
 ii

ISTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

COMBINED WAVELET-NEURAL CLASIFIER FOR

POWER DISTRIBUTION SYSTEMS

M.Sc. Thesis by

Oben DAĞ, B.Sc.

Department : Electrical Engineering

Programme: Electrical Engineering

MAY 2002

 iii

ISTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

COMBINED WAVELET-NEURAL CLASIFIER FOR

POWER DISTRIBUTION SYSTEMS

M.Sc. Thesis by

Oben DAĞ, B.Sc.

(504991175)

Date of submission : 13 May 2002

Date of defence examination: 31 May 2002

 Supervisor (Chairman): Assoc. Prof. Dr. Canbolat UÇAK

Members of the Examining Committee Prof. Dr. R. Nejat TUNÇAY (İTÜ.)

 Assis. Prof. Dr. Neslihan ŞENGÖR (İTÜ.)

MAY 2002

 ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank to my family for their endless support, love
and patience without which I could not have achieved this thesis.

Then, I would like to thank my supervisor, Assoc. Prof. Dr. Canbolat UÇAK for his
continuous support and for the opportunities given in the studies of the thesis at
Electrical Engineering Department. I am so pleased to have him as a supervisor in
my masters career.

I am grateful to Prof. Dr. Nejat Tuncay for his assistance in providing the simulation
software during the thesis study.

Also I appreciate the contributions of chief engineer Mehmet Gönen and engineer
Nazım Kenc from “Bogazici Elektrik Dağıtım A.S.” for providing me the model
distribution system.

My special thanks goes to all my friends in Electrical Engineering Department,
especially research assistants engineer Hakan Özcan and Ekrem Gürsoy, M.Sc. for
their valuable contributions and critics during the thesis study.

This study is sponsored by the Graduate Thesis Support Program of Institute of
Science and Technology, ITU.

May 2002 Oben Dağ

 iii

CONTENTS

ABBREVIATIONS vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS xi

ÖZET xii

SUMMARY xiii

1. INTRODUCTION 1

1.1. Introduction and Background 1
1.2. Literature Review 6

1.3. Objective of The Thesis 10

2. ELECTROMAGNETIC TRANSIENTS SIMULATION PROGRAM 12

3. TIME-FREQUENCY ANALYSIS 15

3.1. Introduction 15

3.1.1. Historical Perspective 17

3.1.2. Fourier Transforms 18

3.1.3. Wavelet Transform Versus Fourier Transform 21

 3.1.3.1 Similarities 21

 3.1.3.2 Dissimilarities 21
3.2. Short-Time (Windowed) Fourier Transform (STFT) 25

3.3. Wavelet Analysis and Synthesis 27

3.3.1. Continuous Wavelet Transform (CWT) 28

3.3.2. Discretization of Time-Scale Parameters 31

3.3.3. Wavelet Frames 35
3.4. Multi-resolution Analysis, Discrete Wavelet Transform and Digital Filters 35

3.4.1. The Pyramid Algorithm 36

3.4.2. Sub-band Coding 38

3.4.3. The Discrete Wavelet Transform 40

3.4.4. The Multi-resolution Analysis (MRA) 44

4. ARTIFICIAL NEURAL NETWORKS 46

4.1. Introduction 46

4.1.1. The Biological Neural Network 47

4.1.2. Historical background 48

 iv

4.1.3. A Taxonomy of Artificial Neural Networks 51

4.1.4. The Benefits and Application Areas of ANNs 54

4.1.5. The Neural Network Design Process 57

4.2. Fundamentals of ANNs 57

4.2.1. The Basic Model of the Neuron 57

4.2.2. Transfer Function 59

4.2.3. Architectures of ANNs 61

4.2.4. The Learning Process 63

 4.2.4.1 Learning with a Teacher 64

 4.2.4.2 Learning without a Teacher 65

4.3. Supervised Learning 66

4.3.1. Hebbian Learning 66

4.3.2. Perceptron and Adaline 67

 4.3.2.1 Perceptron 67

 4.3.2.2 The Adaline Linear Element (Adaline) 70

4.3.3. The Back-Propagation Algorithm 72
4.4. Unsupervised Learning 75

4.4.1. Competitive Learning 76

 4.4.1.1 Clustering 76

 4.4.1.2 Vector Quantization (VQ) 80

4.4.2. Kohonen Networks 81

 4.4.2.1 Kohonen Self-organizing Feature Maps (SOFM) 81

 4.4.2.2 Learning Vector Quantization 85

5. IMPLEMENTATION OF THE PROPOSED TOOL FOR DISTRIBUTION

SYSTEM FAULT CLASSIFICATION 87

5.1. Introduction 87
5.2. Simulation of a 34.5 kV Distribution System 87
5.3. Feature Detection and Extraction 91

5.3.1. Introduction 91

5.3.2. Parseval's Theorem 96

5.3.3. Some Other Important Features 97

5.3.4. The Feature Vector 98

5.4. Adaptive Pattern Classification 101

5.4.1. Introduction 101

 5.4.1.1 Input-Output Structures 104

5.4.2. SOFM Algorithm 106

5.4.3. Fine-tuning of map by Type-1 Learning Vector Quantization (LVQ1) 118

5.4.4. Simulation Results 125

 v

6. CONCLUSIONS 136

REFERENCES 138

APPENDICES 141

BIOGRAPHY 162

 vi

ABBREVIATIONS

ANN : Artificial Neural Network
AI : Artificial Intelligence
BP : Back Propagation

SOM : Self Organizing Map
RBF : Radial Basis Function

CPN : Counter Propagation Network
FFNN : Feed Forward Neural Network
TDNN : Time Delay Neural Network

EMTP : Electromagnetic Transient Program
LVQ : Learning Vector Quantization

ART : Adaptive Resonance Theory
MSD : Multi-resolution Signal Decomposition
HVDC : High Voltage DC

AC : Alternative Current
DC : Direct Current

FT : Fourier Transform
STFT : Short Time Fourier Transform
WT : Wavelet Transform

DFT : Discrete Fourier Transform
WFT : Windowed Fourier Transform

FFT : Fast Fourier Transform
DWT : Discrete Wavelet Transform
CWT : Continuous Wavelet Transform

LP : Low Pass
HP : High Pass
PR : Perfect Reconstruction

FIR : Finite Impulse Response
MRA : Multi Resolution Analysis

VLSI : Very Large Scale Integrate
LMS : Least Mean Square
VQ : Vector Quantization

SOFM : Self Organizing Feature Map
BMU : Best Matching Unit

TRF : Transformer
FIA : Fault Inception Angle
HF : High Frequency

LF : Low Frequency
WTC : Wavelet Transform Coefficient

QE : Average Quantization Error
U-matrix : Unified Distance Matrix

 vii

LIST OF TABLES

 Page No

Table 4.1. Taxonomy according to supervised neural networks……….……. 52
Table 4.2. Taxonomy according to unsupervised neural networks……...…... 53
Table 4.3. Application areas of different ANNs... 56

Table 4.4. Application areas of different ANNs grouped by network
structure...

 56

Table 5.1. Fault classifier categories.. 106
Table 5.2. Hybrid neural network classification results................................... 133
Table B.1. Power system parameters of Figure 5.1.. 148

 viii

LIST OF FIGURES

 Page No

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

: The illustration for frequency response of stationary and non-
stationary signals.................……………...................................

: Basic functions and time-frequency resolution of the STFT….

: Basic functions and time-frequency resolution of the WT........
: Division of the frequency domain………………….........

: The windowed Fourier transform....................................….….
: A Morlet wavelet dilated by factors of a..........................….....
: Dyadic sampling grid in the time-scale plane....................……

: Resolution and scale changes in discrete time...................…....
: The Pyramid scheme………………......

: Sub-band coding scheme……………...........
: Block diagram of the DWT implemented with discrete time
filters and sub-sampling by two..........................………………

: Scaling function)(x as a linear combination of scaled and

shifted versions)2(nx ………………………………………..

: The basic structure of a neuron........…………………………...
: A nonlinear model of a neuron………………………………...

: The transfer function…………………………………………...
: A single layer feed-forward neural network…………………...

: A multiplayer feed-forward neural network…………………...
: Recurrent network with (a) no hidden, (b) hidden neurons……
: Learning with a teacher………………………………………...

: Reinforcement learning………………………………………...
: Unsupervised learning………………………………………….

: The classical perceptron………………………………………..
: The perceptron…………………………………………………
: The Adaline…………………………………………………….

: A multiplayer network with l layers of hidden units…………..
: The descent in weight space....…………………………………
: A simple competitive learning network………………………..

: Geometric illustration of clustering with normalized vectors….
: Determining the winner………………………………………..

: Neighborhood of the unit marked with black dot……………...
: Two-dimensional lattice of neurons……………………………
: One-line diagram of the reduced 34,5 kV Sağmalcılar-Maltepe

distribution system……………………………………………..
: Typical measured voltage and current patterns………………..

: Five-level MSD of a distorted signal…………………………..
: One stage MSD using convolution and decimation by factor 2.

19
22

23
24

26
29
33

36
38

40

40

43

47
58
60

61
62

63
65
65

66
68

68
71
73

75
76

77
78
82

82

88
89
93

94

 ix

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure A.1

Figure A.2

Figure A.3

Figure A.4

Figure B.1a

Figure B.1b

Figure B.1c

Figure C.1

Figure C.2

Figure C.3

Figure C.4

Figure C.5

Figure C.6

Figure C.7

Figure C.8

Figure C.9

Figure C.10

: Data processing and feature extraction architecture…………...
: The five level MSD analysis with Daubechies-10…………….
: The Adaptive Pattern classification……………………………

: A two-dimensional Kohonen layer with),(tNb
 topological

neighborhood where
21 tt ……………………………………….

: (a) The QE in the second phase of SOM algorithm. (b) Initial

state of the distribution of prototype vectors on the input space.
(c) Final state of the distribution of prototype vectors on the

input space……………………………………………………..
: U-matrix of the (10,11) SOM of the training data set…………
: (a) The hit histograms on the U-matrix. (b) The labeled SOM..

: Different learning rate functions……………………………….
: Adaptive pattern classification with combined unsupervised-

supervised learning…………………………………………….
: (a) The hit histograms on the U-matrix. (b) The labeled SOM..
: An M-fold downsampler………………………………………

: Demonstration of a downsampler for the case of M=2……….
: An L-fold upsampler…………………………………………..

: Demonstration of a upsampler for the case of L=2……………
: The reduced 34,5 kV Sagmalcılar-Maltepe substation system
model (part-1)………………………………………………….

: The reduced 34,5 kV Sagmalcılar-Maltepe substation system
model (part-2)………………………………………………….

: The reduced 34,5 kV Sagmalcılar-Maltepe substation system
model (part-3)………………………………………………….

: (a) The QE in the second phase of SOM algorithm. (b) Initial

state of the distribution of prototype vectors on the input space.
(c) Final state of the distribution of prototype vectors on the

input space (for SIM_1)……………………………………….
: (a) The hit histograms on the U-matrix. (b) The labeled SOM
(labeled map unit amount = 40 for SIM_1).…………………..

: (a) The hit histograms on the U-matrix. (b) The labeled SOM
(labeled map unit amount = 57 for SIM_1).…………………..

: (a) The QE in the second phase of SOM algorithm. (b) Initial
state of the distribution of prototype vectors on the input space.
(c) Final state of the distribution of prototype vectors on the

input space (for SIM_2)……………………………………….
: (a) The hit histograms on the U-matrix. (b) The labeled SOM

(labeled map unit amount = 41 for SIM_2).…………………..
: (a) The hit histograms on the U-matrix. (b) The labeled SOM
(labeled map unit amount = 49 for SIM_2).…………………..

: (a) The QE in the second phase of SOM algorithm. (b) Initial
state of the distribution of prototype vectors on the input space.

(c) Final state of the distribution of prototype vectors on the
input space (for SIM_3)……………………………………….

: (a) The hit histograms on the U-matrix. (b) The labeled SOM

(labeled map unit amount = 43 for SIM_3).…………………..
: (a) The hit histograms on the U-matrix. (b) The labeled SOM

(labeled map unit amount = 52 for SIM_3).…………………..
: (a) The QE in the second phase of SOM algorithm. (b) Initial

96
98
103

108

114
115

117
120

121
122

146
146

147
147

149

150

151

152

153

153

154

155

155

156

157

157

 x

Figure C.11

Figure C.12

Figure C.13

Figure C.14

Figure C.15

state of the distribution of prototype vectors on the input space.
(c) Final state of the distribution of prototype vectors on the
input space (for SIM_4)……………………………………….

: (a) The hit histograms on the U-matrix. (b) The labeled SOM
(labeled map unit amount = 46 for SIM_4).…………………..

: (a) The hit histograms on the U-matrix. (b) The labeled SOM
(labeled map unit amount = 56 for SIM_4).…………………..

: (a) The QE in the second phase of SOM algorithm. (b) Initial

state of the distribution of prototype vectors on the input space.
(c) Final state of the distribution of prototype vectors on the

input space (for SIM_6)……………………………………….
:: (a) The hit histograms on the U-matrix. (b) The labeled SOM
(labeled map unit amount = 58 for SIM_6).…………………..

: (a) The hit histograms on the U-matrix. (b) The labeled SOM
(labeled map unit amount = 68 for SIM_6).…………………..

158

159

159

160

161

161

 xi

LIST OF SYMBOLS

)(tf : A time-domain signal

)(2 RL : Lebesgue vector space for square integrable functions

)(t ,)(xhc
 : Wavelet functions

)(x ,)(xgc : Scaling functions

),(baW : CWT of the signal)(tf

),(nmDPWT : Discrete parameter Wavelet Transform coefficients

)(ng : Half-band LP filter

)(nh : Half-band HP filter

)(v : Transfer function

)(t ,)(t : Learning rate functions

kjw : Synaptic weight function

E : Error function

)(tmi : A set of variable codebook (prototype) vectors

)(tNb ,)(thbi : Neighborhood function centered on the best matching unit b

)(t : Width of the topological neighborhood function

cba VVV ,, : Phase-to-ground voltages for a,b,c phases

cba III ,, : Line currents for a,b,c phases

nDaub : Daubechies wavelet function with an n-coefficient filter

)(1 nd : Detail signal at scale 1

)(1 nc : Approximation signal at scale 1

mu : Number of codebook vectors (number of map units)

V : Vector spaces

 xii

ELEKTRİK DAĞITIM SİSTEMLERİNDE BİRLEŞİK DALGACIK-SİNİR

AĞI TABANLI SINIFLAYICI

ÖZET

Bu çalışmada, dağıtım sistemlerinde hibrid “Dalgacık-Yapay Sinir Ağı (YSA)
tabanlı” bir yaklaşımla arıza sınıflama işlemi gerçeklenmiştir. 34.5 kV “Sağmalcılar-

Maltepe” dağıtım sistemi PSCAD/EMTDC yazılımı kullanılarak arıza sınıflayıcı için
gereken veri üretilmiştir. Tezin amacı, on farklı kısa-devre sistem arızalarını

tanımlayabilecek bir sınıflayıcı tasarlamaktır. Sistemde kullanılan arıza işaretleri
5 kHZ lik örnekleme frekansı ile üretilmiştir. Farklı arıza noktaları ve farklı arıza
oluşum açılarındaki hat-akımları ve hat-toprak gerilimlerini içeren sistem arızaları ile

bir veri-tabanı oluşturulmuştur. “Çoklu-çözünürlük İşaret Ayrıştırma” tekniği
kullanılarak altı-kanal akım ve gerilim örneklerinden karakteristik bilgi çıkarılmıştır.

PSCAD/EMTDC ile üretilen veri bu şekilde bir ön işlemden geçirildikten sonra
YSA-tabanlı bir yapı ile sınıflama işlemi gerçekleştirilmiştir. Bu yapının görevi
çeşitli sistem ve arıza koşullarını kapsayan karmaşık arıza sınıflama problemini

çözebilmektir. Bu çalışmada, Kohonen‟in öğrenme algoritmasını kullanan bir
“Kendine-Organize Harita” ile “Eğitilebilen Vektör Kuantalama” teknikleri

kullanılmıştır. Bu “dalgacık-sinir ağı” tabanlı arıza sınıflayıcı ile eğitim kümesi için
% 99-100 arasında ve sınıflayıcıya daha önce hiç verilmemiş test kümesi ile de
% 85-92 arasında sınıflama oranları elde edilmiştir. Elde edilen başarım oranları

literatürdeki sonuçlara yakındır. Geliştirilen birleşik “dalgacık-sinir ağı” tabanlı
sınıflayıcı elektrik dağıtım sistemlerindeki arızaların belirlenmesinde iyi sonuçlar
vermiş ve iyi bir performans sağlamıştır.

 xiii

COMBINED WAVELET-NEURAL CLASIFIER FOR POWER

DISTRIBUTION SYSTEMS

SUMMARY

In this study an integrated design of fault classifier in a distribution system by using a
hybrid “Wavelet-Artificial Neural Network (ANN) based” approach is implemented.

Data for the fault classifier is produced by using PSCAD/EMTDC simulation
program on 34.5 kV “Sagmalcılar-Maltepe” distribution system in Istanbul. The

objective is to design a classifier capable of recognizing ten classes of three-phase
system faults. The signals are generated at an equivalent sampling rate of 5 KHz per
channel. A database of line currents and line-to-ground voltages is built up including

system faults at different fault inception angles and fault locations. The characteristic
information over six-channel of current and voltage samples is extracted by the

“Wavelet Multi-resolution Analysis” technique, which is a preprocessing unit to
obtain a small size of interpretable features from the raw data. After preprocessing
the raw data, an ANN-based tool was employed for classification task. The main idea

in this approach is solving the complex fault (three-phase short-circuit) classification
problem under various system and fault conditions. In this project, a self-organizing

map, with Kohonen‟s learning algorithm and type-one learning vector quantization
technique is implemented into the fault classification study. The performance of the
wavelet-neural fault classification scheme is found to be around “99-100%” for the

training data and around “85-92%” for the test data, which the classifier has not been
trained on. This result is comparable to the studied fault classifiers in the literature.
Combined wavelet-neural classifier showed a promising future to identify the faults

in electric distribution systems.

 1

1. INTRODUCTION

The quality of electric power has become an important issue for electric utilities and

their customers. Customers, in particular, have become less tolerant of power quality

disturbances and faults because these phenomena degrade the performance and

efficiency of customer loads.

In order to improve the quality of power, electric utilities continuously monitor

power delivered at customer sites. Disturbance waveforms are captured and recorded

continuously using power monitoring instruments.

Existing methods to analyze and identify power disturbances are delicate and

laborious since the primary methods are based on visual inspection of the

waveforms. So, power quality engineers are swamped with an enormous amount of

data to inspect [1].

It would be desirable if the data collection process could be further automated and

the monitoring device not only monitors and records the disturbances, but also

classifies them according to appropriate criteria. This would help to immediately

detect a disturbance or fault and then make the appropriate decision to eliminate the

fault. Therefore, this would minimize the customer displeasure and provide to obtain

optimum efficiency from the power system.

1.1 Introduction and Background

One of the most common techniques utilized for fault analysis is one based on the

symmetrical components theory [2]. This technique requires computation of

symmetrical components phasors, resulting in positive, negative, and zero sequence

phasors. The computation of phasors requires appropriate processing considerations.

The most important considerations in computing power system phasors are the

sampling rate, antialising filters, and data window. The sampling rate is determined

 2

by the method used for phasor computation such as Fourier transform. The

antialising filters are used to band limit the frequency spectrum of the input current

and voltage to meet the sampling theorem, which states that the sampling frequency

should be at least twice the highest frequency in the spectrum. The data window

consideration relates to the number of samples required to compute a phasor. The

most common data window is one cycle. When symmetrical component phasors are

calculated; known theory of fault analysis is applied to determine fault occurrence

and fault type.

Fault type and phase classification utilizes the negative and zero sequence

components (magnitude and phase) of the currents and voltages, to classify the fault

type and phase [3]. Under normal and symmetrical fault (three line-to-ground)

conditions, the zero and negative sequence components in the line currents are nearly

zero. The presence of only the negative sequence component in the fault current

indicates that a line-to-line fault has occurred. The presence of negative and zero

components indicates that a fault of single line-to-ground or double line-to-ground

has occurred [4].

Another approach that can be used for fault classification is to utilize samples of

currents and voltages directly without computation of phasors and related

symmetrical components. There is no need to perform extensive filtering to obtain

phasors. Instead, transient waveform data can be utilized directly to perform the

required processing. In addition, the data window does not need to satisfy particular

rules present for the phasor calculation. This approach is based on the use of artificial

neural networks [2].

An artificial neural network (ANN) is a parallel, distributed, information processing

structure consisting of processing elements, which can possess a local memory and

carry out localized information processing operations [5]. Each processing element

has a single output connection that branches into as many connections as desired

(each carrying the same signal, that the processing element produced). The

processing element output signal can be of any mathematical type desired. All of the

processing that goes on within each processing element must be completely local;

i.e., it must depend only upon the current values of the input signal arriving at the

processing element by the connections and upon values stored in the processing

 3

element‟s local memory. The key elements of most neural net descriptions are

distributed representation, the local operations, and nonlinear processing. ANNs are

primarily used in situations in which only a few decisions are required from a

massive amount of data and situations in which a complex nonlinear mapping must

be learned. Main applications of neural computing include:

 Functional approximation,

 Clustering,

 Data compression,

 Optimization,

 Topological mapping.

ANNs are useful in cases where the nature of the input-output functional relationship

is neither well defined nor easily computable. Furthermore, ANNs are able to

compute the answer quickly by using associations learned from previous experience.

