

data, and “85%” for the test data. The hit histograms on the U-matrix and the labeled 

map before and after fine-tuning the SOFM with LVQ1 algorithm are illustrated in 

the Figure 5.11 and Figure 5.14. It is seen that the cluster border demarcation is 

better approximated after training the SOFM with LVQ1 algorithm. The clusters are 

better represented on the U-mat with the  “hit-histograms”. Since there is some 

correlation between the cluster labeled with “BC” and the cluster labeled with 

“BCG”, the separation between them is not very clear on the U-mat, but from the 

labels and “hit-histograms” it seems that they correspond to two different clusters. 

Moreover, as seen from Figure 5.11b and Figure 5.14b the number of missing labels 

(or the map units not assigned to any of the clusters) is decreased after fine-tuning 

the feature map with LVQ1. This is because the LVQ1 provides a better 

approximation to the data cloud. So the map units without cluster labels are now 

assigned to clusters. 
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The last simulation case (will be denoted by “SIM_6”) consists of a sheet shaped 

map with a local topology of rectangular structure of (11,10) map. The initial values 

of the map units are given according to random initialization. “Epanechicov 

function” is used as the neighboring function for the SOFM batch algorithm. In the 

first phase of SOFM algorithm the initial neighborhood radius was nine and in the 

second phase neighborhood radius is one. The number of training steps is selected to 

be “1100” steps in the first phase of SOM algorithm, and “4400” steps in the second 

phase. So totally “5500” steps is considered in the simulation. The initial value of the 

QE was “2.294” in the beginning of the first phase and  “0.280” at the beginning of 

the second phase of training the map. Finally at the end of the training it reached to 

“0.1390”. The quantization error in the second phase of SOM algorithm, initial state 

of the distribution of prototype vectors on the input space, and final state of the 

distribution of prototype vectors on the input space are illustrated in the Figure C.13 

in Appendix C. As seen from Figure C.13b and Figure C.13c after training has been 

completed, the map reflects the statistical characteristics of the input space. The 

feature map tends to imitate the distribution of the data cloud. After adaptation of the 

map with the SOFM algorithm, it is calibrated according to “majority voting”. The 

classification task is performed with LVQ1 algorithm. In this simulation the number 

of training steps is selected to be “35*mu=3850”, where “mu” is the number of 

codebook vectors. The classification performance of the Adaptive pattern classifier is 

“100%” for the training data, and “88%” for the test data. The hit histograms on the 

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1 

algorithm are illustrated in the Figure C.14 and Figure C.15 in Appendix C. It is seen 

that the cluster border demarcation is better approximated after training the SOFM 

with LVQ1 algorithm. The clusters are better represented on the U-mat with the  

“hit-histograms”. Since there is some correlation between the cluster labeled with 

“AC” and the cluster labeled with “ACG”, the separation between them is not very 

clear on the U-mat, but from the labels and “hit-histograms” it seems that they 

correspond to two different clusters. Moreover, as seen from Figure C.14b and 

Figure C.15b the number of missing labels (or the map units not assigned to any of 

the clusters) is decreased after fine-tuning the feature map with LVQ1. This is 

because the LVQ1 provides a better approximation to the data cloud. So the map 

units without cluster labels are now assigned to clusters. 
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“SIM_5”; the fifth simulation was explained in the Section 5.4.2 and Section 5.4.3 in 

more detail. 

In the next paragraph the results of the adaptive pattern classification system for the 

six simulation cases described above are summarized in a table. The results shown in 

Table 5.2 were obtained after the hybrid system in Figure 5.7 and Figure 5.13 is 

trained using 250 different fault patterns as described previously. During the testing, 

the pattern classifier was presented with 100 new fault patterns. The neural network 

never saw these patterns, and its task was to classify new patterns based on the 

previous experience (i.e., using the information learned during the training).  

Table 5.2   Hybrid neural network classification results 

Simulation Description 

Classification rate (%) 

Training 

data set 

Test     

data set 

SIM_1 Random initialized hexagonal structure 

of (8,10) map 

100 89 

SIM_2 Linear initialized rectangular structure of 

(8,10) map 

99 92 

SIM_3 Random initialized hexagonal structure 

of (9,10) map 

100 89 

SIM_4 Linear initialized rectangular structure of 

(9,10) map 

99 91 

SIM_5 Linear initialized hexagonal structure of 

(11,10) map 

99 85 

SIM_6 Random initialized rectangular structure 

of (11,10) map 

100 88 
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Classification was based on the following procedure: 

The data set (unlabeled) to be classified is submitted to the trained prototype vectors. 

And the labels with respect to nearest-neighboring-rule of LVQ are assigned to the 

given input vectors. In other words, the codebook vectors best matching to each input 

vector gives its label to this input vector. To ensure that the prototypes really 

represent the “right” classes, the labels given to each vector in the data set is 

compared with the “actual” labels of each vector in the data set. If the labels of a 

vector before and after classification is the same, then the binary output “1” is 

produced. However, if the labels differ, that is the pattern vector is “incorrectly” 

classified, than a binary output “0” is produced. According to this procedure, all of 

the input vectors in the data set are given a label. And the sum of the incorrectly 

labeled vectors determines the misclassification rate of the pattern classifier. 