When an ANN is fully trained, it is capable of mapping an unfamiliar input vector to

an arbitrary surface. In other words, an artificial neural net generalizes instead of

performing “table-lookup”. ANNs have been successfully applied to various pattern

classification problems in terms of their learning ability, high discrimination power,

and generalization ability. Classification, by definition, means to assign a physical

object or event into one of several prespecified classes based on the extraction of

significant features and the processing or analysis of these features [6]. In this

respect, ANN technique provides the ability to classify the faulted phase/phases by

identifying different patterns of the associated voltages and currents.

Recently, artificial intelligence (AI) techniques that include artificial neural networks

(ANNs), fuzzy logic, genetic algorithms, and expert systems have been used to solve

many nonlinear classification problems [7]. Since each branch has its own

advantages/disadvantages, for any complex classification task, it is essential to

compare all possible AI techniques and then choose the one appropriate for solving a

specific problem. For example, in the case of fault classification, an ANN on its own

or an ANN integrated with fuzzy logic or genetic algorithm for training purposes can

be employed; it should be mentioned that an ANN on its own requires a longer

 4

training time compared to the latter approach, but it is important to note that once

trained and provided the size of the ANN is not too large, its testing and application

is fast and hence a fault classifier based solely on an ANN can satisfy the speed

requirements on an on-line fault classification scheme. Another technique, such as

that based on combined fuzzy logic and an expert system, has been found to be

useful for fault detection in power systems but such an approach is not particularly

well suited for fault classification [8]. Also, though much promise has been shown by

expert systems technology, a fundamental limitation is the a priori formulation of

“rules” for the device or system application. In other words, an expert system

solution to a given problem presumes that some human expert can solve the problem.

This is not a serious limitation for many problems, since heuristic rules can be

derived in most cases; however, expert systems cannot be applied to problems for

which little human expertise exists, as in the case of fault classification with many

variables and nonlinear characteristics.

From the view of ANN training techniques, they can be defined as supervised,

unsupervised, and reinforced learning algorithms. For example, one of the typical

supervised learning algorithm is error back-propagation (BP), which employs a

nonlinear regression technique to achieve minimum error goal. Even though it has

been reported that BP is adequate for though pattern classification problems owing to

its high discrimination power and excellent generalization ability [6], the number of

classes to be allowable is too small to apply it directly to large-set classification

problems without preclassification. In other words, as the number of classes

increases, the computational complexity of the learning problem quickly reaches

unmanageable proportions. Furthermore, it is very difficult to determine the structure

and size of the network for the classification of large-set and complex patterns. It is

presented in [7] that for a fault classification study, when the voltage and current

waveforms are preprocessed into nonstationary waveforms, although a fault classifier

with the supervised training technique can reach the desired global minimum, the

classification rate is only about 79%. However, when a fault classifier is based on an

unsupervised (i.e., Kohonen ANN) or combined supervised and unsupervised

training technique, such as self-organizing mapping (SOM), radial-basis function

(RBF), Counter Propagation Network (CPN), the classification rate can reach a high

level of about 95%. The last ANN training technique is reinforced learning

 5

algorithm, i.e., a genetic algorithm which is used to search the weight space of a

multilayer feed-forward ANN without the use of any information. The basic concept

behind this technique is that complete sets of weights are coded into a string, which

has an associated fitness finding attribute for the optimal weight. Although the

reinforced learning performs a global search and therefore minimizes the possibility

of getting stuck in local minima, the training is very time-consuming; classification

rate is around 85% [7].

It is well known that, there is usually a high volume of recorded event data to be

processed and classified when dealing with power quality analysis. This makes it

very difficult and time-consuming to interpret the data and provide useful operations.

Then, large dimensionality of the data is one general problem that exists. Moreover,

a major concern arising from the classification of a large data set is the complexity of

the discrimination process. Due to changes in the disturbance type, duration and its

frequency components (which may overlap in time), the parameters in the

discriminant model become highly variable. This leads to a considerable

deterioration in classification performance of the classifier. To overcome this

problem, it is often necessary to decrease the number of variables and/or data to a

manageable size [9].

Wavelet analysis techniques have been applied with success in a wide variety of

research areas such as signal analysis, image processing, data compression, de-

noising and numerical solution of differential equations. The wavelet analysis

techniques have been proposed extensively in the literature as an approach for fault

detection, localization and classification of different power system transients.

When a fault occurs in a distribution system, disturbance signals like transients

would present in the voltage and current signals. These high-frequency parts of the

signals carry essential information that could be used in classifying the fault types.

By careful observation of current and voltage waveforms and frequency spectra,

some characteristics may be identified for each fault type. Wavelet transform

provides the task of extracting the information in the current and voltage waveforms.

As a means to reduce the number of inputs into the ANN, Wavelet transform may be

used to find the reduced model of the event data.

 6

1.2 Literature Review

This section provides a comprehensive literature review of studies related to fault

classification and power quality disturbance analysis with artificial intelligence

techniques such as artificial neural networks, fuzzy-logic techniques, and expert

systems.

In [10], A. K. Ghosh and D. L. Lubkeman introduced an artificial neural network

methodology for the classification of waveforms that are captured, as part of a larger

scheme to automate the data collection process of recorders. They investigated two

different neural network paradigms: feed-forward neural network (FFNN) and the

time-delay neural network (TDNN), which has the ability to encode temporal

relationships found in the input data and exhibit a translation-shift invariance

property. Also a comparison of these paradigms based on a typical distribution

circuit configuration is presented by the authors. They showed that the classification

rate of FFNN (72%) is better than TDNN (57%) under different events simulated by

EMTP program on a distribution system including different system and fault

conditions. They also used a modified TDNN architecture and obtained classification

rate up to (92%). The authors concluded that future work would involve the

implementation of the classification/data collection scheme in the real systems as a

part of data monitoring and classifying implementation.

Another work described in [11] addresses the problems encountered by conventional

techniques in fault type classification in double-circuit transmission lines, which

arise due to the mutual coupling between the two circuits under fault conditions, and

this mutual coupling is highly variable in nature. It is shown that a neural network

based on combined unsupervised/supervised training methodology provides the

ability to accurately classify the fault type by identifying different patterns of the

associated voltage and currents. The authors also compared their technique with a

supervised training algorithm (back-propagation (BP) network classifier). The

proposed system was tested under different fault types, location, resistance and

inception angle; different source capacities and load angles. The authors showed that

the technique based on hybrid SOM-LVQ network correctly identifies the faulted

 7

phases in spite of the presence of the highly variable mutual coupling effect between

the two circuits. Also they figured out that the performance of the proposed fault

classification scheme is better than the BP network with supervised learning. They

declared that the BP network needs much larger number of training sets and the

training phase of BP is very slow and time consuming. Moreover, retraining the BP

network with new data associated with contingencies may not converge to the

desired value. When the learning gets stuck on local minima, the requisite

performance can never reached. They also included that the number of neurons in the

Kohonen map is very much dependent on the number of training sets. But, in

practice, this problem is mitigated by the fact that there is a requirement for a much

more smaller number of data sets as compared to the BP networks to cover all types

of practically encountered different fault conditions.

The study of F. N. Chowdhury and J. L. Arevena presents a modular and integrated

approach to the problem of fast fault detection and classification [12]. They

emphasized that although the specific application example studied is a power system,

their method would be applicable to dynamic systems as well. They proposed a

model-free case that use the concepts from signal processing and wavelet theory to

create fast and sensitive fault indicators. The method to create indicators utilizes

multirate filter banks based on wavelet decomposition of a given data. Then, they

used the indicators to be analyzed by artificial neural networks to create intelligent

decision rules. After a detection, the fault indicator is processed by a Kohonen

network to classify the fault. They included that results of computer experiments

with simulated faulty transmission lines are satisfactory. They concluded that their

integrated and modular approach can eventually be developed into a widely

applicable tool in detection and classification of faults in dynamic systems.

The study in [13] explores the possibility of using neural networks to identify faults

that may have occurred in an ac-dc power system. This study showed that based on

the ability of neural networks to distinguish reliably between different types of faults,

appropriate control measures can be taken to improve the dynamic performance of

the ac-dc power system. The authors emphasized that in their study the CPN based

on Kohonen layer was used for its simplicity, easy training features and good

statistical model representation of the input environment. They concluded that the

artificial neural networks could be used to distinguish typical faults (single line-to-

 8

ground, double line-to-ground, three phases-to-ground, line-to-line faults; dc line

fault) that can occur in an ac-dc power system. Also they figured out that once the

work on fault identification has been completed, it is intended to use the resulting

information to adapt the dc controller parameters to optimize the dynamic behavior

of the ac-dc power system.

A study on an artificial neural network to classify power system disturbances

according to power system response characteristics is presented by K.L. Frick and

S.K. Starrett in [14]. They used Prony analysis to represent the original time series

data as a sum of exponential terms defined by frequency, phase, amplitude, and

damping coefficients. These variables are presented as an input to the competitive

layer architecture with Kohonen learning rule. They found that there is a correlation

between the classifications found by the competitive layer neural network and the

geographic location of the disturbance. They also figured out that the system

conditions also play a significant role in the disturbance characteristics.

Fuzzy logic and expert systems have also found applications in power systems for

fault classification. In the following paragraphs the studies related to fuzzy-logic, and

expert systems for fault classification will be mentioned.

In [15] the authors presented a new approach to real-time fault detection and

classification in power transmission systems using fuzzy-neuro techniques. They

pointed out that the integration with neural network technology enhances fuzzy logic

systems on learning capabilities. In this study the symmetrical components in

combination with three line currents are utilized to detect fault types such as single

line-to-ground, line-to-line, double line-to-ground and three line-to-ground. The

authors proved that the proposed approach gives a fast, accurate and robust

classification for various system conditions. They concluded that the fuzzy-neuro

model with further refinement could be implemented in an actual power system to

monitor occurrence of faults and take necessary action.

In [7], the problems of fault diagnosis in complex parallel transmission systems is

addressed. In this study, a fuzzy ARTmap (adaptive Resonance Theory) neural

network is employed and is found to be well suited for solving the fault classification

problem under various system conditions. They proved that the artificial neural

 9

network based on the supervised adaptive resonance theory can identify the faulted

phase with a high degree of accuracy. The classification technique is compared with

a Neural Network technique based on the error back-propagation training algorithm,

and found that the fuzzy ARTmap technique is better suited for solving the fault

diagnosis problem, the classification rate is higher and also the training times

required are shorter for the same training sets. They concluded that this proposed

fault diagnosis technique based on fuzzy ARTmap network is well suited for the

complex transmission systems than other more conventional ANN-based techniques.

In [16], a system for the identification of power quality violations is proposed. A

two-stage system that employs the potentials of the wavelet transform and the

adaptive neurofuzzy networks is presented in the study. For the first stage, the

authors used the wavelet multiresolution signal decomposition technique to denoise

and then decompose the monitored signals of the power quality events to extract their

detailed information. This stage provides a set of reduced data set for the training

data. A modified organization map of the neurofuzzy classifier is trained with the

extracted features to recognize ten event categories. The authors concluded that the

proposed scheme can be extended to accommodate hybrid disturbed signals which

can assist as a step towards building an intelligent recorder capable of the detection

and identification of power quality violation events automatically.

A hybrid scheme using a Fourier Linear Combiner and a fuzzy expert system for the

classification of transient disturbance waveforms in a power system is presented in

[17] by P.K. Dash, S. Mishra, M. M. A. Salama, and a. C. Liew. In this study the

captured voltage and current waveforms are passed through a Fourier Linear

Combiner block to provide normalized peak amplitude and phase at every sampling

instant. These features are than passed on to a diagnostic module that computes the

truth value of the signal combination and determines the class to which the waveform

belongs. The authors depicted that the fuzzy expert system yields a robust and

accurate classification scheme for a variety of simulated waveforms containing

harmonic distortions and noise. They concluded that the approach is found to be

computationally simpler than the ANN and Wavelet approaches which are currently

used for transient disturbance classification.

 10

In the following paragraphs the signal processing studies related to Wavelet

transform and Multiresolution signal decomposition techniques for fault detection

and classification will be given.

In [18], the use of the Wavelet transform and Multiresolution signal decomposition

as an analysis tool to detect and localize transient events and classify different power

quality disturbances is presented. The authors emphasized that the property of

Multiresolution signal decomposition (MSD) shows the ability to extract important

information from the analyzed distorted signal and furthermore separate power

quality problems that overlap in both time and frequency. They used std_MSD curve

technique, which is the standard deviation of the MSD coefficients, to construct a

time-frequency picture of the distorted signal. This technique presents a classification

role for the operator to detect, localize, and classify different power quality problems.

They concluded that using std_MSD it is possible to distinguish among similar

power quality problems. Also it can help in finding the source of disturbance.

An algorithm for detecting and classifying fault transients in underground cable

systems based on the use of discrete wavelet transform is presented in [19] by W.

Zhao, Y.H. Song, and Y. Min. The authors developed an algorithm for fault detection

and classification based on discrete wavelet analysis on power cables. The authors

emphasized that the property of multiresolution in time and frequency provided by

wavelets allows an accurate time location of fault transients while simultaneously

retaining information about the fundamental frequency and its high-order harmonics,

which is efficient to extract characteristics of different types of fault in underground

cable systems. They concluded that it is necessary to fully evaluate the proposed

technique as part of protection relays or fault locators under a wide range of system

and fault conditions.

1.3 Objective of The Thesis

In this thesis, it is intended to provide a contribution to the fault classification studies

in the literature to further improve the classification performance and to present a

new approach to the previous studies. The objective is to design a classifier capable

of recognizing ten classes of three-phase system faults.

 11

The thesis is organized as follows. An introduction to the PSCAD/EMTDC software,

which is used for generating the data from the 34.5 kV distribution system, is

presented in Chapter II. Chapter III presents the theoretical aspects of the wavelet

transform and multi-resolution signal decomposition. Also a comparison between the

wavelet transform, Fourier transform and short-time Fourier transform are presented

in this section. Chapter IV illustrates the theoretical aspects of the artificial neural

networks. The theoretical background is provided in the thesis to help the reader with

the background of the techniques and also they are referred by other chapters to

clarify some points. The application of the proposed technique on a distribution

system is presented and the results are demonstrated in Chapter V. Finally, the

conclusion is presented in Chapter VI.

 12

2. ELECTROMAGNETIC TRANSIENTS SIMULATION PROGRAM

EMTDC is a transients simulator of electric networks with the capability of modeling

complex power electronics, controls and the non-linear network. It has been evolving

since the mid 1970‟s. The acronym stands for “Electro-Magnetic Transients in DC

systems” since the program was originally developed for studying high-voltage DC

(HVDC) system.

The origin of EMTDC is based on the study of Dr. Hermann Dommel‟s paper

published in the IEEE Transactions of Power Apparatus and Systems in April 1969

[20].

The Manitoba HVDC Research Center created PSCAD/EMTDC in the early 1990s

for use on Unix workstations. PSCAD is the graphical user interface. With the

emergence of Windows OS for personal computers and its expanding capabilities,

the Manitoba HVDC research Center developed a new version of PSCAD known as

PSCAD/EMTDC Version 3, which is a versatile tool to study AC as well as DC

power system problems.

One of the methods of understanding the behaviour of a complex system is to study

its response for disturbances or parametric variations. Simulation is one way of

producing these responses. In power systems; these responses can be studied by

observing either the time domain instantaneous values, time domain “rms” values, or

the frequency components of the response.

PSCAD/EMTDC is a simulation tool for analyzing power systems. PSCAD is the

graphical user interface and EMTDC is the simulation engine. PSCAD/EMTDC is

most suitable for simulating the time domain instantaneous responses, known as

electromagnetic transients of electrical systems. The PSCAD Graphical Interface

enhances the power of EMTDC. It allows to schematically construct a circuit, run a

simulation, analyze the results, and manage the data in a graphical environment.

 13

Simulation is one method of analysis which can be used to examine a complicated or

non-linear model or process. The operation of that model can be tested by subjecting

it to disturbances and parameter variations and the stability of its response can be

observed. In electric power systems, some of the components which EMTDC can

model are [20]:

 Resistor, inductor and capacitor circuit elements.

 Mutually coupled windings such as transformers.

 Distributed frequency dependent transmission lines and cables.

 Sources, both Thevenin (voltage) and Norton (current).

 Switches, breakers, thyristors, diodes.

 Analogue and digital control functions.

 AC machines.

 Meters and measuring functions.

 Generic DC and AC controls.

 HVDC, and Static Var Compensator.

EMTDC is generally used in planning, operation, design, teaching and advanced

research by engineers, manufactures, consultants, research and academic institutions.

Examples of typical studies which have been investigated using EMTDC are as

follows [20]:

 Studies of AC networks consisting of rotating machines, exciters, governors,

turbines, transformers, transmission lines, cables, loads.

 Relay coordination.

 Transformer saturation effects.

 Insulation coordination of transformers, breakers and arrestors.

 14

 Impulse testing of transformers.

 Sub-synchorous resonance (SSR) studies of networks with machines,

transmission lines and HVDC systems.

 Filter design and harmonic analysis

 Control system design and coordination of HVDC; including STATCOM and

VSC.

 Studies to determine the worst case over voltage due to lightining strikes,

faults or breaker operations.

 Investigate the pulsing effects of diesel engines and wind turbines on electric

networks.

 15

3. TIME-FREQUENCY ANALYSIS

3.1 Introduction

The aim of signal analysis is to extract relevant information from a signal)(tf by

transforming it from one domain to another. The transformation of a function is a

mathematical operation that results in a different representation of it. One example is

Fourier Transform (FT) that gives superposition of functions by the building blocks

or basis functions: sines and cosines. As an illustration to Fourier Transform, a prism

acts as a transformer by decomposing sunlight into its visual spectrum of different

colors (frequencies). So a transform reveals the composition of a signal in terms of

the building blocks, or basis functions (of the transformed domain) that are not

readily available from the original signal [21].

Fourier series are ideal for analyzing periodic signals, since the harmonic modes used

in the expansions are themselves periodic. By contrast, the Fourier analysis is a far

less natural tool because it uses periodic functions to expand non-periodic functions.

Two possible substitutes are the windowed Fourier Transform and the Wavelet

Transform [22].

While classical Fourier analysis manages to deal with periodic and stationary signals,

it is inadequate to analyze non-stationary signals, signals with discontinuities and

transients. The limitations of Fourier analysis are that they require all time functions

involved to be periodic, and the Fourier analysis does not consider frequencies that

evolve in time.

The analysis of non-stationary signals often involves a compromise between how

well transitions or discontinuities can be located, and how finely long-term behavior

can be identified. A typical example is the choice of window length in the Short

Time (windowed) Fourier Transform (STFT). In STFT, the signal is divided into

 16

small enough segments, where these segments (portions) of the signal can be

assumed to be stationary. For this purpose, a window function is chosen [23].

Another concept in non-stationary signal analysis is the Wavelet Analysis. In

contrast to a Fourier sinusoidal signal, which oscillates forever, a wavelet is localized

in time and it lasts for only a few cycles. The wavelet transform (WT), like the

STFT, provides an understandable transient signal representation corresponding to a

time-frequency plane. This plane gives time and frequency related information of

analyzed signal. WT is more efficient than Fourier analysis when a signal is

dominated by transient behavior and discontinuities. Wavelet algorithm process data

at different scales or resolutions such that a rough approximation of the signal might

look stationary, while at a detailed level, for instance with small window,

discontinuities may become apparent. Moreover, unlike STFT, which uses a single

analysis window, the WT uses short windows at high frequencies and long windows

at low frequencies. Thus the windowing of wavelet transform is adjusted

automatically for low or high frequencies. The result in wavelet analysis is to see

both the forest and the trees [24].

The basic concept in wavelet analysis is to select an appropriate wavelet prototype

(or kernel) function, called an analyzing wavelet or mother wavelet, and then

perform an analysis using shifted and scaled versions of the mother wavelet. Time

(or space) analysis is performed with a contracted (high frequency) version of the

prototype wavelet, while frequency analysis is performed with the dilated (low

frequency) version of the same mother wavelet.

Since the original signal or function can be represented in terms of a wavelet

expansion, the operations can be performed using just the corresponding wavelet

coefficients.

Wavelet transforms have been proven to be very efficient in signal analysis. This

efficiency comes from the reduction in the number of coefficients as the scaling

factor increases. The wavelet expansion separates signal components that overlap in

both time and frequency. Wavelets can be designed to fit different applications. The

calculation of the discrete wavelet transform is well matched to digital computer

[23].

 17

3.1.1 Historical Perspective

The French mathematician Joseph Fourier asserted in 1807 that any 2-periodic

function)(tf can be expressed as an infinite sum of periodic complex exponential

functions [25]. He showed that)(tf is the sum

1

0)sincos(
k

kk ktbktaatf (3. 1)

of its Fourier series, where the coefficients
0a ,

ka , and
kb are calculated by

2

0

0)(
2

1
dttfa (3. 2a)

dtkttfak)cos()(
1

2

0

 (3. 2b)

dtkttfbk)sin()(
1

2

0

 (3. 2c)

Fourier‟s assertion played an essential role in the evolution of the functions in

mathematics. After 1807, by exploring the meaning of functions, Fourier series

convergence, and orthogonal systems, mathematicians gradually were led from their

previous notion of frequency analysis to the notion of scale analysis. This provides

analyzing)(tf by creating mathematical structures that vary in scale. The procedure,

briefly, is as follows: first construct a function and shift it by some amount then

change its scale. Apply that structure in approximating a signal. Repeat the

procedure. Take that basic structure, shift it, and scale it again. Apply it to the same

signal to get a new approximation, and so on [25].

The first mention of wavelets appeared in an appendix to the thesis of A. Haar in

1909. One property of the Haar wavelet is that it has compact support, which means

that it vanishes outside of a finite interval. Unfortunately, Haar wavelets are not

continuously differentiable, which limits their applications [25].

 18

In the 1930s, several groups working independently researched the representation of

functions using scale-varying basis functions. Paul Levy, a physicist, investigated

Brownian motion, a type of random signal by using a scale-varying basis function

called the Haar basis function in 1930. He found that the Haar basis function is

superior to Fourier basis functions for studying small-complicated details in the

Brownian motion [25].

The beginning of the wavelet transform as a specialized field can be traced to the

work of Grossman and Morlet in 1984. Their motivation in studying wavelet

transforms was provided by the fact that certain seismic signals can be modeled

suitably by combining translations and dilations of a simple, oscillatory function of

finite duration called a wavelet [26].

In 1985, Stephane Mallat gave wavelets an additional jump-start through his work in

digital signal processing. Mallat discovered some relationships between quadrature

mirror filters, pyramidal algorithms, and orthonormal wavelet bases [25].

In 1993, Y. Meyer constructed the first wavelets. Unlike Haar wavelets, Meyer

wavelets are continuously differentiable; however, they do not have compact support

[25].

In 1996, Ingrid Daubechies used Mallat‟s work to construct a set of wavelet

orthonormal basis functions that have become the cornerstone of wavelet

applications today [25].

In the next section, the fundamentals of Fourier Transform and its variances will be

given. Besides that, the similarities and dissimilarities between Fourier Transform

and Wavelet Transform will also be described.

3.1.2 Fourier Transforms

The Fourier Transform‟s utility lies in its ability to analyze a signal in the time

domain for its frequency content. The transform works by first translating a function

in the time domain into a function in the frequency domain. The signal can then be

analyzed for its frequency content because the Fourier coefficients of the transformed

function represents the contribution of each sine and cosine function at each

 19

frequency. The reconstruction of the signal can be done with Fourier coefficients by

inverse Fourier transform that gives a mapping from the frequency domain to the

time domain.

The Discrete Fourier Transform (DFT) estimates the Fourier Transform of a function

from a finite number of its sampled points. The DFT has symmetry properties almost

exactly the same as the Continuous Fourier Transform [25].

The classical Fourier Transform is a standard tool for stationary and periodic signals

[24]. However, in the case of non-periodic signal, the summation of the periodic

functions (sine and cosine) does not accurately represent the signal. And in the case

of non-stationary signal, the classical FT does not give a good performance to adapt

any abrupt change in the signal.

0 10 20 30 40 50 60 70 80 90 100 -2

-1.5

-1

-0.5

0

0.5

1

1.5

2

M
a
g
n

0 10 20 30 40 50 60 70 80 90 100 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
a
g
n

 (a) (b)

0 5 10 15 20 25 30 35 40 45 50 0

10

20

30

40

50

60

M
a
g
 o

f
F

o
u
ri
e
r

T
ra

n
s
fo

rm

0 5 10 15 20 25 30 35 40 45 50 0

5

10

15

20

25

30

M
a
g
 o

f
F

o
u
ri
e
r

T
ra

n
s
fo

rm

 (c) (d)

Figure 3.1 The illustration of frequency response for stationary and nonstationary
signals (a) Stationary signal)(tf , (b) Non-stationary signal)(tg (c) FT of)(tf , (d)
FT of)(tg

Figure 3.1 illustrates the case of non-stationary signal problem in classical Fourier

Transform. Figure 3.1a represents a stationary signal,)(tf with two frequency

components of 5 and 20 Hz., all-occurring at all times. And Figure 3.1c is the FT of

 20

)(tf ; that the two peaks in the figure correspond to two different frequencies.

Another signal)(tg with the same frequency components, 5 and 20 Hz. respectively,

occurring at different times is given in Figure 3.1b, and Figure 3.1d represents its FT.

It is clear that the FT of)(tf is almost the same with the FT of)(tg . (The ripples in

both of the Figure 3.1c and Figure 3.1d show that, those frequencies also exist in the

signal; but the reason they have small amplitude is because, they are not major

spectral components of the given signal.) To summarize, FT cannot distinguish the

two signals very well. According to FT both of the signals are the same since they

contain the same frequency components. Therefore, FT is not suitable for analyzing

non-stationary signals.

The Windowed Fourier Transform (WFT) is a solution to the problem of better

representing the non-periodic and non-stationary signals. WFT has the ability to give

information about signals simultaneously in time and frequency domains. With WFT

the input signal is segmented into sections, and each segment is analyzed for its

frequency content separately. The idea is to introduce a local frequency parameter

(local in time) so that the local FT looks at the signal through a window over which

the signal is approximately stationary. So the effect of the window is to localize the

signal in time [24].

To approximate a function by samples, and to approximate the Fourier integral by

the discrete Fourier transform, requires applying a matrix whose order is the number

of sample points (n). Since multiplying an (nn) matrix by a vector costs on the

order of (2n) arithmetic operations, the problem gets quickly worse as the number of

sample points increase. If the samples are uniformly spaced, then the Fourier matrix

can be factored into a product of just a few sparse matrices, and the resulting factors

can be applied to a vector in total of order (nn log) arithmetic operations. This is the

so-called Fast Fourier Transform [23].

 21

3.1.3 Wavelet Transform Versus Fourier transform

3.1.3.1 Similarities

The mathematical properties of the matrices involved in the FFT and Discrete

Wavelet Transform (DWT) are similar. The inverse transform matrix for both the

FFT and the DWT is the transpose of the original. So, both of the transforms can be

viewed as a rotation in function space to a different domain. For the FFT, this

domain contains basis functions that are sines and cosines. For the wavelet

transform, this domain contains more complicated functions called wavelets, mother

wavelets, or analyzing wavelets.

Besides that, the basis functions for both of the FFT and DWT are localized in

frequency, which makes mathematical tools such as power spectra and scalograms

useful for picking out frequencies and calculating power distributions.

3.1.3.2 Dissimilarities

A limitation of STFT is the fact that only one single window is used for all

frequencies. So, once a window is chosen for STFT, then the time-frequency

resolution is fixed over the entire time-frequency plane because the same window is

used for all frequencies. This is shown in Figure 3.2b, while Figure 3.2a shows the

basis functions of the STFT. For instance, if the signal is composed of small bursts

associated with long quasi-stationary components, then each type of component can

be analyzed with good time resolution or frequency resolution, but not both.

Another important case related to STFT is the Uncertainty Principle, which prevents

the possibility of having arbitrarily high resolution in both time and frequency. It

lower bounds the time-bandwidth product of possible basis functions by

)4/1(T (3. 3)

where T and are the resolution in time and frequency of the STFT analysis

[26]. Equation 3.3 is referred to as the uncertainty principle, or Heisenberg inequality

(see Appendix 6). It means that one can only trade time resolution for frequency

resolution, or vice versa in STFT.

 22

 (a)

 (b)

Figure 3.2 Basis functions and time-frequency resolution of the STFT. (a) Basis
functions, (b) Coverage of time-frequency plane [24]

 However by varying the window used, it is possible to trade resolution in time for

resolution in frequency [23]. In order to isolate discontinuities in signals one would

like to have some basis functions which are very short, while some long ones are

required to obtain fine frequency analysis. One possibility for this task is having

short high frequency basis functions, and long low frequency basis functions. This is

exactly what is achieved with the WT, where the basis functions are obtained from a

single kernel (prototype) wavelet by translation and dilation [23].

The time-frequency resolution of the WT involves a different tradeoff to the one used

by the STFT; at high frequencies the WT is sharper in time, while at low frequencies,

the WT is sharper in frequencies. The basis functions and time-frequency resolution

of the WT is given in Figure 3.3. The middle functions in Figure 3.2a and Figure

3.3a are identical, and hence the time-frequency resolutions of the two methods are

the same at that frequency.

 B C

 B

 A

 C

 Time

A

B

A

C

B C

 Time

Frequency

 23

 (a)

 (b)

Figure 3.3 Basis functions and time-frequency resolution of the WT. (a) Basis
functions, (b) Coverage of time-frequency plane [24]

As described above to overcome the resolution limitation of the STFT, the resolution

T and chosen to vary in the time-frequency plane. When the analysis is viewed

as a filter bank, the time resolution must increase with the central frequency of the

analysis filters. So this makes proportional with , as c , where c is a

constant. The analysis filter bank is then composed of band-pass filters with constant

relative bandwidth (known as Constant-Q analysis). So instead of the frequency

responses of the analysis filter to be regularly spaced over the frequency axis (this is

the case of STFT shown in Figure 3.4a), they are regularly spread in a logarithmic

scale as shown in Figure 3.4b [26].

The Heisenberg inequality in Equation 3.3 will still be satisfied for the WT, but now,

the time resolution becomes arbitrarily good at high frequencies, while the frequency

resolution becomes arbitrarily good at low frequencies. One example of this is the

case of two very close bursts that can always be eventually separated in the analysis

by going up to higher analysis frequencies in order to increase time resolution. This

 Time

 Time

A
 B

C

A

C

Frequency

 B

B

B A

A

C

C

 24

kind of analysis works best if the signal is composed of high frequency components

of short duration plus low frequency components of long duration, which is often the

case with signals encountered in practice [24].

 (a)

 (b)

Figure 3.4 Division of the frequency domain, (a) for the STFT (uniform coverage),
and (b) for the WT (logarithmic coverage) [24]

Another important point is about the size of the cells in time-frequency planes in

Figure 3.2b and Figure 3.3b. In STFT the time and frequency resolutions are

determined by the width of the analysis window, which is selected once for the entire

analysis, i.e., both time and frequency resolutions are constant. Therefore the time-

frequency plane consists of squares in the STFT case.

Regardless of the dimensions of the cells, the areas of all cells, both in STFT and

WT, are the same and determined by Heisenberg's inequality. The area of a cell is

fixed for each window function (STFT) or mother wavelet (WT), whereas different

windows or mother wavelets can result in different areas. However, Equation 3.3

implies that all areas are lower bounded by)41(. That is, the areas of the cells

cannot be reduced arbitrary due to the Heisenberg's uncertainty principle. On the

other hand, for a given mother wavelet the dimensions of the cells can be changed,

while keeping the area the same. This is exactly what wavelet transform does.

 ı ı ı ı ı ı ı ı ı

 Ω 2Ω 3Ω 4Ω 5Ω 6Ω 7Ω 8Ω 9Ω

Constant bandwidth (STFT Case)

 0 0 0 0 0 0 0 0 0 frequency, Ω

Constant relative bandwidth (WT Case)

 ı ı ı ı

 Ω 2Ω 4Ω 8Ω frequency, Ω

frequency, Ω

 25

As the main idea of time-frequency analysis is described, in the next sections of part

three the mathematical formulations for both FT and Wavelet analysis will be given.

First the STFT and its features in mathematical point of view, afterwards the Wavelet

analysis and synthesis with respect to CWT, and discrete-time WT will be defined.

And finally the Multi-resolution Analysis, DWT, and digital filters with respect to

pyramid scheme, sub-band coding and DWT in octave band filters will be described.

3.2 Short-Time (Windowed) Fourier Transform (STFT)

Given a signal)(tf , the standard Fourier Transform (FT) is [27],

 dtetfFf tj

)(
2

1
)((3. 4)

for every Rt where R is the set of real numbers.)(Ff gives a representation of

the frequency content of)(tf , but information related to time-localization of, e.g.,

high frequency bursts cannot be seen from)(Ff . Time localization can be

provided by first windowing the signal)(tf to obtain a well-localized slice of)(tf ,

and then taking its FT as,

 dsetsgsftfF sjwin

)()(),((3. 5a)

that gives the windowed Fourier transform of)(tf .

The reconstruction formula is [27],

 dtdetsgtfFsf sjwin

)(),(
2

1
)(

 (3. 5b)

In order for the STFT to make sense, as well as for the reconstruction formula to be

valid, it is necessary that g(s) is a square integrable function [22], i.e.)(2 RLg (see

Appendix 3 for vector spaces):

 26

1)()(
22

dssgsg (3. 6)

If t and are assigned regularly spaced values as
0ntt and

0 m , where

 nm, range over the set of integers, ℤ, and 000 t are fixed, then the discrete

version of Equation 3.5a becomes

dsetnsgsffF
sjmwwin

nm

 0)()()(0,

 (3. 7)

Figure 3.5 shows the schematic representation of this procedure: for fixed n,

)(, fF win

nm corresponds to the Fourier coefficients of)()(0tnsgsf in Equation 3.7.

If the window function g is compactly supported, then with appropriately chosen 0 ,

the Fourier coefficients are sufficient to characterize and to reconstruct

)()(0tnsgsf . Changing n amounts to shifting the slices by steps of 0t and its

multiples, allow the recovery of all of the f from)(, fF win

nm .

In the Figure 3.5 the function)(tf is multiplied with the window function)(tg , and

the Fourier coefficients of the product)(tf)(tg are computed; this procedure is then

repeated for translated versions of the window, ()(0ttg ,)2(0ttg ,).

Consequently, the WFT localizes a signal simultaneously in time and frequency by

looking at it through a window that is translated in time, and then translated in

frequency (i.e., modulated in time).

Figure 3.5 The Windowed Fourier Transform [27]

 27

The FT tells whether a certain frequency component exists or not. This information

is independent of where in time this component appears. FT gives perfect frequency

resolution, but no time information. FT is not suitable if the signal has time varying

frequency, i.e., the signal is non-stationary, as described in Section 3.1.2.

If the spectrum of a signal is time dependent, it is then necessary to use sufficiently

short segments of it to compute the spectrum. In STFT, the signal is divided into

small enough segments (windowing), where these segments of the signal can be

assumed to be stationary. For this purpose, a window function)(tg is chosen. The

windowing procedure is represented in Figure 3.5.

The problem with the STFT is width of the window function that is used. (The width

of the window function is known as the support of the window. If the window

function is narrow, than it is known as compactly supported [27].) Choosing the

window function is a hard task in STFT. Narrow windows give good time resolution,

but poor frequency resolution. Wide windows give good frequency resolution, but

poor time resolution; furthermore, wide windows may violate the condition of

stationarity. The problem is a result of choosing a window function, once and for all,

and using that window in the entire analysis [21].

3.3 Wavelet Analysis and Synthesis

If a real or complex value function)(t satisfies the following two properties, then

it is a mother wavelet or wavelet function [27]:

i. The function integrates to zero:

0)(

dtt (3. 8)

ii. It‟s square integrable,)()(2 RLt , or has finite energy:

dtt
2

)((3. 9)

 28

Property 2 implies that most of the energy in)(t is restricted to a finite duration.

Property 1 is suggestive of a function that is oscillatory or that has a wavy

appearance. Property 1 is the admissibility condition and forces the Wavelet function

to have a band-pass nature. So the transform will be able to zoom in the singularities

of the signal to be analyzed.

3.3.1 Continuous Wavelet Transform (CWT)

Let)(tf be a square integrable function, denoted as)()(2 RLtf . The CWT or

continuous-time wavelet transform of)(tf with respect to a wavelet)(t is [26],

dt
a

bt

a
tfbaW

1

)(),((3. 10)

where a and b are real and defines complex conjugate. Therefore, the wavelet

transform is a function of two variables. Both)(tf and)(t belong to)(2 RL , the

set of square integrable functions, also called the set of energy signals (by Cauchy in

1997).

In Equation 3.10 the basis (or mother) function)(t is defined as

a

bt

a
tba

1
)(, (3. 11)

Then, combining Equations 3.10 and 3.11 yields

 dtttfbaW ba

 ,)(),((3. 12)

In Equation 3.11 when a=1 and b=0,)()(0,1 tt .

The normalizing factor of a1 ensures that the energy stays the same for all a and

b; that is,

 29

dttdttba

22

,)()((3. 13)

for all a and b. For any given value of a, the function)(, tba is a shift of)(0, ta by

an amount b, along the time axis. So, the variable b represents time shift or

translation.)(0, ta , that is a time-scaled and amplitude-scaled version of)(t is

denoted as

a

t

a
ta

1
)(0. (3. 14)

Due to determining the amount of time scaling or dilation, the variable a is referred

to as the scale or dilation variable. As an illustration, two dilations of the Morlet

(modulated Gaussian) wavelet are shown in Figure 3.6.

A Morlet wavelet is constructed by modulating a sinusoidal function by a Gaussian

function [27]. A Morlet wavelet has infinite duration and it is a member of wavelets

that are not supported compactly. However, most of the energy in Morlet wavelet is

limited to a finite interval. The real value of Morlet wavelet is [26]

 tet t

2ln

2
cos)(

2

 (3. 15)

 (a) (b)

Figure 3.6 A Morlet wavelet dilated by factors of (a) a = 1/2 and (b) a = 3 [R1]

 30

Figure 3.6a shows the illustration of the real value of Morlet wavelet. More than 99%

of the total energy of the function is confined to an interval 5.2t sec.

If a>1, there is a stretching of)(t along the time axis, while if 0<a<1, there is a

contraction of)(t . Since CWT is generated using dilates and translates of the

single function;)(t , the wavelet for the transform, is referred to as the mother

wavelet.

The effect of dilation on time and frequency resolution is examined above. The CWT

also involves translation of the wavelet. The translation parameter b affects the

location of the wavelet, whereas the duration or bandwidth is affected by the dilation

“a” [26]. If the)(t is such that the Equation 3.10 is invertible, then

 dadb
a

tbaW
C

tf ba

a b

2,

1
)(),(

1

 (3. 16)

is the inverse CWT that gives a mapping from the set of W(a,b) back to)(2 RL .

C is a constant that depends on)(t . The constant has value

d
w

C

2
)(

 (3. 17)

and is such that 0< C < which in turn imposes an admissibility condition on)(t .

For C <,)(t must be such that

)(w , for any (3. 18)

and 0)0(, implying that

0)(dtt (3. 19)

means)(t cannot have nonzero „dc‟ (average).

 31

The admissibility condition stated here is a sufficient condition that leads to the

expression in Equation 3.16. It is not a necessary condition to obtain a mapping from

the set of W(a,b) back to)(2 RL [26].

Another important point about the CWT is that, W(a,b) can be thought of as the inner

product of the signal with the basis functions (see Appendix 2 for information on

inner product of a function). Therefore, the definition of the W(a,b) in Equation 3.10,

shows that the wavelet analysis is a measure of similarity between the basis functions

(wavelets) and the signal. (Here the similarity is in the sense of similar frequency

content.) The calculated CWT coefficients refer to the closeness of the signal to the

wavelet at the current scale.

This case points on the correlation of the signal with the wavelet at a certain scale. If

the signal has a major component of the frequency corresponding to the current

scale, then the wavelet (the basis function) at the current scale will be similar or close

to the signal at the particular location where this frequency component occurs.

Therefore, the CWT coefficient computed at this point in the time-scale plane will be

a relatively large number.

3.3.2 Discretization of Time-Scale Parameters

Both the STFT and WT are highly redundant when the frequency-time parameters

(,T) and scale-translation parameters (a,b) are continuous. In Equation (3.10), both

(a,b) are continuous variables and there is a redundancy in the CWT representation

of)(tf . There is certainly no need to compute W(a,b) for all possible (a,b).

Additionally, it is of practice necessity that (a,b) take on only a finite number of

values. The idea is, if the sampling of (a,b) is sufficiently dense then)(tf can be

recovered from W(a,b) with (a,b) discrete, since there is already a parallelism in the

perfect recovery of a signal from its samples taken at or above the Nyquist rate. The

transforms are usually evaluated on a discrete grid on the time-frequency and time-

scale plane, respectively, corresponding to a discrete set of continuous basis

functions. There are various ways of discretizing time-scale parameters (a,b). Since

two scales 10 aa roughly correspond to two frequencies 10 ff , the wavelet

coefficients at scale 1a can be sub-sampled at
thff)/(10 rate of the coefficients at

 32

scale
0a , according to Nyquist‟s rule. Therefore the time-scale parameters chosen to

discretized on the sampling grid drawn in Figure 3. 7. Depending on the type of

)(t and the sampling grid of (a,b), sometimes duals (see Appendix 5 for

information) are required for perfect reconstruction [21].

A special case occurs when (a,b) are samples of a dyadic grid, when certain)(t

produce orthonormal basis functions aabt /)/)((, with (a,b) discrete.

Therefore,)(tf can be exactly synthesized as a weighted sum of these orthonormal

basis functions [21].

When (a,b) is discrete and given by

maa 0 , manbb 00 m, n integer, (3. 20)

the discrete parameter wavelet transform (wavelet coefficients) is

dtttfnmDPWT mn)()(),((3. 21)

where

)()(00
2

0 nbtaat m

m

mn

 (3. 22)

and 0a and 0b are constants that determine the sampling intervals. The translation

step b depends on the dilation step a, since long wavelets are advanced by large

steps, and short wavelets are advanced by small steps. Both)(tf and)(t are

continuous functions of time [21].

For the sake of computational efficiency the constants 0a and 0b are taken as 0a =2

and 0b =1 (ma 2 , mnb 2) so that

)2(2)(2 ntt m

m

mn

 (3. 23)

 33

for)(2 RL , and nm, ℤ. With this octave time scaling and dyadic translation,

the sampled values of (a,b) are as shown in the dyadic grid of Figure 3.7.

Since the FT of aat /)(is aaaw)/(, the center frequency and bandwidth of

a wavelet are both scaled by 1/a for a time scaling of a. So for all mother wavelets,

 Q
f

f

bandwidth

frequencycentre _
constant (3. 24)

giving rise to the so-called “Constant-Q” or “Constant Relative-bandwidth” analysis

capability of wavelets [21].

The basic difference between STFT and WT is that STFT, which gives time-

frequency representation, uses a single analysis window with constant bandwidth.