As the test results in Table 5.2 and the figures in the Appendix C are examined, some 

properties of the parameters used in the SOFM algorithm and the LVQ1 algorithm is 

obtained. These properties are described below. 

As the number of the units in the self-organizing map is increased, the map become 

smoother and the topological relations and the clusters can be examined better in the 

SOFM. So the map can be visualized better. 

In this simulation, the best classification value is obtained using the empiric formula 

of Kohonen [42], which was given in Section 5.4.2. The number of map units is 

( ))(*5( n =80) for this case. In the literature, increasing the number of map units 

generally improves the classification performance of the map [42]. However the 

results of the simulations were close to each other as the number of the map units are 

increased for the cases in Table 5.2. This may be because of the initial states of the 

weight vectors on the map. It may be possible to obtain some improvements on the 

performance if some more experiments are done. 

Using rectangular map structure generally increases the classification rate of the 

classifier. For example, in the case of a (8,10) map the result obtained by a 

rectangular lattice (92%) is better than the hexagonal lattice (89%). Also in the case 

of [9 10] map rectangular lattice (91%) is better than the hexagonal lattice (89%). 
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Finally in the case of (11,10) map rectangular lattice (88%) is better than the 

hexagonal lattice (85%). This may be possible because as opposed to the six 

neighbors in a hexagonal lattice, the eight neighbors of a neuron are at the same 

distance (as seen in Figure 4.18 in Section 4.4.2.1). So, the map can organize itself 

better. 
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6. CONCLUSION 

A Combined Wavelet-ANN based fault classifier has been investigated for electrical 

distribution systems in this thesis. Ten fault categories have been selected to be 

identified by using the proposed approach. It is shown that the technique presented 

correctly recognizes and discriminates the fault type and faulted phases(s) with a 

high degree of accuracy for different location and time of occurrence in the simulated 

model distribution system. 

The underlying approach of the proposed classifier is to carry out (preprocessed) 

waveform recognition in the self-organizing feature map. The SOFM is intended to 

discover significant patterns or features from a set of feature vectors obtained by the 

data preprocessor. SOFM obtains the information hidden in high dimensional data 

that is otherwise difficult to interpret. The test results show that the decision regions 

between different fault classes are quite clearly defined. A final decision about the 

fault type is made by combining the information extracted by SOFM with a 

supervised learning algorithm: type-one learning vector quantization. 

The performance of the proposed fault classification technique is comparable and 

close to the classifiers in the literature. As described in Section 5.4.4, the results 

shown in Table 5.2 were obtained after the hybrid system in Figure 5.7 and       

Figure 5.13 is trained using 250 different fault patterns as described previously. 

During the testing, the pattern classifier was presented with 100 new fault patterns. 

The rated performance of the test data is between “85%” and “92%”. All the test 

results presented show that the proposed fault classification technique based on SOM 

is well suited for fault classification problems. This hybrid method is easy and very 

promising for fault classification problem. 

Furthermore, the classification performance of the combined Wavelet-SOM network 

may be improved by performing some modifications to the fault classifier. First of 

all, depending on the computing power of the test platform, using a large (above 100 
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units) map size may improve the clustering performance of the map since in this case 

the data and the cluster borders may be better represented by the feature map. Also 

some more experiments with varying system parameters may be performed to 

investigate if better performance can be obtained. Moreover, modifying the SOM 

algorithm with conscience mechanism may improve the performance of the 

classifier: A problem with competitive learning algorithms is that they sometimes 

lead to solutions where several nodes of the network remain unchanged. For 

example, if some region of the input space is more crowded than others and the 

initial density of weight vectors is too low in this region, specific nodes may be 

winning the competitions. The Kohonen learning algorithm attempts to overcome 

this problem by using topological neighborhoods. Although this approach is very 

effective, some more modifications may be possible to completely alleviate this case. 

Conscience mechanism is a technique developed for this issue. The idea is that each 

neuron keeps track of how many times it has won the competition (i.e., how many 

times its synaptic weight vector has been the neuron closest to the input vector in 

Euclidean distance). The notion used here is that if a neuron wins too often, it “feels 

guilty” and therefore pulls itself out of the competition. This method adapts the 

weights of the winning node only and the learning rate is assumed to be constant [5].  

This research has showed that combined Wavelet-ANN technique can be used for the 

classification of power system short-circuit faults. More work is needed to further 

explore the other aspects of cluster characteristics and to better classifying each of 

them. Future work can involve the use of actual recorded field data to verify initial 

results obtained in this study.  
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APPENDICES 

Appendix A 

A 1. Basis Vectors 

A vector   in V, vector space, is said to be linear combination of a set of vectors 

n ,,, 21   in V provided there exist constants naaa ,,, 21   such that 

k

N

k

ka  



1

                                                                                   (A.1) 

Equation A.1 shows how any vector   can be written as a linear combination of the 
basis vectors k  and the corresponding coefficients ka  [22]. 