However in WT, wavelet functions (daughter or baby wavelets) are localized in time

and frequency domains and are generated from a single kernel function (mother

wavelet) by dilation and translation. So WT uses short windows at high frequencies

and long windows at low frequencies. In STFT, if the analyzing functions are not

wide enough, they are unable to capture the low frequency information and wider

they get, they loose short time duration changes in the signal. So it is felt that the

analyzing functions should have a constant center frequency to bandwidth ratio

(constant-Q). The mother wavelet can be thought of as a band-pass filter. The

bandpass filters have constant relative bandwidth or constant-Q property.

time shift, b

scale, m=log a

Figure 3.7 Dyadic sampling grid in the time-scale plane. Each node corresponds to a
wavelet basis function with scale m2 and shift b=

mn 2 [28]

To overcome the resolution limitation of the STFT, it is possible to derive time and

frequency resolutions vary in the time-frequency plane in order to obtain a

multi-resolution analysis. When the analysis is viewed as a filter bank, then f must

increase with the central frequency of the analysis filters. This yields to Equation

 34

3.24. The analysis filter bank is then composed of band-pass filters with constant

relative bandwidth. Therefore, instead of the frequency responses of the analysis

filter to be regularly spaced over the frequency axis (as for the STFT) case, they are

regularly spread in a logarithmic scale (see Figure 3.4).

When Equation 3.24 is satisfied, f and also T changes with the center frequency

of the analysis filter. (they still satisfy the Heisenberg inequality given in

Section 3.1.3.2). But now, the time resolution becomes arbitrarily good at high

frequencies, while the frequency resolution becomes arbitrarily good at low

frequencies.

The reconstruction formula for)(tf is [28]

)(),()(, tnmDPWTctf
m n nm (3. 25)

where
c is a constant that does not depend on the signal. Evidently, if 0a is close

enough to 1 and if 0b is small enough, then the wavelet functions are defined to be

over-complete. Equation 3.25 is then still very close to Equation 3.16 and signal

reconstruction takes place within non-restrictive conditions on)(t . On the other

hand, if the sampling is sparse, e.g. the computation is done octave by octave (0a =2),

a true orthonormal basis will be obtained only for very special choices of)(t [28].

Two examples of orthonormal discrete parameters (dyadic sampling) can be given as

Haar wavelets and Shannon wavelets. The Haar wavelet has good time localization

but poor frequency localization. Its spectrum is non-zero for . It does not have

compact support in the frequency domain. In contrast, the Shannon wavelet has non-

compact support in time and decays only as fast as t/1 , so it has poor time

localization. Its frequency localization is good because it has the spectrum of an ideal

band-pass filter. There are orthonormal wavelets that are between these two given

types, giving both acceptable localizations in time and frequency [21].

There are several benefits of the orthonormal basis in dyadic-orthonormal wavelet

transform which is obtained by 0a =2 and 0b =1. The first is that there will be no

 35

information redundancy among the decomposed signals due to the orthonormal

properties. The second is that with this choice of
0a and

0b there exists an elegant

algorithm, which is known as the multi-resolution signal decomposition technique, to

decompose a signal into scales with different time and frequency resolution [28].

3.3.3 Wavelet Frames

The theory of wavelet frames [see Appendix 5 for information about frames in vector

spaces] permits one to balance redundancy, i.e. sampling frequency in Figure 3.7.

The energy of the wavelet coefficients; DPWT(m,n) relative to the signal)(tf , in a

Hilbert space, lies between two positive frame bounds A and B

f

nm

f EBnmDPWTEA .),(.
2

,

 (3. 26)

with BA0 , where fE is the energy of the signal)(tf [24]. Equation 3.26

is known as Parseval relation. The Wavelet function satisfying Parseval relation

constitutes a frame. Once the Parseval and the admissibility conditions are satisfied,

the transform is complete; the signal can be reconstructed from transformation

coefficients.

3.4 Multi-resolution Analysis, Discrete WT and Digital Filters

A wavelet is a band-pass filter from a signal processing point of view [28]. In the

dyadic case given by Equation 3.23, it forms an octave band filter. So, the wavelet

transform can be interpreted as constant-Q filtering (given by Equation 3.24) with a

set of octave-band filters followed by sampling at the respective Nyquist frequencies.

Therefore, by adding higher octave bands, details or resolution is added to the signal.

In the discrete time case, two methods were developed independently which lead

naturally to discrete wavelet transforms. They are sub-band coding and pyramidal

coding. In this section sub-band coding, pyramidal coding and discrete wavelet

transform (DWT) will be described respectively.

 36

An important point in DWT is the “scale” and the “resolution” parameters. Scale is

related to the size of the signal, while resolution is related to the amount of detail

present in the signal. For large scales, dilated wavelets take “global views” of a

sub-sampled signal, while for small scales, contracted wavelets analyze small details

in the signal. The resolution and scale change in discrete time is given in

Figure 3.8.

x(n) y(n)halfband

lowpass

resolution: halved

scale: doubled

x(n) y(n)
halfband

lowpass

resolution: halved

scale: doubled

x(n) y(n)
halfband

lowpass

resolution: unchanged

scale: halved

2

2

 Figure 3.8 Resolution and scale changes in discrete time [28]

3.4.1 The Pyramid Algorithm

Given an original sequence nx , n ℤ, derive a lower resolution signal by low-pass

filtering with a half-band low-pass filter having impulse response)(ng . Following

the Nyquist‟s rule, it is possible to down-sample by two (see Appendix 7 for

down-sampling operation), hence doubling the scale in the analysis. This results in a

signal)(ny given by

r

rnxrgny)2()()((3. 27)

The resolution change is obtained by the low-pass filter (loss of high frequency

detail). The scale change is due to sub-sampling by two, since a shift by two in the

original signal)(nx results in a shift by one in)(ny .

 37

Based on this low-pass and sub-sampled version of)(nx , an approximation to the

original signal will be found. This is done by first up-sampling)(ny by two (see

Appendix 8 for up-sampling operation):

)()2(nyny , and 0)12(ny (3. 28)

Then,)(ny is interpolated with a filter with impulse response)(ng to obtain the

approximation)(na :

r

rnyrgna)()()((3. 29)

If)(ng and)(ng were “perfect” half-band filters, then the Fourier transform of

)(na would be equal to the Fourier transform of)(nx . That is,)(na would be a

perfect half-band LP approximation to)(nx .

In general case,)(na is not equal to)(nx . So, the difference between)(na and

)(nx is as follows;

)()()(nanxnd (3. 30)

)(nx can be reconstructed by adding)(nd and)(na . As it can be seen in

Figure 3.9, derivation of a low-pass, sub-sampled approximation)(ny , from which

an approximation)(na to)(nx is derived by up-sampling and interpolation. Then,

the difference between)(na and)(nx is computed as)(nd . Perfect reconstruction

is obtained by adding)(nx back. However, there is some sort of redundancy,

because a signal with sampling rate Sf is mapped into two signals)(nd and)(ny

with sampling rates Sf and 2/Sf , respectively. In the case of a perfect half-band LP

filter,)(nd contains exactly the frequencies above 2 of)(nx , and therefore

)(nd , can be sub-sampled by two as well without loss of information [24].

The separation of the original signal)(nx into a coarse approximation)(na plus

some additional detail)(nd is important. Because of the resolution change involved

 38

(low-pass filtering followed by sub-sampling by two produces a signal with half the

resolution and at twice the scale of the original), this method is part of the

multi-resolution signal analysis. The scheme can be iterated on)(ny , creating a

hierarchy of lower resolution signals at lower scales. Because of that hierarchy and

the fact that signals become shorter, this scheme is called signal pyramids.

g(n) 2 2 g'(n)

+

2

g'(n)

+

y(n)

+

-
a(n)

d(n)

y'(n)

x(n)x(n)

Figure 3.9 The pyramid scheme [24]

The pyramid scheme creates a redundant set of samples. One stage of a pyramid

decomposition leads to both a half rate low-resolution signal and a full rate

difference signal, resulting in an increase, in the number of filters by fifty percent.

The redundancy problem (oversampling) can be avoided if the samples)(ng and

)(ng meet certain conditions [28].

3.4.2 Sub-band Coding

A different scheme is sub-band coding where no such redundancy appears as there is

in the pyramidal scheme. The LP, sub-sampled approximation is obtained exactly as

in the case of multi-resolution pyramid scheme; but instead of a difference signal, the

added detail as a high-pass filtered version of)(nx , followed by sub-sampling by

two, is computed. So, the original signal is mapped into a LP approximation and an

added detail signal. The added detail to the LP approximation has to be a HP signal,

and if)(ng is an ideal half-band LP filter, then an ideal half-band HP filter)(nh

will lead to a perfect representation of the signal into two sub-sampled versions.

An important point is that it is not necessary to use ideal filters, and)(nx can be

recovered from its two filtered and sub-sampled versions. (Lets call them)(0 ny and

)(1 ny respectively.) To do so, both are upsampled and filtered by)(nh and)(ng

 39

respectively, and finally added together as shown in Figure 3.10. Unlike the pyramid

scheme the reconstructed signal)(nx

is not identical to)(nx unless the filters meet

some specific constraints. Filters that meet these constraints have „perfect

reconstruction‟ (PR) property. More information related to this topic can be found in

[28].

In the Figure 3.10 the filters)(nh and)(ng are FIR filters. And the relation between

the HP and LP filters in this concept is given by,

)()1()1(ngnLh n (3. 31)

where L is the filter length (which is even). The modulation by n)1(transforms

indeed the LP filter into a HP one [24].

The filter bank in Figure 3.10, computes convolutions followed by sub-sampling by

two, evaluate inner products of the sequence)(nx and the sequences

)2(),2(rnhrng . Hence

n

rngnxry)2()()(0
 (3. 32a)

n

rnhnxry)2()()(1
 (3.32b)

Since the filter responses form an orthonormal set (see Appendix 4 for information

about orthogonality and orthonormality), it is very simple to reconstruct)(nx as

r

o rnhryrngrynx)2()()2()()(1
 (3. 33)

that is, as a weighted sum of the orthogonal impulse responses, where the weights are

the inner products of the signal with the impulse responses.

 40

h(n) 2

+

2 h'(n)
)(1 ny

g(n) 2 2 g'(n)
)(0 ny a(n)

d(n)

x(n))(ˆ nx

Figure 3.10 Sub-band coding scheme [24]

In the Figure 3.10 two sampled approximations; one corresponding to low and latter

to high frequencies are computed. Re-interpolating the approximations and summing

them obtain the reconstruction signal. The filters on the left form an analysis filter

bank, whereas the ones on the right is a synthesis filter bank.

3.4.3 The Discrete Wavelet Transform

Decomposition of a sequence)(nx into two subsequences at half rate, or half

resolution, by means of orthogonal filters is defined in Section 3.4.2. This process

can be iterated on either or both subsequences [24]. In particular to achieve finer

frequency resolution at lower frequencies, the scheme on the lower band is iterated

only. If)(ng is a good half-band LP filter,)(nh will also be a good half-band HP

according to Equation 3.31. So, one iteration of the scheme on the first low-band

creates a new low-band that corresponds to the lower quarter of the frequency

spectrum. Each further iteration halves the width of the low-band, but due to sub-

sampling by two, its time resolution is halved as well. At each iteration, the current

high band portion corresponds to the difference between the previous low-band

portion and the current one, which is a pass-band [24]. The procedure is represented

in Figure 3.11, and the frequency resolution is as in the Figure 3.4b.

x(n)

g(n) 2

h(n) 2

g(n) 2

h(n) 2

g(n) 2

h(n) 2

Figure 3.11 Block diagram (Filter bank tree) of the DWT implemented with discrete
time filters and sub-sampling by two. The frequency resolution is given by
Figure 3.4b [24]

 41

There is an important difference between the discrete scheme and the continuous

time WT. In the discrete time case, the role of the wavelet is played by the HP filter

)(nh and the cascade of sub-sampled LP filters followed by a HP filter. These filters,

which correspond to octave band filters, unlike in the CWT, are not exact scaled

versions of each other. In particular, because of being in discrete time, scaling is not

as easily defined: it involves interpolation as well as time expansion. However,

under certain conditions, the discrete system converges to a system where subsequent

filters are scaled versions of each other. Actually, this convergence is the basis for

construction of continuous time compactly supported wavelet bases [27].

The equivalent filter or the iterated low-pass filter corresponding to the lower branch

in Figure 3.11, will be described in the following paragraphs.

The z-transform of the half-band filter in the lower branch of Figure 3.11 is,

n

nzngzG)()((3. 34)

Sub-sampling by two followed by filtering with G(z) is equivalent to filtering with

)(2zG . So, the first two steps of low-pass filtering can be replaced by a filter with

z-transform G(z).)(2zG , followed by sub-sampling by four. Calling)(zG i the

equivalent filter to i stages of low-pass filtering and sub-sampling by two (a total

sub-sampling by i2),

1

0

2)()(
i

I

i l

zGzG (3. 35)

with an impulse response of)(ng i is obtained. As i infinitely increase, this filter

becomes infinitely long. Instead, consider a function)(xf i , which is piecewise

constant on intervals of length i2/1 and has value)(2 2/ ng ii in the interval

[ii nn 2/)1(,2/]. That is,)(xf i is a staircase function with the value given by the

samples of g and intervals, which decrease as i2 . It can be verified that the function

is supported (see Appendix 3 for “support” property) on the interval [0,L-1], where L

is the length of the filter g(n), For i going to infinity,)(xf i can converge to a

 42

continuous function)(xgc
, or a function with finitely many continuities, or not

converge at all. A necessary condition for the iterated functions to converge to a

continuous limit is that the filter G(z) should have a sufficient number of zeros at

z= -1, or half sampling frequency. Using this condition, one can construct filters,

which are both orthogonal and converge to continuous functions with compact

support. (See Appendix 3 for “compact-support” property) Such filters are called

regular filters. The above condition can be interpreted as a flatness condition on the

spectrum of G(z) at half sampling frequency. Wavelet filters are chosen so as to be

regular. Moreover the Daubechies orthonormal filters are deduced from “maximally

flat” low-pass filters [24].

The)(xgc is the final (limit) function to which)(xf i converges. Because it is the

product of low-pass filters, the final function is itself low-pass and is called a

”scaling function” (also shown as)(x) because it is used to go from a fine scale to

a coarser scale. Because of the product in Equation 3.35, from which the scaling

function is derived,)(xgc satisfies the following two-scale difference equation [24]:

n

cc nxgngxg)2()()((3. 36)

Figure 3.12 shows scaling functions that satisfy two-scale difference equations. It

shows how a scaling function can be obtained from a linear combination of its scaled

versions.

Equation 3.36, gives the scaling function of the iterated low-pass filter. From

Figure 3.11 it is shown that also a band-pass filter is obtained in the same way as the

low-pass filter, except for a final high-pass filter. Hence, the wavelet function)(xhc

(also shown as)(x) is obtained as

n

cc nxgnhxh)2()()((3. 37)

that also satisfies a two scale equation. If the filters h(n) and g(n) form an

orthonormal set with respect to even shifts, then the functions)(lxgc and

 43

)(rxhc form an orthonormal set. Because they also satisfy two scale difference

equations, the set forms an orthonormal basis for the set of square integrable

functions)(2 ZL [28].

(a)

(b)

Figure 3.12 Scaling function)(x as a linear combination of scaled and shifted
versions)2(nx . (a) Hat function (not an orthonormal example), (b) the Daub-4
wavelet obtained from a regular orthogonal filter [28]

As mentioned above, wavelet filters are chosen so as to be regular. This means that

the piecewise constant function associated with the discrete wavelet sequence)(nh j

of z-transform)()(2 jj zHzG converges, as j indefinitely increases, to a regular

limit function)(xhc . Equivalently, the piecewise constant function associated with

the discrete “scaling” sequence g(n) of a z-transform)(zG j converges to a regular

limit function)(xgc . “Regular” means that the continuous-time wavelet)(xhc (or

the scaling function)(xgc) is at least continuous, or better, once or twice

continuously differentiable [28].

 44

3.4.4 The Multi-resolution Analysis (MRA)

The multi-resolution analysis of functions was introduced by Meyer and Mallat [29],

and provides a better view of understanding the wavelet decomposition.

The MRA is a tool that utilizes the DWT to represent a time-varying signal in terms

of its frequency components. It essentially maps a one-dimensional (1D) signal of

time into a two-dimensional (2D) signal of scale and time. The goal of MRA is to

develop representations of a complicated signal)(tf in terms of its orthonormal

basis, which are the scaling and the wavelet functions. These functions can be scaled

and translated to decompose)(tf and represent it at different resolutions (scales).

So, using MRA, the time domain signal)(tf can be mapped into the wavelet

domain and represented at different resolution levels in terms of wavelet coefficients.

Assume that there is a ladder of spaces such that:

 21012 VVVVV (3. 38)

with the property that if iVxf)(then ZrVrxf i

i ,)2(, and 1)2(iVxf .

Let‟s call iW the orthogonal complement of iV in 1iV . This is written as

iii WVV 1 (3. 39)

Thus, iW contains the “detail” necessary to go from iV to 1iV . Iterating

Equation 3.39,

 3211 iiiii WWWWV (3. 40)

is obtained, that is, a given resolution can be attained by a sum of added details.

Assume that there is an orthonormal basis for 0V made up of a function)(xgc and its

integer translates. Since 10 VV ,)(xgc can be written in terms of the basis in 1iV ,

Equation 3.36 is satisfied:

 45

n

cnc nxgcxg)2()((3. 41)

Then it can be verified that the function)(xhc
 in Equation 3.37, with the relation in

Equation 3.31, and its integer translates form an orthonormal basis for
0W . Because

of Equation 3.40,)(xhc
 and its scaled and translated versions form a wavelet basis

[28].

Assume that there is an approximation of a signal at a resolution corresponding to

0V . Then a better approximation is obtained by adding the details corresponding to

0W . This amounts to a weighted sum of wavelets at that scale. Hence, by iterating

this idea, a square integrable signal can be seen as the successive approximation or a

weighted sum of wavelets at finer scale.

In this section, it is shown that the Short Time Fourier Transform and the Wavelet

Transform represent alternative ways to divide the time-frequency and time-scale

planes respectively. The main advantages of Wavelet Transform are that it can zoom

into time discontinuities, and that orthonormal bases localized in time and frequency

can be constructed. WT provides looking at a signal at various scales and analyzing it

with various resolutions. For large scales, dilated wavelets take global views of a

sub-sampled signal, while for small scales, contracted wavelets analyze small details

in the signal. In the discrete case, the WT is equivalent to a logarithmic filter bank,

with the added constraint of regularity on the low-pass filter.

One of the best-developed application areas of Wavelets is in signal compression.

Discrete Wavelet Transforms have essential sub-band coding systems and sub-band

coders are successful in speech and image compression [28].

 46

4. ARTIFICIAL NEURAL NETWORKS

4.1 Introduction

Artificial Neural Networks (ANN) represent an engineering discipline concerned

with non-programmed adaptive information processing systems that develop

associations (transforms or mappings) between objects in response to their

environment. That is, they learn from examples. ANNs are a type of massively

parallel computing architecture, based on brain-like information encoding and

processing models. They can exhibit brain-like behaviors such as learning,

association, categorization, generalization, feature extraction, and optimization.

A more formal definition of an ANN according to Haykin [5] is:

“A neural network is a massively parallel distributed processor that has a natural

propensity for storing experiential knowledge and making it available for use. It

resembles the brain in two respects:

i. Knowledge is acquired by the network through a learning process.

ii. Inter-neuron connection strengths known as synaptic weights are used to store

knowledge.”

The key element of the ANNs is the novel structure of the information processing

system. An ANN is composed of a large number of highly interconnected processing

elements (neurons) working in unison to solve specific problems. The ANN achieves

its ability to learn and then recall that learning through the weighted interconnections

of those processing elements. Given noisy sensory inputs, they build up their internal

computational structures through experience rather than pre-programming according

to a known algorithm. The interconnection architecture can be very different for

different networks. Architectures can vary from feed-forward, and recurrent

structures to latticed structures.

 47

4.1.1 The Biological Neural Network

The basic computational unit in the nervous system is the nerve cell, or neuron. The

human brain is composed of a very large number (about a hundred billion) of

neurons, massively interconnected (with an average of several thousand

interconnects per neuron). The structure of a neuron is represented in Figure 4.1.

Initial segment

of axon

Dendrites

Nucleus

Cell body

(soma)

Node of Ranvier

Terminal buttons

Figure 4.1 The basic structure of a neuron

A neuron is made up of a nucleus, a cell body (soma), dendrites (inputs) and an axon

(output). The cell body is a place for the mechanisms that provide the cell its energy

and cause the activation. The neuron collects signals from others through a host of

fine structures called dendrites. Once the total input signal received at the cell body

from the dendrites exceeds a certain level (the firing threshold), the neuron activates

and fires an electrochemical signal through a long, thin structure known as an axon,

which splits into thousands of branches. This event is also called depolarization, and

is followed by a refractory period, during which the neuron is unable to fire. The

action potential is generally a one-millisecond electrical pulse of 0.1 mV amplitude.

The axon endings almost touch the dendrites or cell body of the next neuron. At the

junction of the signal-sending axon and the signal-receiving dendrite lies a small gap

called a synapse. When the action potential reaches a synapse at the end of the axon,

the electrical signal is converted to a chemical signal to be communicated across the

synaptic gap to the post synaptic neuron. At the membrane of the postsynaptic

neuron, the chemical signal is converted back to an electrical signal to be conveyed

along the dendrite to the soma. A synapse can either be excitory or inhibitory. Input

from an excitory synapse increases the internal activation level of the neuron while

input from an inhibitory synapse reduces it [30]. The neurons learn to react to certain

 48

signals; the synaptic connections between neurons either get stronger or weaker. The

strength of the synaptic connection determines how strong the receiving neuron finds

the signal. The signals from different neurons are thus weighted differently based on

the strength of the synaptic connections. If the total effect of all the received signals

is adequate, the neuron is activated and it will begin to send a signal to the other

neurons via its axon.

4.1.2 Historical Background

Neural network simulations appear to be a recent development. However, this field

was established before the advent of computers, and has survived at least one major

setback and several eras.

The modern age of ANNs began by the classic paper of McCulloch and Pitts in 1943.

They described a logical calculus of neural networks. Their formal model of a neuron

was assumed to follow an “all-or-none” law. McCulloch and Pitts showed that with a

sufficient number of such simple units, and synaptic connections set properly and

synchronously, a network can compute any computable function [5].

In 1948, Wiener‟s famous book Cybernetics, describing the concepts for control,

communication, and statistical signal processing, was published. The second edition

of this book published in 1961, adds a new material on learning and self-

organization.

In 1949, Hebb‟s book The Organization of Behavior, which presents an explicit

statement of a physiological learning rule for synaptic modification, was published.

Hebb proposed that the connectivity of the brain is continually changing as an

organism learns differing functional tasks.

In 1952, Ashby‟s book, Design for a Brain: The Origin of Adaptive Behavior was

published, which was concerned with the basic notion that, adaptive behavior is not

inborn but rather learned, and by learning the behavior of a system usually changes

for the better.

In 1954, Gabor proposed the idea of a nonlinear adaptive filter. He went on to build

such a machine that learning was accomplished by feeding samples of a stochastic

 49

process into the machine, together with the target function that the machine was

expected to produce.

In 1956, Taylor initiated the work on associative memory. This was followed by the

introduction of the learning matrix by Steinbuch in 1961. This matrix consists of a

planar network of switches interposed between arrays of sensory receptors and motor

effectors.

In 1957, Bellmann reported his work on the dynamic programming, which provides

the mathematical formalism for sequential decision-making.

In 1958, Rosenblatt introduced a new approach to the pattern recognition problem in

his work on the perceptron, a novel method of supervised learning. Frank Rosenblatt

used the perceptron to solve some image recognition problems [30].

In 1960, Widrow and Hoff introduced the least mean-square (LMS) algorithm and

used it to formulate the Adaline (adaptive linear element). The difference between

the Adaline and the perceptron lies in the training procedure. One of the earliest

trainable-layered neural networks with multiple adaptive elements was the Madaline

(multiple adaline) structure proposed by Widrow in 1962.

In 1965, Nillson‟s book, Learning Machines, was published, which concerns the

linearly separable patterns in hyper surfaces. In 1967, Amari used the stochastic

gradient method for adaptive pattern classification [31].

In 1969, Minsky and Papert published their book, which concerns the use of

mathematics to demonstrate that there are fundamental limits on what single layer

perceptrons can compute. They also stated that, there was no reason to assume that

any of the limitations of single layer perceptrons could be overcome in the multilayer

version.

An important activity that did emerge in 1973 was self-organizing maps using

competitive learning. Von Der Malsburg demonstrated self-organization with some

computer simulations. In 1976, Willshaw and Von Der Malsburg published the first

paper on the formation of self organizing maps, motivated by topologically ordered

maps in the brain.

 50

In 1980, Grossberg established a new principle of self-organization known as ART

(Adaptive Resonance Theory). The theory involves a bottom-up recognition layer

and a top-down generative layer. If the input pattern and learned feedback pattern

match, a dynamical state called adaptive resonance takes place. [5]

In 1982, Hopfield used the idea of an energy function to formulate a new way of

understanding the computation performed by recurrent networks with symmetric

synaptic connections. He established the connection between neural networks and

physical systems of the type considered in statistical mechanics.

Another important development in 1982 was the publication of Kohonen‟s paper on

self-organizing maps using a one or two dimensional lattice structure, which was

different from the earlier work by Willshaw and Von Der Malsburg. Many

applications have been developed since Kohonen first proposed the Kohonen

networks. Kohonen networks have been applied in the field of combinatorics, for

example, to solve the Traveling Salesman Problem with the elastic net algorithm.

Teuvo Kohonen has carried out some research on the application of topology

preserving networks in such diverse fields as speech recognition and structuring of

semantic networks [30].

In 1983, Cohen and Grossberg established a general principle for assessing the

stability of a content-addressable memory that includes the continuous time version

of the Hopfield network. Also in 1983, Kirkpatrick, Gelatt, and Vecchi described a

new procedure called Simulated Annealing, rooted in statistical mechanics, for

solving combinatorial optimization problems. The simulated annealing has been used

for many years in the field of numerical optimization. The technique is a special case

of the Monte Carlo method [30].

In 1985, Ackley, Hinton, and Sejnowski developed the Bolztmann Machine, which

was the first successful realization of a multilayer neural network. Their learning

algorithm was the first proposed for stochastic networks and allowed dealing with

hidden units in the networks of Hopfield type [5].

 51

In 1986, Rumelhart, Hinton, and Williams reported the development of the

backpropagation algorithm; which has been a major influence in the use of

backpropagation learning. The back-propagation algorithm has emerged as the most

common learning algorithm for the training of multilayer perceptrons [5].

In 1988, Linsker described a new principle for self-organization in a perceptual

network. The principle is designed to preserve maximum information about input

activity patterns, subject to such constraints as synaptic connections and synapse

dynamic range. Linsker used abstract concepts rooted in information theory to

formulate the maximum mutual information (Infomax) principle. Also in 1988,

Broomhead and Lowe described a procedure for the design of layered feed-forward

networks using Radial Basis functions (RBF), which provide an alternative to

multilayer perceptrons.

In 1989, Mead‟s book, Analogue VLSI and Neural Systems, was published. It

provides an unusual mix of concepts drawn from neurobiology and VLSI

technology; also includes chapters on silicon retina and silicon cochlea. In the early

1990s, Vapnik invented a computationally powerful class of supervised learning

networks, called Support Vector Machines, for solving pattern recognition,

regression, and density estimation problems (Boser, Guyon, and Vapnik, 1992;

Cortes and Vapnik, 1995; Vapnik, 1995, 1998) [30].

4.1.3 A Taxonomy of Artificial Neural Networks

In this section, taxonomy of ANNs according to learning algorithms is given. The

taxonomy is divided into two tables, Table 4.1 and Table 4.2 respectively, according

to learning algorithms: supervised and unsupervised learning, which will be given in

more detail in Section 4.2.4.

Table 4.1 shows three common network architectures: feed-forward, feedback, and

competitive which will be given in detail in Section 4.2.3.

 52

Table 4.1 Taxonomy according to supervised neural networks [32]

Supervised Neural Networks

Feedforward Feedback Competitive

 Linear:

 Hebbian, Perceptron,

 Adaline

 Multilayer Perceptron:

 Backpropagation

 RBF Networks:

 Orthogonal Least Squares

 Classification only:

 Learning Vector Quant.

 Probabilistic NN

 Regression only:

 General Regression NN

 Bi-directional Associative

 Memory

 Boltzmann Machine

 Recurrent Time Series:

 Backpropagation Through

 Time, Elman Network,

 Finite Impulse Response,

 Jordan Network,

 Real Time Recurrent

 Network, Recurrent

 Backpropagation, Time

 Delay Neural Networks

 ARTMAP-1991

 Carpenter, Grossberg,

 Reynolds

 Fuzzy ARTMAP-1992

 Carpenter, Grossberg,

 Reynolds, Markuzon,

 Rosen

 Gaussian ARTmap-1995

 Williamson

 Counter-propagation

 Hecht-Nielsen-1987/ 88/ 90

 Fausett-1994

 Neocognitron-1983

 Fukushima, Miyake, Ito

 53

Table 4.2 Taxonomy according to unsupervised neural networks [32]

The definitions of the learning algorithms for both supervised and unsupervised

learning according to Table 4.1 and Table 4.2 will be given in the Section 4.3 and

Section 4.4.

Unsupervised Neural Networks

Competitive Dimension Reduction Auto-association

 Vector Quantization:

 Grossberg-1976

 Kohonen-1984

 Self-Organizing Map:

 Kohonen-1995

 Adaptive Resonance Th.:

 ART 1-1987 Carp. /Gross.

 ART 2-1987 Carp. /Gross.

 ART 3-1991 Carp. /Gross.

 and Rosen

 Fuzzy ART-1991 Carp. /

 Gross. and Rosen

 Differential Competitive

 Learning-Kosko 1992

 Hebbian

 Hebbian-1949

 Fausett-1994

 Oja-1989

 Sanger-1989

 Differential Hebbian

 Kosko-1992

 Linear Auto-associator

 Anderson-1977

 Fausett-1994

 Brain State in Box

 Anderson-1977

 Fausett-1994

 Hopfield

 Hopfield-1982

 54

4.1.4 The Benefits and Application Areas of ANNs

A neural network derives its computing power through its massively parallel-

distributed structure and its ability to learn. Learning refers to producing reasonable

outputs for inputs not encountered during training. This is also known as

generalization. This capability makes it possible for neural networks to solve

complex problems that are currently intractable.

The ANNs can provide suitable solutions for problems that generally are

characterised by:

i. nonlinearities,

ii. high dimensionality,

iii. noisy, complex, imprecise, imperfect and error prone sensor data,

iv. a lack of a clearly stated mathematical solution or algorithm.

The use of ANNs bring several benefits as described below [5]:

i. Nonlinearity: An artificial neuron can be either linear or nonlinear. The

nonlinearity is distributed throughout the network. The nonlinearity is an

important property, particularly if the underlying physical mechanism

responsible for generation of the input signal is inherently nonlinear.

ii. Input-Output Mapping: The learning process involves modification of the

synaptic weights of a neural network by applying a set of labeled training

samples. Each sample consists of an input signal and a corresponding desired

response. The network is presented with an example picked at random from

the set, and the synaptic weights of the network are modified to minimize the

difference between the actual response and desired response according to a

learning rule. The training case is repeated several times until the system

reaches a state where there are no further significant changes in the synaptic

weights. As a result the network learns from the examples by constructing a

mapping between the input space and output space.

 55

iii. Adaptivity: Traditionally, intelligence within the current computer software is

the result of the programmers' efforts only. During the laborious design phase

of a computer software, the future operation of the software is determined. A

certain set of operations is defined for each input that the program is expected

to receive. Although this approach can be very effective within the problem

area to which it is applied, it is usually a very difficult and time-consuming

process to update the rules as the problem changes. In addition, a totally

distinct set of heuristic rules is needed for every problem. However the

ANNs, like biological neural networks, have a built in capability to adapt

their synaptic weights to changes in the surrounding environment. A neural

network trained to operate in a specific environment can be easily retrained to

deal with minor changes in the operating environmental conditions.

iv. Contextual Information: Knowledge is represented by the structure and

activation state of an ANN. Every neuron in the network is affected by the

global activity of all other neurons in the network as in the case of biological

neural networks. Hence, an ANN deals with contextual information naturally.

v. Fault Tolerance: An ANN has the potential to be inherently fault tolerant. For

example, if a neuron or its connecting links are damaged, recall of a stored

pattern is impaired in quality. However, due to the distributed nature of

information stored in the network, the damage has to be extensive before the

overall response of the network is degraded seriously. But in the case of

traditional computer software, this kind of damage in only one entry of the

code would cause the failure of the program.

vi. VLSI Implementation: the massively parallel nature of an ANN makes it

potentially fast for the computation of certain tasks. This feature makes an

ANN well suited for implementation using VLSI technology. One particular

beneficial property of VLSI is that it provides a means of capturing truly

complex behavior in a highly hierarchical fashion [30].

Although ANNs has been designed to address certain kinds of problems, there exist

no definite rule as to what the exact application domains for certain ANNs are. The

general application areas of ANNs are: robust pattern recognition, filtering, data

 56

segmentation, data compression, adaptive control, optimization, modeling complex

functions and associative pattern recognition. Table 4.3 illustrates the use of well-

known neural networks, and Table 4.4 lists the application areas grouped according

to the ANN structure [32].

Table 4.3 Application areas of different neural networks [32]

Table 4.4 Application areas of different ANNs grouped by network structure [32]

Application
Back-

propagation
Hopfield

Bolzmann

machine

Kohonen

SOM

Classification

Image processing

Decision making

Optimization

Structure

Single layer,

lateral

connections

Topological vector

map

Two layer,

feedforward

feedbackward

Multi-layer,

feedforward

Network

type
Hopfield

LVQ

Kohonen SOM

ART

Perceptron network,

Boltzmann machine

Application

area

Autoassociation,

Optimization

Autoassociation,

Pattern recognition,

Data compression,

Optimization

Heteroassociation,

Pattern recognition

Heteroassociation,

Pattern recognition,

Data compression,

Optimization

 57

4.1.5 The Neural Network Design Process

The neural network design process involves at least five main tasks. These are data

collection, raw data preprocessing, feature extraction from the preprocessed data,

selection of an ANN type and topology (architecture), and finally training and testing

of ANN.

After suitable data is collected and pre-processed the features are chosen by the

designer based on the knowledge and experience with the problem. Features should

be chosen because they are believed to have some correlation to the desired output. It

can be useful to eliminate redundant or ineffective features. It is also possible to

determine which sets of features are the most significant by comparative analysis. An

ANN design should incorporate a minimum of two sets of independent input/ output

vector pairs representative of the process: There should be training, and testing

vector sets.

In the following sections the general theoretical structure of artificial neural networks

will be given.

4.2 Fundamentals of ANNs

4.2.1 The Basic Model of the Neuron

A neuron is an information-processing unit, which is the fundamental unit of an

artificial neural network. Its basic model is illustrated in Figure 4.2.

A neuron is consist of three main elements:

i. Synapses, each of which is characterized by a weight. Specifically, a signal

jx at the input of synapse j connected to neuron k is multiplied by the

synaptic weight kjw .

ii. An adder for summing the input signals, weighted by the respective synapses

of the neuron.

 58

iii. An activation function for limiting the amplitude of the output of a neuron.

The activation function is also referred to as a squashing function in that it

squashes the permissible amplitude range of the output signal to a finite

interval.

k
y

mx

x

x

x

3

2

1

Σ

k
b

φ (x)k
v

Summer Activation function

Synaptic weights

In
p
u
t

si
g
n
al

s

Bias

Output

1k
w

2k
w

3k
w

kmw

Figure 4.2 A nonlinear model of a neuron [5]

The model also includes an externally applied bias term, denoted by kb , which has

the effect of increasing or decreasing the net input of the activation function

depending on whether it‟s positive or negative.

In Figure 4.2 ky , the output of the neuron, can be described as,

)(kk vy (4. 1)

where kv , the induced local field or activation potential of neuron k is, kkk buv .

Here kb is the bias and ku is the linear combiner output due to the input signals. The

linear combiner is formulated as,

m

j

jkjk xwu
1

 (4. 2)

So from Equations 4.1 and 4.2 the output of the neuron is derived as,

)(
1 k

m

j jkjk bxwy
 (4. 3)

 59

4.2.2 Transfer Function

The behavior of an ANN depends on both the weights and the input-output function

(transfer function) that is specified for the neurons [5]. The transfer function, also

known as activation function, typically falls into one of three categories:

i. Threshold function: This function is described as,

1)(v if 0v (4. 4)

0)(v if 0v

The Equation 4.4 is illustrated in Figure 4.3a. This form of threshold function

with a simple difference in output, is also known as Heaviside (or signum or

hard-limiter) function. The output of a neuron k is expressed as

1ky if 0v (4. 5)

1ky if 0v

where kv is the induced local field of the neuron k that is,

k

m

j

jkjk bxwv
1

 (4. 6)

Such a neuron is referred to as the McCulloch- Pitts model. In this model, the

output of a neuron takes on the value of 1 if the induced local field of that

neuron is nonnegative, and 0 otherwise. This statement describes the all-or

one property of the model.

ii. Piecewise Linear function: This function is described as,

 1)(v if 21v (4. 7)

vv)(if 2121 v

 60

0)(v if 21v

where the amplification factor inside the linear region of operation is assumed

to be unity. The Equation 4.7 is illustrated in Figure 4.3b. An important case

is if the amplification factor of the linear region is made infinitely large, then

the piecewise linear function reduces to a threshold function given by

Equation 4.4.

 (a) (b)

 (c) (d)

Figure 4.3 The transfer function: (a) Threshold function (b) Piecewise-linear function
(c) Logistic function (d) Hyperbolic tangent function

iii. Sigmoid Function: This function is defined as a strictly increasing function

that exhibits a balance between linear and nonlinear behavior. Logistic

function, that is a kind of sigmoid function is defined by

)exp(1

1
)(

av
v

 (4. 8)

where a is the slope parameter. Changing the value of the parameter a,

provides sigmoid functions of different slopes as shown in Figure 4.3c.

 61

Another type of sigmoid function is the hyperbolic tangent function, defined

by)tanh()(vv , is shown in Figure 4.3d. The hyperbolic tangent function

range from –1 to +1, whereas the functions defined by Equation 4.4,

Equation 4.7, and Equation 4.8 range from 0 to +1.

4.2.3 Architectures of ANNs

The artificial neural networks can be classified according to the structure that they

exhibit. The structure of the neurons in an ANN is related with the learning algorithm

used to train the network. Thus it is possible to consider that the learning rules used

in the design of ANNs are structured [5].

In general the network architecture can be identified into three fundamental classes:

i. Single Layer Feed-forward Networks:

This is the simplest form of a layered network, with an input layer of source

nodes that projects onto an output layer of neurons. The important point is

that this network is completely a feed-forward type, so the direction of signal

flow is from input layer of source nodes (I.L.) to output layer (O.L).

Figure 4.4 shows a single layer network. Here, the single layer refers to

output layer of neurons since there is no computation in the input layer of

source nodes.

I.L. O.L.

Figure 4.4 A single layer feed-forward neural network

ii. Multilayer Feed-forward Networks:

Figure 4.5 represents the structure of a multi-layered feed-forward network.

This model has one or more hidden layers that are composed of one or more

hidden neurons. The function of this neurons is to intervene between the input

and output layers in a useful manner. By adding one or more hidden layers,

 62

this model is capable of extracting higher-order statistics. This model is also a

completely feed-forward type. There are no lateral connections within each

layer and also no feed-backward connections within the network. The best-

known ANN of this type is the perceptron network.

 I.L. H.L. O.L.

Figure 4.5 A multilayer feedforward neural network

iii. Recurrent Networks

This model is distinguished from feed-forward networks due to its feedback

loops (at least one). One kind of recurrent network is shown in Figure 4.6a.

Here the network consists of one single layer of neurons with each neuron

feeding its output signal back to the inputs of all the other neurons. Another

possibility is shown in Figure 4.7b, with hidden neurons. Here the feedback

connections originate from the hidden neurons as well as from the output

neurons. The presence of feedback loops, has an important role on the

learning capability of the ANN. The feedback loops involve the use of

particular branches composed of unit-delay elements that result in a nonlinear

dynamical behavior.

 63

Unit-delay

operators 1z1z1z

O
u
tp

u
ts

In
p
u
ts

Unit -delay

operators 1z1z1z

 (a) (b)

Figure 4.6 Recurrent network with (a) no hidden, (b) hidden neurons [5]

4.2.4 The Learning Process

The memorization of patterns and the subsequent response of the network can be

categorized into two general paradigms [30]:

i. The first paradigm is Associative Memory: The network learns to produce a

particular pattern on the set of input units whenever another particular pattern

is applied on the set of input units. The associative mapping can generally be

broken down into two mechanisms as the auto-association and the hetero-

association. In the case of auto-association, an input pattern is associated with

itself and the states of input and output units coincide. This is used to provide

pattern completion, i.e. to produce a pattern whenever a portion of it or a

distorted pattern is presented. The second case, the hetero-association is

related to a recall mechanism:

 Nearest-neighbor recall mechanism, where the output pattern

produced corresponds to the input pattern stored, which is closest to

the pattern presented.

ii. The second paradigm is Regularity detection: The units learn to respond to

particular properties of the input patterns. Whereas in associative mapping the

network stores the relationships among patterns, in regularity detection the

response of each unit has a particular 'meaning'. This type of learning

mechanism is essential for feature discovery and knowledge representation.

 64

Every neural network possesses knowledge that is contained in the values of the

connections weights. Modifying the knowledge stored in the network as a function of

experience implies a learning rule for changing the values of the weights.

Information is stored in the weight matrix W of a neural network. Learning is the

determination of the weights. Following the way learning is performed; we can

distinguish two major categories of neural networks:

 Fixed Networks, in which the weights cannot be changed. In such networks,

the weights are fixed a priori according to the problem to solve.

 Adaptive networks, which are able to change their weights.

All learning methods used for adaptive neural networks can be classified into two

major categories: learning with a teacher and learning without a teacher [5].

4.2.4.1 Learning with a Teacher

The first major category of learning is learning with a teacher, which is also referred

to as supervised learning. It incorporates an external teacher, having knowledge of

the environment, with that knowledge being represented by a set of input-output

examples, as shown in Figure 4.7. The environment is not known by the neural

network. During the learning process the teacher is able to provide the neural

network with a desired response for a given training vector, from the environment.

The network parameters are adjusted according to the training vector and the error

signal, which is the difference between the desired response and actual response of

the system. The aim is to provide the emulation of the teacher by the network. After

this stage the network can generate desired response without the teacher. This kind of

learning is error correction learning.

So, an important issue concerning supervised learning is the problem of error

convergence, i.e. the minimization of error between the desired and computed unit

values. The aim is to determine a set of weights, which minimizes the error. One

well-known method, which is common to many learning paradigms, is the least mean

square (LMS) convergence.

 65

Environment Teacher

Learning
system

Actual
response

Desired
response

Error
signal

+

Figure 4.7 Learning with a teacher [5]

4.2.4.2 Learning without a teacher

In this category of learning, there is no external teacher to oversee the learning

process. This category can be divided into two subdivisions:

i. Reinforcement Learning: The learning of an input-output mapping is

performed through continued interaction with the environment in order to

minimize a scalar index of performance. Figure 4.8 illustrates the general

structure of reinforcement learning. Here, the critic converts a primary

reinforcement signal received from the environment into heuristic

reinforcement signal, which is a higher quality reinforcement signal. The aim

of the system is learning under delayed reinforcement, in other words the

system observes a temporal sequence of stimuli also received from the

environment, which provides the generation of the heuristic reinforcement

signal. The goal of the learning procedure is to minimize the expectation of

the cumulative cost of actions taken over a sequence of steps. The function of

the Learning system is to discover these actions and feed them back to the

environment. Reinforcement learning is closely related to dynamic

programming, which was developed by Bellmann in the context of optimal

control theory [5].