A set of vectors n ,,, 21   is said to be linearly dependent if there exist constants 

naaa ,,, 21   not all zero such that the linear combination 

0
1




k

N

k

ka                                                                                    (A.2) 

A set that is not linearly dependent is linearly independent. Linear independence is a 
prerequisite for a set of vectors to be a basis of a vector space. Another requirement 
is that every vector in vector space should be expressible as a linear combination of 
members of this set. In other words, the basis vectors should span the vector space. 
Therefore, if ,, 21 bb  and so on are the basis of a vector space V, then a vector   in V 
can be represented as 

k

N

k

kba



1

                                                                                    (A.3) 

The number of vectors in any basis of a finite dimensional vector space gives its 
dimension. An example of basis vectors is the standard basis of 3R  with )0,0,1(1 b , 

)0,1,0(2 b , )1,0,0(3 b . 

This concept, given in terms of vectors, can easily be generalized to functions, by 
replacing the basis vectors kb  with basis functions )(tk , and the vector   with a 
function )(tf . Equation A.3 then becomes 

)()( tatf k

k

k                                                                         (A.4) 

A 2. Inner Product 

An inner product on a vector space V is a rule that associates a real number, defined 
as ,u  with each pair of vectors u and   in V. 
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The following axioms satisfied by the inner product for all vectors u,  , and  in V: 

1. Symmetry: ,u = u, . 

2. Additivity:  ,,,  uu . 

3. Homogeneity:  ,, ukku  , if k is a scalar. 

4. Positivity: 0,   and 0,   if and only if v = 0 

A vector space with an inner product defined on it is called an inner product space  
[26]. An example of an inner product space is the space of all polynomials of degree 
n. If )(tf  and )(tg  are two polynomials in this space, then the inner product is 

dttgtftgtf )()()(),( 




                                                             (A.5) 

If V is an inner product space and if u  is a vector in this space, then the norm of u  
denoted by u  is defined by 

uuu ,                                                                                  (A.6) 

So, the squared norm is an inner product of a vector with itself. In this manner, the 
inner product operation induces a norm. 

The distance between two vectors u  and   in an inner product space is defined as 

 uvud ),(                                                                             (A.7) 

Equation A.5 defines the similarity between )(tf  and )(tg . 

A 3. Hilbert Spaces 

A Hilbert space is defined as any vector space with an inner product satisfying 
positivity, homogenity, and symmetry (see Appendix 2) that is; moreover, complete 
with respect to this norm [22]. 

Given a set of infinitive sequences of vectors 21, , and so on, in the vector space V; 
this sequence is convergent if there is a vector   in V such that 

 


n
n
lim                                                                                    (A.9) 

A Cauchy sequence is one that has the property that as n , successive points 
tend to be closer together. Mathematically, this property is as follows: given 0  
there exists a positive integer 0n  such that for 0, nnm  , then   mn ,           
(   is the norm defined on V). A convergent sequence must be a Cauchy sequence.  
However, the converse is not true. Every Cauchy sequence is not necessarily 
convergent because the element to which the sequence tends may not be in V. There 
are certain inner product spaces where every Cauchy sequence does converge to a 
vector in that space. Such vector spaces are called complete [22]. 

An example of a Hilbert space is Lebesgue vector space; )(2 RL , for one dimensional, 
measurable, square integrable functions defined on the real values R. [26].  
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A function f )(2 RL  is said to be supported in an interval   Rba ,  if   0tf  
outside of  ba, . So f satisfies;  baf , . The set of square integrable functions 
supported in  ba,  is denoted by  ),(2 baL . It is a subspace of )(2 RL  and is itself a 
Hilbert space. Given an arbitrary function f )(2 RL , f  has “compact support” if 

 baf ,  for some bounded interval   Rba ,  [22]. It is common to use the term 
“compact support” instead of “finite length”. 

A 4. Orthogonality and Orthonormality 

A set of vectors   nii ,,2,1,   is orthogonal if 

ijji c ,                                                                              (A.10) 

where the Kronecker delta 

ij  0, ji                                                                                (A.11) 

ij 1, ji                                                                   

and c  is a constant. It is orthonormal if c=1, in Equation A.10. When two vectors are 
orthogonal, they have no correlation or common components. The projection of one 
onto another is zero, and their inner product is zero. When a set of vectors 
  nii ,,2,1,   is said to be orthonormal, they are pair-wise orthogonal to each 
other, and all have length one [21]. 

Similarly, a set of functions  nktk ,,3,2,1),(   is said to be orthonormal if 

kll

b

a

k cdttt  

 )()(                                                                 (A.12) 

There may be more than one set of basis functions (or vectors). Among them, the 
orthonormal basis functions (or vectors) are of particular importance because of the 
properties they provide in finding the analysis coefficients. The orthonormal bases 
allow computation of these coefficients in a very simple and straightforward way 
using the orthonormality property [21]. 

For orthonormal bases, the coefficient ka , can be calculated as 

dtttffa kkk )()(,                                                     (A.13) 

and the function )(tf  can then be reconstructed by Equation A.4 by substituting the 

ka  coefficients. This yields 

)(,)()( tftatf k

k

kk

k

k                                           (A.14) 

Orthonormal bases may not be available for every type of applications where a 
generalized version, biorthogonal bases can be used. The term biorthogonal refers to 
two different bases that are orthogonal (pair-wise orthogonal) to each other, but each 
do not form an orthogonal set [21]. 