Environment Critic

Learning

system

Primary

reinforcement Input
 vector

Actions Heuristic reinforcement

Figure 4.8 Reinforcement learning [5]

 66

ii. Unsupervised learning: There is no external teacher or critic to oversee the

learning process. Here the provision is made for a task independent measure

of the quality of representation that the network is required to learn, and the

parameters of the network are optimized according to that measure. When the

network has become tuned to the statistical regularities of the input data, it

develops the ability to form internal representations for encoding features of

the input and therefore to create new classes automatically [5]. This is

illustrated in Figure 4.9.

Unsupervised learning is also referred to as self-organization, in the sense that

it self-organizes data presented to the network and detects their emergent

collective properties. Paradigms of unsupervised learning are Hebbian

learning and competitive learning.

 Input from Environment Learning

 environment system

Figure 4.9 Unsupervised learning

4.3 Supervised Learning

4.3.1 Hebbian Learning

Hebb‟s learning rule is the oldest and the most famous of all learning rules. A simple

definition according to Haykin [5] is:

 If two neurons on either side of a synapse (connection) are activated

simultaneously, then the strength of that synapse is selectively increased.

 If two neurons on either side of a synapse are activated asynchronously, then

that synapse is selectively weakened or eliminated.

This type of synapse is called a Hebbian synapse [5]. Hebbian synapse uses a time-

dependent, highly local, and strongly interactive mechanism to increase synaptic

 67

efficiency as a function of the correlation between the presynaptic and postsynaptic

activities.

The mathematical model of Hebbian learning is denoted by

)().(.)(nxnynw jkkj (4. 9)

where is the rate of learning, a positive constant; kjw is the synaptic weight of

neuron k with presynaptic and postsynaptic signals denoted by jx and ky , and kjw

is the adjustment applied to the synaptic weight at time step n.

The basic idea behind Hebbian learning is that, two neurons, which are

simultaneously active, should develop a degree of interaction higher than those

neurons whose activities are not correlated. In the latter case, the interaction between

the elements should be very low or zero.

The Hebbian learning rule underlies most of the self-organizing neural network

models. Self-organization is a fundamental ability for a neural system to adapt to its

environmental information structure.

4.3.2 Perceptron and Adaline

4.3.2.1 Perceptron

The perceptron was proposed by Frank Rosenblatt in 1958, as a more general

computational model than McCulloch-Pitts model (see Equation 4.6). In the original

Rosenblatt model the computing units are threshold elements and the connectivity is

determined stochastically. The learning is provided by adapting the weights of the

network with a numerical algorithm. The perceptron is built around a nonlinear

neuron, namely, the McCulloch-Pitts model of a neuron. This model consists of a

linear combiner followed by a hard limiter (see Equation 4.5). Rosenblatt‟s model

was refined and perfected in 1969, by Minsky and Papert.

The classical perceptron (Rosenblatt) is in fact a whole network for the solution of

pattern recognition problems. In its simplest form it consists of an N-element input

layer (retina), which transmits binary values to a layer of computing units in the

 68

projection area. The binary values from projection area feed into M-element layer,

association (or predicate) area. The goal of the operation of the perceptron is to learn

a given transformation 1,11,1:
N

d using learning samples with input x and

corresponding output y=d (x). In other words the idea is to train the system to

recognize certain input patterns in the connection region as shown in Figure 4.10.

projection area association area responses

local connections random connections

Retina

Figure 4.10 The classical perceptron [30]

The only difference between McCulloch-Pitts elements and perceptrons is the

presence of weights in the networks.

Minsky and Papert refined and perfected Rosenblatt‟s model. In this model (shown

in Figure 4.11) there is also a retina of pixels with binary values on which patterns

are projected. Some pixels from the retina are directly connected to logic elements

called predicates, which can compute any single bit according to the input. These

predicates transmit their binary values to a weighted threshold element that is in

charge of reaching the final decision in a pattern recognition problem.

1P

2P

3
P

nP

1
w

2w

3
w

nw

b

Figure 4.11 The perceptron [30]

In Figure 4.11 the predicates 1P to nP deliver information about the points in the

projection surface that comprise their receptive fields, and the only restriction of

them is that they produce a binary value and the receptive field cannot cover the

 69

whole retina. The system consists in general of n predicates
1P to

nP and the

corresponding weights
1w to

nw . The system fires only when,

m

i ii bPw
1

. (4. 10)

where b is the threshold of the computing unit at the output.

From Equation 4.3 and Equation 4.5 and Equation 4.6, it is seen that the output of the

network is either +1 or –1, depending on the input. The network can now be used for

a classification task: it can decide whether an input pattern belongs to one of two

classes. If the total input is positive, the pattern will be assigned to class +1, if the

total input is negative, the sample will be assigned to class –1. the separation

between the two classes, i.e. for m=2 inputs, will be derived by the equation:

01111 bxwxw (4. 11)

So this single layer network represents a linear discriminant function [31]. Here, the

important case is computing the weights and biases for the network. There are two

general rules for this task: The perceptron learning rule and the delta or LMS (least

mean-square) rule. Both methods are iterative procedures that adjust the weights.

For a set of learning samples consisting of an input vector x and a desired output

vector d(x), the “perceptron learning rule” is stated as follows:

i. Start with random weights for the connections;

ii. Select an input vector x from the set of training samples;

iii. If)(xdy , so the perceptron gives an incorrect response, modify all

connections iw according to ii xxdw)(;

iv. Go back to step 2.

The difference between this procedure and Hebb rule in Section 4.3.1, is that, when

the network responses correctly, no connection weights are modified. Besides

modifying the weights, also the bias is modified. The bias term, b, is considered as a

 70

connection
0w between the output neuron and a „dummy‟ predicate unit, which is

always on: 10 x [30]. Given the perceptron-learning rule as stated above, this

threshold is modified according to:

0b if the perceptron responds correctly; (4. 12)

)(xdb otherwise.

4.3.2.2 The Adaptive Linear Element (Adaline)

Widrow and Hoff presented an important generalization of the perceptron training

algorithm, as the “least mean square” (LMS) learning procedure, also known as the

delta rule. The main difference with the perceptron rule is the way the output of the

system is used in the learning rule. The perceptron learning rule uses the output of

the threshold function (either –1 or +1) for learning. The delta-rule uses the net

output without further mapping into output values –1 or +1.

The delta rule was applied to the Adaline, developed by Widrow and Hoff in 1960.

In a simple physical implementation, this device consists of a set of controllable

resistors connected to a circuit which can sum up currents caused by the input

voltage signals as shown in Figure 4.12. Usually the central block, the summer, is

also followed by a quantizer which outputs either +1 or –1, depending on the polarity

of the sum [30].

In Figure 4.12, if the input conductances are denoted by ,,...,1,0, miwi and the

input and output signals by ix and y. The output of the central block is,

m

i ii bxwy
1

 (4. 13)

The purpose of this device is to yield a given value pdy at its output when the set

of values mix p

i ,...,3,2,1, is applied at the inputs. The problem is to determine the

coefficients ,,...,1,0, miwi in such a way that the input-output response is correct

for a large number of signal sets. If an exact mapping is not possible, the average

 71

error must be minimized. For Adaline, Widrow introduced the delta rule to adjust the

weights [30].

For a single layer network with one output unit with a linear activation function the

output is,

j

jj bxwy (4. 14)

Equation 4.14 represents the linear relationship between the input and output. By

thresholding the output value, a classifier such as Widrow‟s Adaline, can be

constructed.

Σ

 Σ

 +1

-1

+1 level

2w

1w

3w summer

 error
 +

-1 +1

Input gains

pattern

switcher

reference switch

quantizer

output

-1 +1

w
 0

Figure 4.12 The Adaline [30]

In high dimensional input spaces the network represents a hyper-plane and also

multiple output units may be defined.

For a given network, such that a hyper-plane is fitted as well as possible to a set of

training samples consisting of input values px and desired (or target) values pd ; the

output value (for every given input sample) of the network will be)(pp yd , where

py is the actual output. The delta-rule uses an error function based on these

differences to adjust the weights.

The error (or total error) function is the summed squared error,

p p

ppp ydEE 2)(
2

1
 (4. 15)

 72

where pE represents the error on pattern p. The LMS procedure finds the values of

all the weights that minimize the error function by a method called gradient descent.

The idea is to make a change in the weight proportional to the negative of the

derivative of the error as measured on the current pattern with respect to each weight,

j

p

jp
w

E
w

 (4. 16)

where is a constant of proportionality. The derivative is,

j

p

p

p

j

p

w

y

y

E

w

E

 (4. 17)

By using the derivatives of the functions in Equation 4.14 and Equation 4.15 in

Equation 4.17, the Equation 4.16 can be extracted as “the delta-rule”,

j

p

jp xw (4. 18)

where ppp yd is the difference between the target output and the actual output

of the pattern p. The delta-rule modifies weight appropriately for target and actual

outputs of either polarity and for both continuous and binary input and output units

[5].

4.3.3 The Back-Propagation Algorithm

The single layer feed forward networks, given above have some advantages and

disadvantages. The disadvantage is the limited representational power; only linear

classifiers can be constructed or, in case of function approximation, only linear

functions can be represented. The advantage is that, due to the linearity of the

system, the training algorithm converges to the optimal solution, however this is not

the case for nonlinear systems such as multiple layer networks.

Minsky and Papert showed that a two layer feed-forward network can overcome the

restrictions in the single layer perceptron. But they did not present a solution to the

problem of how to adjust the weights from input to hidden units. Rumelhart, Hinton,

 73

and Williams in 1986 solved this problem by introducing back-propagation (BP)

algorithm [5].Figure 4.13 shows a multilayer feedforward network. Each layer

consists of units that receive their input from units of a layer directly below and send

their output to units in a layer directly above the unit. There are no connections

within the layer.

o N

i N

h,1 h,l-1 h,l-2
N N N input

layer

output
layer

hidden

Figure 4.13 A multi- layer network with l layers of hidden units [5]

Since activation functions of the units in multi-layer feed-forward networks are

nonlinear the delta rule must be generalized. The activation is a differentiable

function of the total input given by)(p

k

p

k sy , in which
j

k

p

jjk

p

k byws . To

get the generalization of the delta rule,
jk

p

jkp
w

E
w

 is obtained from Equation

4.16. The error measure pE is defined as the total quadratic error for pattern p at the

output units;

oN

o

p

o

p

o

p ydE
1

2)(
2

1
, where p

od is the desired output for unit o and

pattern p. The summed squared error is
p

pEE . From here, the update rule

which is equivalent to the delta rule, is obtained if the weight changes are done

according to,

p

j

p

kjjp yw (4. 19)

similar to Equation 4.18. For any hidden unit h, p is derived as,

oN

o ho

p

o

p

h

p

h ws
1

)((4. 20)

 74

And for any output unit o, p is derived as,

)()(p

oo

p

o

p

o

p

h syd (4. 21)

So for a learning pattern, the activation values are propagated to the output units, and

the actual network output is compared with the desired output values, the procedure

ends up with an error,
oe , in each of the output units. The goal is to bring

oe to zero.

From the delta–rule, in order to reduce an error, its incoming weights must be

adapted by hooho yydw)(. That is step one of the procedure. In order to adapt

the weights from input to hidden units, the delta rule should be used again, by the

help of the chain rule. Chain rule distributes the error of an output unit o to all the

hidden units.

The application of the generalized delta rule thus involves two phases [31]: During

the first phase the input x is presented and propagated forward through the network

to compute the output values p

oy for each output unit. This output is compared with

its desired value od , resulting in an error signal p

o for each output unit. The second

phase involves a backward pass through the network during which the error signal is

passed to each unit in the network and appropriate weight changes are calculated.

An important point is that, the learning procedure requires the change in weight to be

proportional with wE p . For practical purposes, a learning rate that is as large as

possible without causing oscillation is necessary .One way to avoid the oscillation at

large values of , is to make the change in weight dependent of the past weight

change by adding a momentum term [30];

)()1(twytw jk

p

j

p

kjk (4. 22)

where t indexes the presentation number and is a constant, which determines the

effect of the previous weight change.

 75

Figure 4.14 The descent in weight space, (a) for small rate; (b) for large learning rate
with oscillation: (c) with large rate and momentum included [30]

The role of the momentum term is showed in Figure 4.14. When no momentum term

is used, it takes a long time before the minimum has been reached with a low

learning rate, whereas for high learning rates the minimum is never reached because

of the oscillation. When the momentum term is included, the minimum will be

reached faster.

4.4 Unsupervised Learning

In the case of supervised learning, the goal is to perform a mapping: mn RRF

by presenting the network „examples‟),(pp dx with)(pp xFd of this mapping.

However, problem exists where such training data, consisting of input and desired

output pairs are not available, but where the only information is provided by a set of

input patterns px . In this case the information has to be found within the training

samples px . Some examples, [33], of such problems are:

 Clustering: Clustering algorithms attempt to organize unlabelled feature

vectors into clusters such that points within a cluster are more similar to each

other than to vectors belonging to different clusters.

 Vector quantization: When a continuous space has to be discretised, this

problem occurs. The input of the system is the n-dimensional vector x, the

output is a discrete representation of the input space. The system has to find

optimal discretisation of the input space.

 Dimensionality reduction: the input data are grouped in a subspace that has

lower dimension than the dimension of the data. The system has to learn an

optimal mapping, such that most of the variance in the input data is preserved

in the output data.

 76

 Feature extraction: The system has to extract features from the input signal.

This often means a dimensionality reduction as mentioned above.

In unsupervised learning, training is done without the presence of the external

teacher. The unsupervised weight adapting algorithms are usually based on some

form of global competition between the neurons.

4.4.1 Competitive Learning

In competitive learning, the output neurons of an ANN compete among themselves

to become active. While in the case of an ANN based on Hebbian learning several

output neurons may be active simultaneously, in competitive learning only one single

output neuron is active (fired) at any one time. Competitive learning is suitable for

discovering the statistical features that may be used to classify a set of input patterns

[5].

4.4.1.1 Clustering

The competitive learning is a learning procedure that divides a set of input patterns in

clusters that are embedded in the input data. A competitive learning network is

provided only with input vectors and thus implements an unsupervised learning

procedure. Figure 4.15 shows a simple competitive learning network.

input
output

Figure 4.15 A simple competitive learning network

In Figure 4.15 all output units “o” are connected to all input units “i” with weights

iow . When an input pattern x is presented, only a single output unit of the network

(the winner) will be activated. In a correctly trained network, all x in one cluster will

have the same winner. For the determination of winner and the corresponding

learning rule, two methods exist [33]:

 77

i. Dot Product: For given input vectors x and weight vectors
iow , which are

normalized to unit length, each output unit “o” calculates its activation value

oy according to the dot product of the input and weight vector:

xwxwy
T

o

i

iioo (4. 23)

In a next pass, output neuron k is selected with maximum activation,

koo yyk : (4. 24)

And the activations are set to 1ky and 0koy . The output layer is

referred to as winner-take-all layer. After a winner k is selected by Equation

4.24, the weights are updated according to,

))()(()(

))()(()(
)1(

twtxtw

twtxtw
tw

kk

kk

k

 (4. 25)

The denominator ensures that all weight vectors w are normalized. As a result

only the weights of the winner k are updated.

Figure 4.16 Geometric illustration of clustering with normalized vectors. The
three weight vectors are rotated towards the centers of three different input
clusters (a) Initial state of the network. (b) Final state of the network [5]

The procedure used in „dot product‟ is illustrated in Figure 4.16. The weight

update in Equation 4.25 rotates the weight vector iow towards the input vector

 initial weight vector (a)

 final weight vector (b)

 pattern vector

 78

x. Each time an input is presented, the weight vector closest to this input is

selected and is rotated towards the input. As a result, weight vectors are

rotated towards the areas of the clusters in the input.

ii. Euclidean Measure: Previously it was assumed that both inputs and weight

vectors are normalized. In Figure 4.17, it is shown that the algorithm would

fail if un-normalized vectors were used.

2w

1w x

2w

1w

x

 (a) (b)

Figure 4.17 Determining the winner. (a) Three normalized vectors (b) Three
vectors with different lengths [5]

In Figure 4.17a, vectors x and
1w are nearest to each other, and their dot

product cos11 wxwxT is larger than the dot product of x and 2w . In

Figure 4.17b, however, the pattern and weight vectors are not normalized, and

in this case 2w should be considered the „winner‟ when x is applied. But, the

dot product
1wxT is still larger than

2wxT .

To be able to use unnormalized input data, the winning neuron k is selected

with its weight vector kw closest to the input pattern x, using the Euclidean

distance measure:

xwxwk ok : o (4. 26)

If all vectors were normalized the Equation 4.26 would be reduced to

Equation 4.23 and Equation 4.24. In Euclidean measure, instead of rotating

 79

the weight vector towards the input, the weight update is changed to

implement a shift towards the input,

))()()(()()1(twtxttwtw kkk (4. 27)

)()1(twtw ii for ki

where)(t is a suitable, monotonically decreasing scalar-valued gain

coefficients 1)(0 t . Then this is the simplest definition of “Competitive

learning”.

The competitive learning stems from “cluster analysis”. Assume a sequence of

statistical samples of a vectorial observable nRtxx)(where t is the time

coordinate, and a set of variable reference vectors riRmtm i

ii ,,2,1,);(.

Assume that the)0(im have been initialized in some proper way. Competitive

learning then means that if the input x(t) can be compared in parallel with all the

)(tmi at each successive time instant, to be an integer (t=1,2,3,…), then the best

matching)(tmi is updated to better comply with x(t). If comparison is based on some

distance measure d(x, im), updating must be such that if ki is the index of the

best-matching reference vector, then d(x, km) shall be decreased, and all the other

reference vectors with ki left intact. In this way, in the long run, the different

reference vectors tend to become specifically “tuned” to different domains of the

input variable x. If the probability density function of p(x) is clustered, then the im

tend to describe the clusters. In general, it can be shown that the im tend to be placed

into the input space R in such a way that they approximate p(x) in the sense of some

minimal residual error [33].

So, a competitive network performs a clustering process on the input data by

dividing the input patterns in disjoint clusters such that similarities between input

patterns in the same cluster are much bigger than similarities between input patterns

in different clusters. Similarity is measured by a distance function on the input

vectors. A common criterion to measure the quality of a given clustering is the

 80

square criterion, given by
2

p

p

k xwE where k is the winning neuron when

input px is presented. The competitive learning seeks to find a minimum for this

square error by following the gradient of the error-function

i

p

iki xwE 2)(
2

1
 (4. 28)

where k is the winning unit, minimized by the weight update rule in Equation 4.27.

4.4.1.2 Vector Quantization (VQ)

The VQ is a classical method in signal processing to produce an approximation to the

distribution of a single class by a reproduction (codebook) vector [33]. Each

incoming signal is mapped to the nearest codebook vector, and that vector sent

instead of the original signal. One way to choose the codebook is to minimize some

measure of the approximation error averaged over the distribution of the signal, and

over the training patterns of that class. Taking the measure as the squared distance

from the nearest codebook vector leads to the k-means algorithm, which aims to

minimize the sum of squares of distances within clusters. The k-means algorithm is

applied as follows:

i. Begin with an arbitrary set of cluster centers in the vector space and assign

the sample vectors to the nearest centers,

ii. Compute the sample vector mean of each center,

iii. Reassign each and every sample vector to the cluster with the nearest mean,

iv. If the classification of all sample vectors has not changed, stop: else go to

step 2

The distance measure is Euclidean and a similarity measure J is used as defined by;

2

1

CN

k ki

ki myJ (4. 29)

 81

where
cN is the number of clusters,

iy are the sample vectors, and
km are the

cluster centers or cluster means. For fixed set of sample vectors, J is minimized by

choosing
km to be the sample mean of the kth cluster. When

km is fixed. J is

minimized by choosing the class of
iy as the class of the cluster with the nearest

mean. The set of means or centers is often called the „codebook‟ and the problem of

choosing the centers is called „code book‟ design. VQ is similar to clustering or

finding centers of vectors that may be said to be correlated or related in some way.

The self-organizing map developed by Kohonen [34], maps some given vectors to

finite set of output nodes, which can be defined as cluster centers for related groups

of vectors.

4.4.2 Kohonen Networks

Given a set of information signals m, an ANN is capable of automatically forming an

inner representation of signals. In particular, when each signal in m is represented at

a specific position of neural field, a map of the signals on the neural field is obtained.

A neural field implies a network in which neurons are arranged on a two-dimensional

space like cortex. This is called a cortical map or neural map of information [31].

The basic properties of a map are; the topological relation between the map and the

original signal space m, the resolution and stability of a map.

Willshaw and Von Der Malsburg proposed a self-organizing mechanism of this type

of a cortical map. Kohonen also proposed a simplified but powerful model, and

studied its properties. Moreover, he utilized the map to form a vector quantizer,

emphasizing its discrete characteristics [34].

4.4.2.1 Kohonen Self-organizing Feature Maps (SOFM)

A self-organizing map (SOM) is formed of neurons located on a regular, usually one

or two-dimensional grid. Also higher dimensional grids are possible, but since their

visualization is difficult, they are not generally used. The neurons are connected to

adjacent neurons by a neighborhood relation dictating the structure of the map. In the

two-dimensional case the neurons of the map can be arranged either on a hexagonal

or a rectangular lattice, as shown in Figure 4.18.

 82

 (a) (b)

Figure 4.18 Neighborhood (size 1,2 and 3) of the unit marked with black dot:
(a) hexagonal lattice, (b) rectangular lattice

Each unit i in the grid is represented by a prototype vector
im . The number of map

units, which typically varies from a few dozen up to several thousands, determines

the accuracy and generalization capability of the SOM. During training, the SOM

forms an elastic net that folds onto the cloud formed by the input data. Data points

lying near each other in the input space are mapped onto nearby map units. So, the

SOM can be interpreted as a topology preserving mapping from input space onto the

two dimensional grid of map units.

The principal goal of SOM is to transform an incoming signal pattern of arbitrary

dimension into a discrete map, and to perform this transformation adaptively in a

topologically ordered fashion.

Figure 4.19 shows the diagram of a two dimensional lattice of neurons commonly

used as the discrete map. Each neuron in the lattice is fully connected to all the

source nodes in the input layer. This network represents a feed-forward structure

with a single computational layer consisting of neurons arranged in rows and

columns.

Layer of

source nodes

2-D Lattice

Figure 4.19 Two-dimensional lattice of neurons

 83

The training procedure of SOM is iteratively. At each training step, a sample vector x

is randomly chosen from the input data set. Distances between x and all the prototype

vectors are computed. The best matching unit (BMU), which is denoted by b, is the

map unit with prototype closest to x:

 i
i

b mxmx min (4. 30)

Then, the prototype vectors are updated. The BMU and its topological neighbors are

moved closer to the input vector in the input space. The update rule for the prototype

vector of unit i, according to [34] is

)()()()()1(tmxthttmtm ibiii (4. 31)

where t is time, 0<(t)<1 is time dependent learning rate parameter,)(thbi is the

neighborhood kernel function centered on the winner unit. A typical choice of)(thbi

is the Gaussian function [5]

)(2
exp)(

2

2

t

rr
th

ib

bi

 (4. 32)

where br and ir are positions of neurons b and i on the SOM grid, and)(t is the

width of the topological neighborhood function. It is denoted as,

1

exp)(

t

t o (4. 33)

where o is the value of)(t at the initiation of the SOM algorithm, and 1 is a

time constant. In Equation 4.31, (t) is

2

exp)(

t

t o (4. 34)

 84

where
2 is another time constant and

o is the initial state of learning rate. Both

(t) and)(t decrease monotonically with time.

In the case of a discrete data set and fixed neighborhood kernel, the error function of

SOM can be shown to be

N

i

M

j

jibi mxhE
1 1

2

 (4. 35)

where N is number of training samples in the input data set, and M is the number of

map units. Neighborhood kernel is centered at unit b, which is the BMU of vector ix ,

and evaluated for unit j [33].

The adaptation of the synaptic weights in the network, computed by Equation 4.31, is

generated in two phases: an ordering or self-organizing phase followed by a

convergence phase [34]:

Self-organizing or ordering phase: It is during the first phase of the adaptive process

that the topological ordering of the weight vectors takes place. The ordering phase

may take as many as 1000 iterations of the SOM algorithm, and possibly more.

Convergence phase: This phase of the adaptive process is needed to fine-tune the

feature map and to provide an accurate statistical quantification of the input space.

As described in Section 4.4.1.2, VQ, an input space is divided into a number of

distinct regions, and for each region a reconstruction vector is defined. When the

quantizer is presented a new input vector, the region in which the vector lies is first

determined, and is then represented by the reproduction vector for that region. So, by

using an encoded version of this reproduction vector for storage or transmission in

place of the original input vector, considerable savings in storage can be obtained, at

the expense of some distortion. The collection of possible reproduction vectors is

called the codebook of the quantizer, and its members are called code words, as

mentioned earlier in Section 4.4.1.2.

A VQ with minimum encoding distortion is called a “Voronoi” or “Nearest-neighbor

quantizer”, since the Voronoi cells about a set of points in an input space correspond

 85

to a portion of that space according to the nearest neighbor rule based on the

Euclidean metric [35,36]. The SOM algorithm provides an approximate method for

computing the “Voronoi vectors” in an unsupervised manner, with the approximation

being specified by the synaptic weight vectors of the neurons in the feature map.

Thus, computation of the feature map may be viewed as the first of two stages for

adaptively solving a pattern classification problem. The second stage is provided by

learning vector quantization, which provides a mechanism for the final fine-tuning of

a feature map [5].

4.4.2.2 Learning Vector Quantization (LVQ)

LVQ is a supervised learning technique that uses class information to move the

Voronoi vectors slightly, so as to improve the quality of the classifier decision

regions. An input vector x is picked at random from the input space. If the class

labels of the input vector x and a Voronoi vector w agree, the Voronoi vector w is

moved in the direction of the input vector x. However, if the class labels of the input

vector x and the Voronoi vector w disagree, the Voronoi vector w is moved away

from the input vector x.

In the case of classifying a number of given input signal sets, into a „finite‟ number

of categories, several codebook vectors are usually made to represent each class, and

their identity within the classes is not important. But the important case is the

decisions made at “class borders”. So, it is then possible to define effective values for

the codebook vectors such that they directly define optimal decision borders between

the classes, even in the sense of classical Bayesian decision theory [33]. For this

reason, Kohonen proposed LVQ1, which will be described below [34].

According to “LVQ1” algorithm, if several codebook vectors “ im ” are assigned to

each class, and each of them is labeled with the corresponding class symbol, the class

regions in the input space are defined by simple nearest neighbor comparison of x

with the im ; the label of the closest im defines the classification of x.

To define the optimal placement of im in an iterative learning process, initial values

for them must be first set using any classical VQ method or by the SOM algorithm.

The initial values in both cases roughly correspond to the statistical density function

 86

p(x) of the input. The next phase is to determine the labels of the codebook vectors,

by presenting a number of input vectors with known classification, and assigning the

cells to different classes by majority voting, according to the frequency with which

each
im is closest to the calibration vectors of a particular class.

It is proved [34] that, the classification accuracy is improved if the
im are updated

according to the following algorithm. The main idea is to pull codebook vectors

away from the decision surfaces to demarcate the class borders more accurately. Let

cm be the codebook vector closest to x in the Euclidean metric; this then also defines

the classification of x. Then apply training vectors x, the classification of which is

known. Update the)(tmm ii as follows:

)()()()()1(tmtxttmtm ccc (4. 36)

if x is classified correctly;

)()()()()1(tmtxttmtm ccc

if x is classified incorrectly;

)()1(tmtm ii for ci

Here)(t is a scalar adaptation gain (learning rate) (1)(0 t), which is

decreasing monotonically in time. Since this is a fine-tuning method, its initial value

should be selected a small value, i.e. 0.01 or 0.02 for 100.000 steps.

 87

5. IMPLEMENTATION OF THE PROPOSED TOOL FOR DISTRIBUTION

SYSTEM FAULT CLASSIFICATION

5.1 Introduction

This section discusses the implementation of an integrated design of fault classifier

in a 34.5 kV distribution system by using the hybrid “Wavelet-ANN-based”

approach. The section is divided into three subsections: The first subsection

introduces the 34.5 kV test system, all the features of the distribution system and the

monitored data at PSCAD/EMTDC simulation software. The second subsection

introduces the features of the wavelet transform module as a preprocessor to extract

relevant information from the raw data monitored from the test system. Finally the

last subsection describes the hybrid neural classifier, all the parameters of the feature

vectors, input-output structures and the results obtained from the ANN-based

classifier.

5.2 Simulation of a 34.5 kV Distribution System

In this thesis a distribution system in Istanbul, Turkey is simulated by the educational

edition of PSCAD/EMTDC simulation program. This is the 34.5 kV “Sagmalcılar-

Maltepe” distribution system with a 61-bus configuration. Due to software

limitations and practical reasons, a reduced model shown in Figure 5.1 is used to

generate the test data. One of the limitations in the software is related to the node

number. In the actual distribution system the node number is 326. However in this

version of the simulation program the node number is limited to 200 nodes. The

system is reduced to be 66 nodes as shown in Figure 5.1 to generate the simulation

data.

 88

LOAD 1

 CABLE 1

LOAD 3

LOAD 4LOAD 2

TRF 1

 CABLE 5

154 KV

LOAD 5

C BANK

2

11

12
Infinite Source

TRF 23 4

 CABLE 3

TRF 47 8

 CABLE 4

TRF 59 10

 CABLE 2

TRF 35 6

1

TRF 6

Data Monitoring

(V, I)

step-down

Figure 5.1 One-line diagram of the reduced 34.5 kV Sagmalcılar-Maltepe
Distribution System

The network parameters of the test system given in Figure 5.1 is provided in

Appendix B in Table B 1. The test system is a 12-bus distribution system with a base

power of 100 MVA and a base voltage of 34.5 kV. All of the test data were

monitored from the secondary of the main step-down transformer (TRF 1) located at

the Sagmalcılar substation as shown in Figure 5.1, node 2. The objective is to

monitor the voltage and the current at the 34.5 kV bus and identify the fault classes.

Each sample of data contained six channels, a set of three line current and three

line-to-ground voltages, which is typically what a recording device would measure in

a “real system”. The signals are generated at an equivalent sampling rate of 5 KHz

per channel, which could be increased if needed. The fundamental frequency of the

waveforms is 50 Hz. Ten cycles of data per channel with a total time duration of 200

milliseconds were captured for each sample from which features were extracted.

Various fault conditions were simulated using the PSCAD / EMTDC software (refer

to Section 2 for information about the software), which is an ideal tool for fault

simulation and transient analysis. (The test system layout used in the simulation

software is provided in Appendix B, Figure B.1). A database of line currents and

line-to-ground voltages is built up under normal and fault conditions. Specific events

simulated including system faults at different fault inception angles and fault

locations. The fault inception angles (FIA) used in the simulations are in the range of

 89

o0 ~ o180 . Since the waves are periodic, it is sufficient to study angles in the range

of o0 ~ o180 . The selected angles are: 0 o , 30 o , 60 o , 90 o , 120 o , 150 o, 180 o .

Short-circuit faults are simulated at various locations of the test system. The five

fault locations are shown in Appendix B, Figure B.1. Four main types of system

faults are generated: single-phase to ground, two-phase fault, two-phase to ground,

and three-phase to ground fault.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-40

-30

-20

-10

0

10

20

30

40

Time [sec]

L
in

e-
g

ro
u

n
d

 V
o

lt
ag

e
[k

V
]

Va Vb Vc

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-8

-6

-4

-2

0

2

4

6

8

10

Time [sec]

L
in

e
C

u
rr

en
t

[k
A

]

Ia Ib Ic

(b)

Figure 5.2 Typical measured voltage and current patterns. (a) voltage waveforms, (b)
current waveforms

Figure 5.2 shows the three-phase line currents and the line-to-ground voltage signals

for a “phase A-phase B to ground” fault occurred at bus 4 on 0.0636 sec. with a fault

 90

inception angle of 90 o . It is possible to investigate various types of disturbances in

this example. An abrupt change can be observed in both of the current and voltage

signals at the time 0.0636 sec. Figure 5.2a shows a 15% and 50% sag disturbance on

the faulted phase voltages “
aV ” and “

bV ” respectively, and a 30% swell disturbance

on the unfaulted phase “
cV ”. There is some high-frequency (HF) distortion on the

voltage waveforms, in particular on the faulted “a” and “b” phases at fault

occurrence time and this is so by virtue of the fact that there is a large step change in

the “a” phase voltage and the “b” phase voltage when the fault occurs. In addition to

voltage signals, the faulted line (
aI and

bI) currents increase greater than the current

(cI) in healthy line as it can be seen from Figure 5.2b. In the case of double-line-

ground fault, only the faulty line currents increases greatly: the increase in the

magnitude of the faulted “a” phase current and “b” phase current is larger than “c”

phase current, as expected. Unlike the voltage waveforms, the current signals are

relatively distortion free from a HF point of view. The abrupt change observed in the

current and voltage signal at 0.0636 sec. enables the classification scheme to identify

the fault phase and fault type.

Since the waveforms have certain distinct characteristics, any successful

classification tool would be able to pick out these relevant features and associate the

waveforms with those of a certain fault class. Here, fault classification is defined as a

multiclass problem. The ten types of faults (A-g, B-g, C-g, A-B, A-C, B-C, AB-g,

AC-g, BC-g, ABC-g) produce a ten-class classification problem. Having chosen the

classes, the next step in developing a classifier is the selection and extraction of

desired features. This refers to the preprocessing of raw data into a smaller set of

features that would be the input to the classifier. This is probably the most critical

step in the analysis. The criterion used in feature selection was to represent the

important characteristics that distinguish each class from another. Here the “wavelet

multi-resolution analysis” technique (for information about MRA refer to

Section 3.4.4) is used as a preprocessing unit to obtain a smaller set of data to

represent each of the class. The key idea in using wavelet transform analysis for

classifying fault types is based on the uniqueness of the wavelet transform

coefficients (WTCs) for each type of signals. The second technique is “descriptive

statistics” that summarize the data into a small set of numbers that contain most of

 91

the relevant information. After the uniqueness of each signal is found, then an

ANN-based classification tool was employed for classification task. The main idea in

this approach is solving the complex fault (three-phase short-circuit) classification

problem under various system and fault conditions. This classification is a pattern

recognition problem where the process must be able to discriminate various fault

classes. The ANN technique provides the ability to classify the classes by identifying

different patterns of the associated voltages and currents. The performance of the

proposed fault classification scheme is evaluated based on a database of about 350

sample cases simulated under different fault types, fault inception angles and various

fault locations monitored from the 34.5 kV test system given in Figure 5.1 and

Appendix B, Figure B.1.

In the next sections the preprocessing module and the ANN-based classification

technique will be described.

5.3 Feature Detection and Extraction

The neural network approach to the detection and classification of system faults

consists of three general tasks; generating sets of line current and line-to-ground

voltages, using these sets to train a neural network, and testing the network on

separate sets of line currents and line-to-ground voltages. The preprocessor is an

internal part of this scheme. Training cases were generated using an electro-magnetic

transient simulation program on a distribution system as described in the Section 5.2.

To enhance the competence of the classifier system, it is necessary to pre-process the

event signals to extract characteristic information. Also, it is impractical to use the

raw waveforms directly as input for a neural network. Thus, certain characteristics of

the waveforms must be identified and reduced to quantitative form in order for the

network to distinguish between faulty conditions.

5.3.1 Introduction

Feature extraction is a pre-processing operation that transforms a pattern from its

original form to a new form suitable for further analysis. It reduces the high

dimensionality of the initial system description. The feature extraction method

proposed in this thesis is based on the “wavelet MRA technique”, and the

 92

distribution of the energy of given signal within different frequency sub-bands. In

addition to the MRA technique, the “descriptive statistics” analyze is also used to

obtain the measure of dispersion of the signals and the detail coefficients. As a result,

the raw data generated by EMTDC is mapped into a small size of interpretable

features.

The MRA is a tool that utilizes the DWT to represent a time-varying signal in terms

of its frequency components. It essentially maps a one-dimensional signal of time

into a two-dimensional signal of time and scale. Wavelet analysis involves

representing signals in terms of simpler, fixed building blocks (wavelets) at different

scales and positions. The main idea is to develop representations of a complicated

signal)(tf in terms of its orthonormal basis, which are the scaling and the wavelet

functions. These two functions are translated and scaled to produce wavelets at

different locations (positions) and on different scales (durations). Fine-scale wavelets

are narrow and brief; coarse-scale wavelets are wide and long lasting. The wavelet

functions represent the high frequencies corresponding to the detailed parts of a

given signal, and scaling functions represent the signal‟s low frequencies or smooth

parts. These functions can be scaled and translated to decompose)(tf and represent

it at different resolutions or scales. This decomposition technique is called multi-

resolution signal decomposition (MSD).

The purpose of feature extraction task is to identify specific signatures of the fault

types in the system. The wavelet transform breaks down the signal into different

time-frequency scales. Each scale represents the signal in the corresponding

sub-band. By using wavelet analysis, the sub-band information can be extracted from

the simulated waveforms, which contain useful fault features. Some bands are

intensive to some types of fault. The energy content of the scale signals relative to

the given signal changes depending upon the type of disturbance. By analyzing these

features of the detail signals, different types of fault can be detected and classified.

In the proposed feature extraction method, disturbance detection is performed in the

wavelet domain rather than time or frequency domain. Using the MSD technique, it

is possible to decompose the given signal into different resolution levels. Any

changes in the smoothness of the signal can be detected and localized at the finer

resolution levels. The detection and localization behavior of five-level MSD of a

 93

current signal is shown in Figure 5.3. (The “analysis” block is defined in Figure 5.4).

The input signal is the
bI current for a three-phase to ground fault in bus-4 with a

FIA of 150 o. Here, the MSD approach is based on a dyadic-orthonormal wavelet

transform analysis with Daubechies‟ wavelet with a ten-coefficient filter having five-

vanishing moments. The value of “vanishing-moments” determines the constants

leading to zeros in the wavelet spectrum. For example it can be seen from Figure 5.3

that regions of the given signal that are constant lead to corresponding zeros in the

associated wavelet spectrum. Generally regions that are linear, quadratic, and cubic,

etc. lead to zeros in the wavelet spectrum, which improves the scale decompositions,

because scales tend to separate and localize better. This generalization is known as

the property of vanishing moments [38]. As the number of vanishing moments,

hence the number of filter coefficients grows the coarse approximation becomes

smoother and the small-scale oscillations are separated better. The choice of number

of filter coefficient depends on the type of signal analyzed. More vanishing moments

lead to better localization of scales and poorer time localization. After examinations

of several types of wavelets like Daubechies 4, Daubechies 8, Daubechies 10,

Daubechies 40; Daubechies 10 is chosen in this thesis and used in the entire analysis.

Analysis Analysis Analysis Analysis Analysis

0 0.2 [s]0.1

0 0.2 [s]0.1

0 0.2 [s]0.1

0 0.2 [s]0.1

0 0.2 [s]0.1

0 0.2 [s]0.1

0 0.2 [s]0.1

0.1

-0.1

0.05

-0.05

0.1

-0.1

0.2

-0.2

1

-1

10

-10

15

-5
The input signal

detail 1

detail 2

detail 3

detail 4

detail 5

approx.5

[I]

[I]

[I]

[I]

[I]

[I]

[I]

Figure 5.3 Five-level MSD of a distorted signal

 94

As shown in Figure 5.3, a five-scale signal decomposition is performed to ensure that

all disturbance features in both high and low frequency are extracted. The given

input signal is decomposed into other signals, which represent a smoother version

and detailed versions of the original signal. The output of the wavelet transform is six

decomposed scale signals with different level of resolution. Therefore, the distorted

signal is represented as a sum of wavelets. It is seen from Figure 5.3 that the first

finer decomposition levels of the distorted signal may be adequate to detect and

localize the disturbance. However, the other coarser resolution levels are also used to

extract more features that can help in the classification scheme.

2

2

)(kh j

)(0 kh

)(1 kc j

)(kc j

)(kd j

Signal

Detail Version

Approx. Version

High Pass Filter

Low Pass Filter

Figure 5.4 One stage MSD using convolution and decimation by factor 2

The input signal in Figure 5.3 has 1001 sample points lasting 0.2 sec. The signal

consists of 10 cycle data, each cycle lasting 0.02 sec. The detail signal in scale 1,

)(1 nd , has 510 sample points due to decimation by a factor of two, as shown in

Figure 5.4. The other detail signals have 264, 141, 80, 49 sample points for)(2 nd ,

)(3 nd ,)(4 nd ,)(5 nd respectively. The approximation signal at the output of last

“analysis” module is)(5 nc with 49 sample points. The input signal has been

sampled at 5 KHz. Thus, a five-scale decomposition of a signal yields 5 detailed

signals having a frequency band of 2.5-1.25 KHz at scale 1; 1.25-0.625 KHz at

scale 2; 625-312.5 Hz at scale 3; 312.5-156.25 Hz at scale 4; 156.25-78.125 Hz at

scale 5 and one smooth signal contains frequency band 78.125 Hz to DC level.

All of the six channels (aV , bV , cV , aI , bI , cI) were decomposed by the five-level

MSD with Daubechies 10 filters for the entire simulation in this thesis. The six

 95

channel‟s data and their sub-bands have the characteristics described in the previous

paragraphs.

In addition to “wavelet MRA technique” briefly described in the previous

paragraphs, the “descriptive statistics” analyze is also used to obtain the measure of

dispersion of the signals and the detail coefficients. Descriptive statistics are a way to

summarize the data into a small set of numbers that contain most of the relevant

information. Statistical information like standard deviation, variance and other

average quantities like maximum amplitudes of line currents and line-to-ground

voltages and their sub-band information obtained by five-level MSD were also

extracted. These parameters are different for each fault class, thus they are unique

identifying features.

For each set of six channel data 27 parameters are computed. Generally, the

computed parameters are the current for three phases before and immediately after

the fault occurred, energy of the current signals over the five detailed components,

power and energy of the voltage channels for each phase. The detailed description of

the parameters is given in the Section 5.3.4.

The “data pre-processing” scheme is represented in Figure 5.5. The pre-processor

extracts pertinent information over 10 cycles of operation. The voltage and current

signals monitored from the secondary of the main step-down transformer (TRF 1) in

Figure 5.1 are fed into signal-processing unit. These modules extract the features

required by the fault detection and classification network. Figure 5.5 shows the

different modules belonging to the signal-processing unit. Module I extracts the five-

level MSD detail coefficients of three current channels. The statistical information

and other average quantities are extracted by the Module II and Module III: Module

II extracts the distribution of the energy of the sub-bands obtained by the Module I.

Module III extracts the statistical information and average quantities of the three

channel voltage and the three channel current information. The “feature collector”

module collects the information produced by the previous three modules. The

information is then put in the order by feature collector module and produced a

feature vector of 27 parameters. The detailed parameters of the feature vector will be

provided in the Section 5.3.4.