In some applications, however, biorthogonal bases also may not be available in 
which case frames can be used. Frames constitute an important part of wavelet 
theory [21]. 
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A 5. Frames in Vector Space 

When two vectors are orthogonal, they have no correlation or common components. 
The projection of one onto another is zero, and their inner product is zero. 
Decomposition of a vector into its components of ortonormal basis vectors is 
therefore a simple inner product operation as described in Appendix 4. 

Let  i  be a set of orthonormal vectors that spans the n-dimensional space, then any 
1n  vector g  is a linear combination of the 

i  given by 

i

n

i

igg 



1

,                                                                            (A.15) 

 

If   i  is not orthonormal (or orthogonal), g can still be expressed as a linear 
combination of  i , but the coefficients of i  are no longer simple inner products of 

ig , . Note that basis vectors need not be orthonormal; they can even be linearly 
dependent and hence redundant. The only requirement is that they span the vector 
space so that any vector can be represented in terms of them. The theory of frames is 
a generalization of the orthonormal decomposition principle and gives a 
representation of an 1m  vector as 

i

n

i

igg  ~,
1




    , mn                                                              (A.16) 

This is similar to Equation A.15, except  i  is not necessarily orthonormal and since 
mn  , the i  basis vectors can be linearly dependent. The  i

~  is called the dual of 
 i . Equation A.16 states that the simple inner product form is still valid in 
decomposition, but at the expense of introducing dual in the reconstruction [21]. 

The  i  are called elements of a frame, and  i
~  the dual frame of  i . For 

simplicity, i  will be assumed as unit vectors. A frame  i  is a set of vectors that 
satisfies, for any nonzero 1m  vector g, 

2
2

1

2
, gBggA

n

i

i 


   , mn                                           (A.17) 

when A and B are constants dependent on  i  only, called frame bounds, with 
 BA 10 . They are the highest lower bound and lowest upper bound. The 

lower bound guarantees that the set  i  spans the vector space, i.e.,  i  is a 
complete frame, otherwise 

2

1
, 

n

i ig   can become zero for some 0g . 

The theory of frames provides the representation of a set of basis vectors that are not 
necessarily orthonormal, nor linearly independent. The coefficients are still inner 
products of the vector with the basis vectors. Reconstruction, however, requires new 
basis vectors called duals. As long as  i  obey Equation A.17, any vector g can be 
synthesized according to Equation A.16. If A=B, then Aii /~    and if A=B=1, then 

ii  ~  and  i  forms an orthonormal basis. When A=B the frame is said to be tight. 
Also, if A>1 then the frame is redundant and A can be interpreted as a minimum 
redundancy factor [29]. 

If  i  is a tight frame, then ii c ~ , where c is a constant. However to find the dual 
frame  i

~  when  i  is not tight, suppose  nnmV  1 , and  nnmV  ~~~
1 .  i  

obey Equation A.16 so that it follows from Equation A.15 that gVVg T~
  for any 

1m  vector g. So V
~

 must satisfy 

mm

T

mnnm IVV  
~

                                                                         (A.18) 
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where I is an identity matrix. The solution of Equation A.18 is 

VVVV T 1)(
~                                                                              (A.19) 

The theory of frames is necessary in the decomposition and reconstruction of a 
function by wavelets. 

A last point about frames is the resolution of the identity property which states that; 
if a transformation is invertible, then the signal energy in the original domain must be 
equal to, within a constant, the signal energy in the transform domain. The 
reconstruction of the signal in terms of the basis functions is feasible if energy 
preservation holds within a constant. 

Frames in general satisfy resolution of the identity. In the case of vector 
transformation, it is easy to verify that if  i  is an orthonormal set, then 

i

i

igg  ,  and 
22

,
i

igg  , so resolution of the identity property holds. 
But when a transform violates resolution of the identity, duals are needed for 
reconstruction. Finally, from Equation A.16, since gVVg T

i

i

i

~~,   , then g can 
be found as 

i

i

ii

i

i ggg    ~,~,                                                       (A.20) 

A 6. Heisenberg Uncertainty Principle 

All functions, including windows, in time-frequency analysis obey the uncertainty 
principle, which states that sharp localizations in time and in frequency are mutually 
exclusive [22]. 

If a nonzero function )(tg  is small outside a time-interval of length T and its Fourier 
transform is small outside a frequency band of width  , then an inequality of the 
type cT   must hold for some positive constant c1. The precise value of c 
depends on how the widths T and   of the signal in time and frequency are 
measured. For instance, given a normalized function g is 1g ; 

2
)(tg  is weight 

distribution of the window in time and 
2

)(wg


 is a weight distribution of the window 
in frequency. The “centers of gravity” of the window in time and frequency are then 

dttgtt

2

0 )(




 ,  dwg

2

0 )(







                                         (A.21) 

for )(2 RLg  [22]. A common way of defining T and   is as the standard 
deviations from 0t  and 0 : 






 dttgttT
22

0

2 )()( ,     dwg
2

2

0

2 )()(







           (A.22) 

With these definitions, it can be shown that 14  T , which is the Heisenberg 
form of the uncertainty relation. For Gaussian windows, the Heisenberg inequality 
becomes an equality: 14  T  [22]. 

Heisenberg Uncertainty is an important principle in time-frequency analysis. Time 
and frequency energy conservations are restricted by the Heisenberg uncertainty 
principle. The fundamental fact about the T and   can be summarized as follows: 
The precise measurements of time and frequency are fundamentally incomplete, 
because frequency cannot be measured instantaneously. That is, if a signal has 
frequency 0 , then the signal must be observed for at least one period, i.e., for a time 
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interval 
01t . The larger the number of periods for which the signal is 

observed, the more meaningful it becomes to say that it has frequency 
0 . Hence it 

is not possible to say with certainty exactly when the signal has a constant frequency 
[22]. 

A 7. The Downsampler 

The downsampler is also called the sampling rate compressor and the subsampler. 
Figure A.1 shows an M-fold downsampler. It takes an input sequence )(nx  and 
produces an output sequence 

)()( Mnxny                                                                               (A.23) 

where M is an integer. In other words, a downsampler by M retains only those 
samples of )(nx  that occur at times that are multiples of M. Figure A.1b shows how 
the downsampler acts on a sequence for the case of M=2 [26]. 
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Figure A.1 An M-fold downsampler 
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(b) 

Figure A.2 Demonstration of a downsampler for the case of M=2. (a) Original 
sequence. (b) The downsampled sequence 

A 8. The Upsampler 

The upsampler is also called a sampling rate expander or simply an expander.   
Figure A.3 shows an L-fold upsampler. It takes an input sequence )(nx  and produces 
an output sequence 
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)(ny )/( Lnx      if n is an integer multiple of L                       (A.24)            

)(ny 0                otherwise                                                

So, upsampling by a factor of L involves inserting L-1 zeros between consecutive 
samples of the input sequence. The process of upsampling is demonstrated in   Figure 
A. 4 for L=2 [26]. 
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Figure A.3 An L-fold upsampler 
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(b) 

Figure A.4 Demonstration of an upsampler for the case of L=2. (a) Original 
sequence. (b) The upsampled sequence 
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Appendix B 

B 1. Power System Data of the Simulation System 

Table B.1  Power system parameters of Figure 5.1 

Component Name Component Parameters 

Source* 

154 kV, 10000 MVASC, 50 Hz,  

1X =j2.3716, 
2X =j2.3716, 

0X =j0.7905, 

Transformer TRF 1 

100 MVA, 154 Y / 34.5 Y kV, 50 Hz 
Leakage Inductance= 10.0 % 

TRF 2,3,4,5,6 

20 MVA, 34.5 Y / 10.5  kV, 50 Hz 
Leakage Inductance= 10.0 % 

Capacitor Bank 
7.2 MVAr, Delta connected, C= 34.5 F 

Cables 1,2,3,4 
20.3 / 34.5 kV, 3.0 km, 3x(1x240 

2mm ) XLPE Cable 

Cable 5 
20.3 / 34.5 kV, 3.5 km, 3x(1x240 

2mm ) XLPE Cable 

Loads 1,2,3,4 

19 MVA, Cos =0.906, Delta Connected,  

R= 5.259 [], L=0.007806  

Load 5 

19 MVA, Cos =0.707, Delta Connected,  

R= 4.103 [], L=0.01306  

 

The parameters of the “infinite source” are based on the assumption that the “short-
circuit power” is “100” times the maximum rated power on the distribution system, 
which is “100 MVA”. This assumption is based on an empiric formula according to 
[4]. Also, the zero sequence impedance of the source is based on an assumption that 
the zero sequence impedance is between (1/3) and (1/6) of the positive sequence 
impedance for the source according to [4]. Positive sequence impedance is calculated 
by )10000/154()/( 22 

kSU  according to [4]. 
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B 2. The Simulation System Layout in PSCAD/EMTDC 

         

B
R

K

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

A

B

C

FAULTS

A->G

A

B

C

FAULTS

A->G

Timed
Fault
Logic

B
R

K
L

O
A

D
1

a

B
R

K
L

O
A

D
1

b

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
1

c

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
2

a

B
R

K
L

O
A

D
2

b

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
2

c

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

  
  

  
  

  
 V

 S
O

U
R

C
E

 B

  
  

  
  

  
 V

 S
O

U
R

C
E

 C

T imed
Fault
Logic

  
  

  
  

  
 V

 S
O

U
R

C
E

 A

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

V
 S

O
U

R
C

E
_

B

V
 S

O
U

R
C

E
_

C

V
 S

O
U

R
C

E
_

A

V
 S

O
U

R
C

E
_

A

V
 S

O
U

R
C

E
_

B

V
 S

O
U

R
C

E
_

C

V
 A

V
 B

V
 C

I 
T

R
S

C
_

A

I 
T

R
S

C
_

C

I 
T

R
S

C
_

B

V
 M

E
R

K
1

i_
B V

 M
E

R
K

1
i_

C
V

 M
E

R
K

1
_

C

C
1

C
A

B
L

E
 2

C
2

C
3

B
R

K

A B C

  
  

  
  

  
 T

R
F

 S
E

C
 C

U
R

R
E

N
T

 B

  
  

  
  

  
 T

R
F

 S
E

C
 C

U
R

R
E

N
T

 C

0
.0

0
7

5
4A B C

R
L

5.259

5.259

0.007806

0.007806

0.0078065.259

5.259 0.007806

0.007806

0.0078065.259

5.259

  
B

R
E

A
K

E
R

  
C

O
N

T
R

O
L

C
1

 C
A

B
L

E
 2

C
2

C
3

  
  

  
  

  
 S

E
N

D
 S

IG
N

A
L

 T
O

  
C

_
1

  
  

  
  

  
 S

E
N

D
 S

IG
N

A
L

 T
O

 B
_

1

V
_

E
1

1
_

a

V
_

E
1

1
_

b

V
_

E
1

1
_

c  
  

  
  

  
 S

E
N

D
 S

IG
N

A
L

 T
O

 A
_

1

C
1

C
A

B
L

E
 1

C
2

C
3

V
 M

E
R

K
2

i_
A

V
 M

E
R

K
2

i_
C

V
 M

E
R

K
1

_
C

V
 M

E
R

K
1

_
B

V
 M

E
R

K
1

_
A

V
 M

E
R

K
1

_
B

V
 M

E
R

K
1

i_
A

V
 M

E
R

K
1

_
A

  
B

R
E

A
K

E
R

  
C

O
N

T
R

O
L

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

  
 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

  
  

 1
  

- 
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

  
  

 2
  

- 
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

  
  

 3
  

- 
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

  
  

 4
  

- 
 P

H
A

S
E

 A
  

- 
 B

 T
O

 G
R

O
U

N
D

  
  

 5
  

- 
 P

H
A

S
E

 B
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 6
  

- 
 P

H
A

S
E

 A
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 7
  

- 
 P

H
A

S
E

 A
  

- 
B

 -
 C

 T
O

 G
R

O
U

N
D

  
  

 8
  

- 
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

  
  

 9
 -

  
 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

  
  

1
0

 -
  

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

  
 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

  
  

 1
  

- 
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

  
  

 2
  

- 
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

  
  

 3
  

- 
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

  
  

 4
  

- 
 P

H
A

S
E

 A
  

- 
 B

 T
O

 G
R

O
U

N
D

  
  

 5
  

- 
 P

H
A

S
E

 B
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 6
  

- 
 P

H
A

S
E

 A
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 7
  

- 
 P

H
A

S
E

 A
  

- 
B

 -
 C

 T
O

 G
R

O
U

N
D

  
  

 8
  

- 
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

  
  

 9
 -

  
 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

  
  

1
0

 -
  

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 B

R
K

L
O

A
D

1
a

  
  

  
  

  
  

  
  

 I
_

B
R

K
_

L
O

A
D

1
_

A
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L

O
A

D
1

b

  
  

  
  

  
  

  
  

 I
_

B
R

K
_

L
O

A
D

1
_

B
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L

O
A

D
1

c

  
  

  
  

  
  

  
  

 I
_

B
R

K
_

L
O

A
D

1
_

C

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
B

R
K

L
O

A
D

2
c

  
  

  
  

  
  

  
  

 I
_

B
R

K
_

L
O

A
D

2
_

C

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
B

R
K

L
O

A
D

2
b

  
  

  
  

  
  

  
  

 I
_

B
R

K
_

L
O

A
D

2
_

B

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
B

R
K

L
O

A
D

2
a

  
  

  
  

  
  

  
  

 I
_

B
R

K
_

L
O

A
D

2
_

A

30.0

30.0

A B C

A B C

1
0

0
.0

 [
M

V
A

]

1
5

4
.0

3
4

.5

#
1

#
2

30.0

30.0

  
  

 L
O

A
D

  
2

:

  
  

 1
9

  
M

V
A

  
  

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

  
  

 L
O

A
D

  
1

:

  
  

 1
9

  
M

V
A

  
  

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

C
1

C
A

B
L

E
 5

C
2

C
3

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

  
  

  
  

  
 T

R
F

 S
E

C
 C

U
R

R
E

N
T

 A

  
  

 E
X

T
E

R
N

A
L

  
S

Y
S

T
E

M

  
  

 (
 I

N
F

IN
IT

E
  

S
Y

S
T

E
M

 )

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

  
  

  
  

1
5

4
 k

V

  
  

  
  

1
0

0
0

0
 M

V
A

 S
C

  
  

S
A

G
M

A
L

C
IL

A
R

 S
U

B
S

T
A

T
IO

N

  
F

A
U

L
T

 C
O

N
T

R
O

L

C
1

 C
A

B
L

E
  

5

C
2

C
3

C
A

B
L

E
 5

  
F

A
U

L
T

 C
O

N
T

R
O

L

C
A

B
L

E
 2

  
  

  
T

R
F

 1

G
R

A
P

H
  

P
A

G
E

  
  

  
T

R
F

 3

  
  

  
T

R
F

 2

C
1

 C
A

B
L

E
 1

C
2

C
3

C
A

B
L

E
 1

V
 M

E
R

K
2

i_
B

  
  

 F
A

U
L

T
  

1

  
  

 F
A

U
L

T
  

2

 

F
ig

u
re

 B
. 

1
a 

T
h
e 

R
ed

u
ce

d
 3

4
.5

 k
V

 S
ag

m
al

cı
la

r-
M

al
te

p
e 

S
u
b
st

at
io

n
 S

y
st

em
 M

o
d
el

 (
p
ar

t 
1
) 



 150 

 

         

  
F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

  
  

 1
  

- 
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

  
  

 2
  

- 
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

  
  

 3
  

- 
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

  
  

 4
  

- 
 P

H
A

S
E

 A
  

- 
 B

 T
O

 G
R

O
U

N
D

  
  

 5
  

- 
 P

H
A

S
E

 B
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 6
  

- 
 P

H
A

S
E

 A
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 7
  

- 
 P

H
A

S
E

 A
  

- 
B

 -
 C

 T
O

 G
R

O
U

N
D

  
  

 8
  

- 
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

  
  

 9
 -

  
 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

  
  

1
0

 -
  

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

Timed
Fault
Logic

A

B

C

FAULTS

A->G

Timed
Fault
Logic

B
R

K
L

O
A

D
4

a

B
R

K
L

O
A

D
4

b

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
4

c

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
3

a

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
3

b

B
R

K
L

O
A

D
3

c

A
_
1

C
_

1

B
_
1

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

5.259

0.007806

5.259 0.007806

5.259

5.259

0.007806

0.0078065.259

0.007806

C
A

B
L

E
 3

C
1

 C
A

B
L

E
 3

C
2

C
3

C
1

 C
A

B
L

E
 4

C
2

C
3

C
1

C
A

B
L

E
 3

C
2

C
3

C
1

C
A

B
L

E
 4

C
2

C
3

A

B

C

FAULTS

A->G

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L
O

A
D

3
b

  
  

  
  

  
  

  
  

 I
_
B

R
K

_
L
O

A
D

3
_
B

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L
O

A
D

3
c

  
  

  
  

  
  

  
  

 I
_
B

R
K

_
L
O

A
D

3
_
C

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L
O

A
D

4
a

  
  

  
  

  
  

  
  

 I
_
B

R
K

_
L
O

A
D

4
_
A

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L
O

A
D

4
b

  
  

  
  

  
  

  
  

 I
_
B

R
K

_
L
O

A
D

4
_
B

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L
O

A
D

4
c

  
  

  
  

  
  

  
  

 I
_
B

R
K

_
L
O

A
D

4
_
C

5.259

0.007806

V
 M

E
R

K
3

i_
A

V
 M

E
R

K
3

i_
B

V
 M

E
R

K
3

i_
C

V
 M

E
R

K
4

i_
A

V
 M

E
R

K
4

i_
B

V
 M

E
R

K
4

i_
C

V
 M

E
R

K
3

_
A

V
 M

E
R

K
3

_
B

V
 M

E
R

K
3

_
C

V
 M

E
R

K
4

_
A

V
 M

E
R

K
4

_
B

V
 M

E
R

K
4

_
C

  
B

R
E

A
K

E
R

  
C

O
N

T
R

O
L

  
F

A
U

L
T

 C
O

N
T

R
O

L

  
B

R
E

A
K

E
R

  
C

O
N

T
R

O
L

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 B
R

K
L
O

A
D

3
a

  
  

  
  

  
  

  
  

 I
_
B

R
K

_
L
O

A
D

3
_
A

  
 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

  
  

 1
  

- 
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

  
  

 2
  

- 
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

  
  

 3
  

- 
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

  
  

 4
  

- 
 P

H
A

S
E

 A
  

- 
 B

 T
O

 G
R

O
U

N
D

  
  

 5
  

- 
 P

H
A

S
E

 B
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 6
  

- 
 P

H
A

S
E

 A
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 7
  

- 
 P

H
A

S
E

 A
  

- 
B

 -
 C

 T
O

 G
R

O
U

N
D

  
  

 8
  

- 
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

  
  

 9
 -

  
 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

  
  

1
0

 -
  

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

C
A

B
L

E
 4

  
  

 L
O

A
D

  
3

:

  
  

 1
9

  
M

V
A

  
  

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

  
  

 L
O

A
D

  
4

:

  
  

 1
9

  
M

V
A

  
  

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

30.0

30.0

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
S

E
N

D
 S

IG
N

A
L
 T

O
 A

_
2

  
F

A
U

L
T

 C
O

N
T

R
O

L

  
  

  
T

R
F

 3

  
  

  
T

R
F

 4

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
S

E
N

D
 S

IG
N

A
L
 T

O
 B

_
2

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 S
E

N
D

 S
IG

N
A

L
 T

O
 C

_
2

  
  

F
A

U
L

T
  

3

  
  

F
A

U
L

T
  

4

 

F
ig

u
re

 B
. 

2
a 

T
h
e 

R
ed

u
ce

d
 3

4
.5

 k
V

 S
ag

m
al

cı
la

r-
M

al
te

p
e 

S
u
b
st

at
io

n
 S

y
st

em
 M

o
d
el

 (
p
ar

t 
1
) 



 151 

 

         

                                       BRKBANKc

                  I_BRK_BANK_C

A

B

C

FAULTS

A->G

Timed
Fault
Logic

V
e
n
d
a

A
e
n
d

V
e
n
d
b

B
e
n
d

V
e
n
d
c

C
e
n
d

B
R

K
L
O

A
D

a

B
R

K
L
O

A
D

b

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

B
R

K
L
O

A
D

c

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

0.168154

135.9462

135.9462 0.168154

135.9462

0.168154

A
_
2

B
_
2

C
_
2

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

  
F

A
U

L
T

 C
O

N
T

R
O

L

B
R

K
B

A
N

K
a

B
R

K
B

A
N

K
b

B
R

K
B

A
N

K
c

B
R

K
B

A
N

K

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

C
lo

s
e
d
@

t0

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

  
  

  
  

  
  

7
2
0
0
 k

V
A

r

  
  

  
  

 1
8
x
4
0
0
 k

V
A

r

  
  

  
  

  
  

 C
 B

A
N

K

  
B

R
E

A
K

E
R

  
C

O
N

T
R

O
L

  
B

R
E

A
K

E
R

  
C

O
N

T
R

O
L

  
  

  
  

  
  

  
B

R
K

L
O

A
D

a

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

I_
B

R
K

_
L
O

A
D

_
A

  
  

  
  

  
  

  
B

R
K

L
O

A
D

b

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

I_
B

R
K

_
L
O

A
D

_
B

  
  

  
  

  
  

  
B

R
K

L
O

A
D

c

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

I_
B

R
K

_
L
O

A
D

_
C

                                       BRKBANKa

                  I_BRK_BANK_A

                                       BRKBANKb

                  I_BRK_BANK_B

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
B

R
K

B
A

N
K

  
  

  
  

  
 I

_
B

R
K

_
B

A
N

K

A

B

C

A

B

C

20.0 [MVA]

34.5 10.5

#1 #2

  
  

 L
O

A
D

  
:

  
  

 1
9
  

M
V

A

  
  

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.7

0
7

3
0
.0

 2
x
 C

 B
A

N
K

 C
 =

3
4
,0

 m
ic

ro
F

 1
 B

A
N

K
=
 9

 C

  
  

 M
A

L
T

E
P

E

  
 S

U
B

S
T

A
T

IO
N

  
  

  
T

R
F

 5

  
 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

  
  

 1
  

- 
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

  
  

 2
  

- 
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

  
  

 3
  

- 
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

  
  

 4
  

- 
 P

H
A

S
E

 A
  

- 
 B

 T
O

 G
R

O
U

N
D

  
  

 5
  

- 
 P

H
A

S
E

 B
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 6
  

- 
 P

H
A

S
E

 A
  

- 
C

 T
O

 G
R

O
U

N
D

  
  

 7
  

- 
 P

H
A

S
E

 A
  

- 
B

 -
 C

 T
O

 G
R

O
U

N
D

  
  

 8
  

- 
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

  
  

 9
 -

  
 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

  
  

1
0
 -

  
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 C

  
  

 F
A

U
L
T

 5

 



 152 

Appendix C 

 

 

0 500 1000 1500 2000 2500 3000 3500 0.25 

0.3 

0.35 

0.4 

0.45 

0.5 Quantization error after each epoch 

Number of Iterations 

Q
u
a
n
ti
z
a
ti
o
n
 E

rr
o
r 

0 0.5 1 1.5 2 2.5 3 0 
0.2 

0.4 
0.6 
0.8 

1 

1.2 
1.4 x 10 -4 First two components of map units (o) and data vectors () 

0 0.5 1 1.5 2 2.5 3 0 

0.2 

0.4 
0.6 

0.8 
1 

1.2 
1.4 x 10 -4 First two components of map units (o) and data vectors () 

(a) 

(b) 

(c) 

 

Figure C.1 (a) The QE in the second phase of SOM algorithm (b) Initial state of the 
distribution of prototype vectors on the input space (c) Final state of the distribution 
of prototype vectors on the input space (for SIM_1) 
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Figure C.2(a) The hit histograms on the U-matrix. (b) The labeled SOM.        
(labeled map unit amount = 40 for SIM_1) 

 

Figure C.3(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 57 for SIM_1) 
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Figure C.4 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the 
distribution of prototype vectors on the input space. (c) Final state of the distribution 
of prototype vectors on the input space. (for SIM_2) 
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Figure C.4(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 41 for SIM_2) 

 

Figure C.5(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 49 for SIM_2) 
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Figure C.7 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the 
distribution of prototype vectors on the input space. (c) Final state of the distribution 
of prototype vectors on the input space. (for SIM_3) 
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Figure C.6(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 43 for SIM_3) 

 

Figure C.7(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 52 for SIM_3) 
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Figure C.10 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the 
distribution of prototype vectors on the input space. (c) Final state of the distribution 
of prototype vectors on the input space. (for SIM_4) 
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Figure C.8(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 46 for SIM_4). 

 

Figure C.9(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 56 for SIM_4). 
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Figure C.13 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the 
distribution of prototype vectors on the input space. (c) Final state of the distribution 
of prototype vectors on the input space. (for SIM_6) 
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Figure C.14(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 58 for SIM_6) 

 

Figure C.15(a) The hit histograms on the U-matrix. (b) The labeled SOM.             
(labeled map unit amount = 68 for SIM_6) 
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