 96

3 channel
voltage

E
M

T
D

C
/P

S
C

A
D

Module I
MSD

Module
II

Module
III

F
e

a
tu

re
 C

o
ll
e

c
to

r

1
2
3

27

F
e

a
tu

re
 V

e
c
to

r

3 channel
current

DATA PREPROCESSOR

current-voltage
information

current
information

Figure 5.5 Data processing and feature extraction architecture

5.3.2 Parseval’s Theorem

As mentioned in the previous section, feature extraction is a pre-processing

operation, which transforms a pattern from its original form to a new form suitable

for further processing. The features extracted by the Module I in Figure 5.5 are

processed by a second module to extract the energy distribution of the given pattern.

Parseval‟s theorem relates the energy of the distorted signal to the energy in each of

the expansion components and their wavelet coefficients if the selected scaling

function and the wavelet function form an orthonormal basis. This means that the

energy of the signal)(tf can be partitioned in terms of the expansion coefficients as

in [18]:

0_

22

0

2

)()()(
j k

j

k

kdkcdttf (5. 1)

1

0
0

j

j

dcSignal j
WWW

where)(kd j is the detail coefficients at scale j and)(0 kc presents the last

approximate coefficients as shown in Figure 5.4.

The energy of the current signals will be partitioned at different resolution levels by

the property of Parseval‟s theorem. The standard deviation at different resolution

 97

levels of the decomposed signal can be considered as a measure of the energy as it

was used in [9] and [18] as a feature to classify different power quality problems.

The energy of the detail coefficients, where extracted at different resolution levels, is

used to generate the translation invariant feature vector. The term “translation

invariant” denotes that the features remain unchanged if the position of the distortion

changes.

This property is used as a feature to classify different fault classes. The process is

shown in Figure 5.5 with Module I and Module II. In the first step the three channel

current waveforms are decomposed into different resolution levels by module I. In

the second step the distribution of the signal energy for each detail version at

different resolution levels is computed by Module II. So, the energy of the signals at

different frequency ranges are decomposed and represented, which gives an idea

about the frequency content of the signal and is used as a feature to classify different

fault classes.

5.3.3 Some Other Important Features

In addition to the features extracted by modules one and two, other discriminative

features like voltage signal power and statistical information is obtained by

Module III as shown in Figure 5.5.

The voltage waveforms for “A-g” fault and “ABC-g” fault at bus-4 with a fault

inception angle of 30 o are given in Figure 5.6a and Figure 5.6b, respectively. The

two distorted signals belong to cV channel. Figure 5.6a shows a 50% swell

disturbance and Figure 5.6b shows a 50% sag disturbance. These are slow varying

disturbances. For both of the disturbances, the abrupt change in the magnitude of

signals when fault occurs is seen at scales 1, 2, 3, and 4. The rapid oscillation

disturbances (high frequency) in voltage sag in Figure 5.6b are seen in scales 1 and 2.

The change in the magnitude of the signals is best seen in scales 4 and 5. Although

these two waveforms belong to two different disturbance classes, their detail

components have similar characteristics. And it is difficult to separate single-phase to

ground faults and three-phase to ground faults, since the difference between the two

fault classes are the sag and swell disturbances. Besides that, the MSD technique is

not adequate in detecting slowly varying events like voltage sags, swells, and outages

 98

owing to the poor time resolution at low frequency [16]. This limitation of the MSD

can be overcome by tracking the voltage signal power, which is its mean square

value [16].

d
1

d
2

d
3

d
4

d
5

a
5

20

[V]
40

0

-20
-40

20

40

0

-20
-40

5

0

-5

2

 0

-2
-4

 5

 0

-5

 5

 0

-5

10

 0

-10

 0 0.04 0.08 0.12 0.16 0.2 [s]

d
1

d
2

d
3

d
4

d
5

a
5

20

[V]

0

-20

20
0

-20

5

0

-5

2

 0

-2
-4

 5

 0

-5

 5

 0

-5

10

 0

-10

 0 0.04 0.08 0.12 0.16 0.2 [s]

[s]

[a5]

[d5]

[d4]

[d3]

[d2]

[d1]

 (a) (b)

Figure 5.6 The five-level MSD analysis with Daubechies-10. (a) The voltage swell
disturbance signal. (b) The voltage sag disturbance signal

5.3.4 The Feature vector

In the previous paragraphs the functions of the modules in Figure 5.5 were described.

In this section the feature vector, which is obtained at the last step of data pre-

processing in Figure 5.5 will be explained.

The distribution system shown in Figure 5.1, is simulated using EMTDC/PSCAD

simulation software for the purpose of generating line current waveforms and

line-to-ground voltage waveforms under various fault conditions. A database of three

channel line currents and three channel line-to-ground voltages is built up for various

types of faults at different locations and fault inception angles. Then, a data set of six

channel waveforms is created for further processing by the data pre-processor. One

channel consists of a 10 cycle signal generated at an equivalent sampling rate of

5 KHz (fundamental frequency of 50 Hz) with 1001 sample points lasting

200 msec. Thus, the six-channel data set is a data matrix of (1001,6).

The characteristic information over six-channel current and voltage samples is

extracted by the data pre-processor shown in Figure 5.5. The six-channel data set is

 99

then reduced to a feature vector of a small set with 27 parameters. Accordingly, the

event feature vector parameters are as follows:

i. The maximum modulus current for each three channel before the fault occurs,

ii. The maximum modulus current for each three channel immediately after the

fault occurs,

iii. Energy of each current channel over the 0.078-0.156 kHz band range,

iv. Energy of each current channel over the 0.156-0.312 kHz band range,

v. Energy of each current channel over the 0.312-0.625 kHz band range,

vi. Energy of each current channel over the 0.625-1.250 kHz band range,

vii. Energy of each current channel over the 1.250-2.500 kHz band range,

viii. The signal power for each three channel voltage waveforms,

ix. The energy for each three channel voltage waveforms,

As described in Section 5.3.2, the standard deviation of the DWT coefficients at the

resolution levels of five-level MSD serves as a representative of the current signal

energy partitioning and hence to aid in classification task as it is used in [9] and [18]

as a feature to classify different power quality problems. The standard deviation of

five-level detail coefficients of each current signal channel is computed, yielding

fifteen parameters.

The magnitude change in the current waveforms is used as a feature to aid in

classification of fault classes. This yields six parameters for three cannel current

waveforms.

To detect and separate slowly varying events like voltage sags and swells, the

voltage signal power is computed for three channels as it was used in the [16] to

classify power quality disturbances. The calculated mean square value for three

channel voltage waveforms yields three parameters for feature vector.

 100

Furthermore to enhance the competence of the classifier system and to extract more

relevant information the standard deviation of voltage channels is computed, which

yields three parameters for the feature vector.

Altogether, the feature extraction task is a combination of the “wavelet multi-

resolution analysis” technique and the “descriptive statistics” to extract characteristic

information from the raw data set and produce a reduced data set of feature vector for

being input to the neural network.

In the following paragraph the structure of input vectors will be given and the

detailed parameters will be described.

As described above, a feature vector consists of 27 parameters, which will be given

to the input layer of the neural network. The structure of a feature vector is as

follows:

 277654321 ;...;;;;;;; ffffffffFV (5. 2)

Here the parameters
21, ff correspond to maximum modulus value before and

immediately after the fault for aI ; parameters 43 , ff correspond to maximum

modulus value before and immediately after the fault for bI ; parameters 65 , ff

correspond to maximum modulus value before and immediately after the fault for

cI . The parameters 1110987 ,,,, fffff correspond to standard deviation for five-level

MSD sub-bands for aI . Similarly the parameters 1615141312 ,,,, fffff correspond to

standard deviation for five-level MSD sub-bands for bI ; and the parameters

2120191817 ,,,, fffff correspond to standard deviation for five-level MSD sub-bands

for cI . The parameters 242322 ,, fff correspond to mean square value of absolute

value of aV , bV and cV ; finally the parameters 272625 ,, fff correspond to standard

deviation aV , bV and cV .

The discriminative features of the input vector can be obtained by the neural

classifier, which has the property to solve non-linear problems. All of the

 101

components in the input vector give important features of each fault classes and

consequently classification with an appropriate algorithm can give adequate results.

By repeatedly executing EMTDC data sets and reducing the resulting samples to 27

element vectors, the data pre-processor in Figure 5.5 collect training sets for the

neural classifier. In the next section the neural classification algorithm and the

classification results for the complex fault (short-circuit) classification problem under

various system and fault conditions will be explained.

5.4 Adaptive Pattern Classification

5.4.1 Introduction

As mentioned in Section 5.2, the fault classification scheme in this thesis is defined

as a multi-class problem with ten types of faults (A-g, B-g, C-g, A-B, A-C, B-C,

AB-g, AC-g, BC-g, ABC-g).

A literature search shows that most of the ANN studies for fault classification are

based on multilayer, feed-forward nets. In the case of the typical supervised

back-propagation (BP) network, sets of associated input-output pairs are presented to

the ANN that learns a model of the mapping between input and output. However,

training of a BP network is very time consuming, needs very large training sets, and

easily gets stuck on local minima. Furthermore, it can be difficult to retrain the ANN

with new training data. Therefore it may not be sufficient for the task of fault

classification.

Another approach for the ANN application for fault classification is using data

self-organization obtained through the use of unsupervised learning. Here the task of

the classification network is to cluster the faults into separate classes. So, it is a

pattern recognition problem. Self-organization refers to the specific learning method

without external examples. This is also called unsupervised learning. Given a set of

input patterns, neighboring processing units (neurons) in a self-organizing net

develop into detectors of specific categories of patterns. So, each local neuron-group

acts as a decoder for the inputs [5]. After the learning phase through unsupervised

learning, then the ANN is ready for the classification task, where the features

 102

selected from the input data are assigned to individual classes. Although a

self-organizing map is equipped to perform the role of classification, it is

recommended in literature [5,34] that for best performance it should be accompanied

with a supervised learning scheme. Computation of the self-organizing map (feature

map) may be viewed as the first of two stages for adaptively solving a pattern

classification problem. The second stage is provided by learning vector quantization,

which performs a mechanism for the final fine-tuning of a feature map. The

combination of a self-organizing map and a supervised learning scheme forms an

adaptive pattern classification that is hybrid in nature [5].

In this thesis, a self-organizing map (SOM), with Kohonen‟s learning algorithm

[34,39] and learning vector quantization [LVQ] technique [34] is implemented into

the fault classification study. The SOM is intended to discover significant patterns or

features from a set of feature vectors obtained by the data preprocessor, as

demonstrated in Figure 5.5. SOM obtains the information hidden in high dimensional

data that is otherwise difficult to interpret. The SOM converts the complex nonlinear

relationship between high-dimensional data into a simple geometric relationship on a

low-dimensional display. So it is a vector quantization technique: it compresses the

information, while preserving the most important topological relationship of the

primary data elements. The SOM is especially suitable for data analysis because it

has important visualization properties. It creates a set of prototype vectors

representing the data set and carries out a topology preserving projection of the

prototypes from d-dimensional input space onto a low-dimensional grid. This

ordered grid can be used as a convenient visualization surface for showing different

features of the SOM and the data, i.e. the cluster structure. The visualization of high

dimensional data and discovery of categories is known as exploratory data analysis

[40]. It is emphasized in [34] that the map is only intended to visualize topological

relationships of signals. The maps should not be used for pattern recognition or other

decision processes, because it is possible to increase the recognition accuracy by a

significant amount if the maps are fine tuned, i.e. by the learning vector quantization

algorithms.

After the hidden patterns in a set of feature vectors are discovered and initial

classification is performed by the SOM, the LVQ technique is applied to improve the

quality of the classifier. LVQ, developed by Kohonen, is a technique based on a

 103

supervised learning algorithm. The purpose of LVQ is to group a set of related input

signals into a finite number of categories based on similarity of the input signals,

thereby fine-tuning the initial map, with the number of such categories

predetermined by the SOM.

The whole fault classification scheme with the hybrid neural network structure is

demonstrated in Figure 5.7. The hybrid neural network forms a two-level

classification approach. The whole feature extraction-classification system forms a

pyramid, where the number of patterns and connections decrease. The primary

benefit of the two-level approach is the reduction of the computational cost.

EMTDC/PSCAD

Module

I

Module

II

Module

III

Feature Collector

DATA PREPROCESSOR

Kohonen MAP

Environment

LVQ

T
each

er

Class labels

H
y
b
ri

d
 P

at
te

rn
 C

la
ss

if
ie

r

Figure 5.7 The Adaptive Pattern Classification

 104

The major blocks of the system in Figure 5.7 are:

i. Data preprocessor that extracts the feature vectors from the raw six-channel

signals as described in Section 5.3.1 and Figure 5.5.

ii. Self-Organizing Map: Unsupervised layer that clusters the data vectors taken

from “data preprocessor” to separate clusters.

iii. Learning Vector Quantization: Supervised layer carrying out the classification.

5.4.1.1 Input-Output Structures

The training data set for the hybrid classification scheme in Figure 5.7 is generated

by EMTDC/PSCAD simulation software. It is aimed to have a classifier capable of

recognizing ten classes of system faults. A three-phase power system, shown in

Figure 5.1, was chosen for the purpose of generating line currents and line-to-ground

voltages under different fault conditions as described in Section 5.2. A set of 350

cases were generated by changing fault type, fault inception angle, and fault location.

For each fault condition the raw data is preprocessed by the three modules in

Figure 5.5 and then 350 input vectors with 27 variables were generated. Thus, there

are a total of 27 input units, which include the invariant parameters obtained by the

data preprocessor demonstrated in Figure 5.5. All of the different cases were then

divided into two sets, one to be used for neural-network training and the other for

testing. The training set consists of 250 training examples (25 examples per class)

with ten fault classes, five fault locations, and five inception angles in the range of

0 o ~ 120 o. The test set consists of 100 examples (10 examples per class) with ten

fault classes, five fault locations, and two inception angles 150 oand 180 o .

Verification of training results is performed so that the ANN is first tested with

training patterns, which were used in training, then with samples, which were not

used in training.

An important point related to most of the neural network models, is about the choice

of input data set. It would often be absurd to use primary signal elements, such as

temporal samples of current and voltage waveforms for the components of input

vector directly. It may not be possible to achieve any invariance in perception unless

the primary information is first transformed, using various convolutions with, i.e.

 105

wavelet transforms or other nonlinear functionals of the signals, as components of

input vector [34]. Which particular choice of functionals should be used for

preprocessing in fault classification is described in Section 5.3. So, it is generally

necessary to use some kind of preprocessing to extract a set of invariant features for

the components of the input vector.

The normalization of the data can be thought of the second phase of data

preprocessing. Normalization is not necessary in principle, but it may improve

numerical accuracy because the resulting vectors then tend to have the same dynamic

range. Normalizing the variables of an input vector is important so that none of them

has an overwhelming influence on the training result. Since the SOM algorithm in

this thesis uses Euclidean metric to measure distances between vectors, scaling of

variables is of special importance. If one variable has values in the range of

(0,…,100) and another in the range of (0,…,1) the former will almost dominate the

map organization because of its greater impact on the distances measured.

The normalization method used in this thesis is based on the “logarithmic

transformation” [40]. This is useful if the values of the variable are exponentially

distributed with a lot of small values, and increasingly smaller number of big values

as it is the case in this thesis. This transformation gives more resolution to the low

end of that vector component. The logarithmic transformation is a non-linear

transformation:

)1)min(ln(xxx (5. 3)

where “ln” is the natural logarithm. The resulting values will be non-negative [40]. In

the entire train and test cases of fault classification scheme in this thesis,

“logarithmic transformation” is used to normalize the input vectors.

As it is indicated above, the data set for neural classifier consists of a database of 350

vectors with 27 invariant variables. Thus, the input vector for neural classifier has 27

input units. Moreover, since the problem is a multi-class problem with ten-classes,

the hybrid system has 10 output units that each belonging to one fault class. For the

three-phase distribution system studied here, ten types of faults are to be classified by

the neural network (Table 5.1).

 106

Table 5.1 Fault classifier categories

Category Fault Type Label

1 Phase A to Ground Fault AG

 2 Phase B to Ground Fault BG

3 Phase C to Ground Fault CG

4 Phase A to Phase B Fault AB

5 Phase B to Phase C Fault BC

6 Phase A to Phase C Fault AC

7 Phase A-B to Ground Fault ABG

8 Phase B-C to Ground Fault BCG

9 Phase A-C to Ground Fault ACG

10 Phase A-B-C to Ground Fault ABCG

In the next sections the structure of the “Adaptive Pattern Classifier” will be given.

Both of the models in hybrid system will be described in separate subsections, and

the classifier performance will be demonstrated with an example simulation. Also a

comparison of all the simulation results with varying parameters in both of the SOM

and LVQ will be demonstrated.

5.4.2 SOFM Algorithm

The Self-Organizing Feature Map (SOFM) is a neural network motivated by the

biological nervous system. The various cortices in the cell mass of the animal brain

contain many kinds of maps such that a particular location of the neural response in a

map often directly corresponds to a specific modality and quality of sensory signal.

Similarly, in an artificial Kohonen‟s feature map the nodes are specifically tuned to

various input signal patterns or classes of patterns through self-organization.

Kohonen‟s analogy is that both in the animal brain and the artificial feature map, the

 107

internal representation of information is organized spatially and the maps are formed

adaptively through unsupervised learning [41].

The SOFM is a vector quantization method that places the prototype vectors on a

regular low-dimensional grid in an ordered fashion. The purpose of Kohonen‟s self-

organizing feature map is to capture the topology and probability distribution of

input data. The main idea is to store a large set of input vectors by finding a smaller

set of prototypes, so as to provide a good approximation to the original input space.

The basis of the idea is rooted in vector quantization theory, which produces an

approximation to probability density function of the vectorial input variable using a

finite number of codebook vectors. Once the codebook is chosen, the approximation

of input variable involves finding the reference vector that is closest to the input

variable. After the SOM algorithm converges, the feature map computed by the

SOFM algorithm displays important statistical characteristics of the input data [34].

The SOM consists of neurons organized on a regular low-dimensional grid. Each

neuron is a d-dimensional weight vector (prototype vector, codebook vector, model

vector) where d is equal to the dimension of the input vectors. The neurons are

connected to adjacent neurons by neighborhood relation that dictates the topology or

structure of the map. The SOM can be thought of as a net, which is spread to the data

cloud [34]. The SOFM training algorithm moves the weight vectors so that they span

across the data cloud and so that the map is organized. The feature map computed by

the SOFM algorithm is topologically ordered in the sense that the spatial location of

a neuron in the lattice corresponds to a particular domain or feature of input patterns

[5]. The topological ordering property is that when the synaptic weight vector of a

winning neuron moves toward the input vector, it also has the effect of moving the

synaptic weight vectors of the closest neurons along with the winning neuron so that

the map becomes topologically ordered.

The SOFM reflects variations in the statistics of the input distribution. Regions in the

input space from which sample vectors are drawn with a high probability of

occurrence are mapped onto larger domains of the output space, and therefore with

better resolution than regions in the input space from which sample vectors are

drawn with a low probability of occurrence. This is the “density matching” property

of the feature map [5]. So, this property implies that if a particular region of the input

 108

space contains frequently occurring stimuli, it will be represented by a larger area in

the feature map than a region of the input space where the stimuli occur less

frequently.

The topology preserving mapping algorithm of Kohonen is an iterative process for

training a class of neural networks [34]. The learning procedure is unsupervised or

self organizing and is used to train a network of units or neurons that are arranged in

a low-dimensional sheet-like structure. In this thesis, a two-dimensional structure for

the network is used (as shown in Figure 5.8), but also the application of one or more

dimensional structure is possible.

Two-dimensional

Kohonen layer

)(1tNb

)(2tNb

1I 2I nI
Input layer

Figure 5.8 A two-dimensional Kohonen layer with),(tNb topological neighborhood
where 21 tt

In the SOFM, there are four issues that need to be decided in the beginning of the

algorithm. They are the number of neurons, dimensions of the map grid, map lattice

and shape.

 The number of neurons should usually be selected as big as possible, with the

neighborhood size controlling the smoothness and generalization of the mapping.

However, as the size of the map increases, the training phase becomes

computationally heavy. In this thesis, the default number of neurons is selected

according to an empiric formula of Kohonen [42]. The default number of neurons is

selected to be))(*5(n where n is the number of training samples. In the

simulations, the number of map units is between 80-110.

In the simulations in this thesis, a sheet shaped map is used according to [42],

however it may be possible to use toroid and cylinder shapes according to data

structure. For the selected sheet shaped maps in this thesis, side length along one

 109

dimension is longer than the other, e.g. (8,10), so that the map can orientate itself

properly.

The local topology type of the map can be selected to be either rectangular or

hexagonal (see Section 4.4.2.1 Figure 4.18 for different lattice structures). The

important difference between rectangular and hexagonal lattices is that in the former

all 8 neighbors of a neuron are at the same distance and in the latter 6 neighbors of a

neuron are at the same distance, as shown in Figure 4.18. In this thesis, both of the

lattice structures are used in simulations to obtain different neighborhood relations.

Another important issue that has to be determined before the SOFM algorithm

proceeded is the neighborhood function, which was described in Section 4.4.2.1. The

neighborhood function determines how strongly the neurons are connected to each

other. The simplest neighborhood function is the bubble function, which is constant

over the whole neighborhood of the winner unit and zero elsewhere. Generally, at

each learning step, all the cells within bN are updated, whereas cells outside bN are

left intact. bN is the neighborhood set of the best matching unit (BMU), which is

denoted by b. The neighborhood bN is centered on that unit for which the best match

with an input pattern is found according to Equation 4.30 given in Section 4.4.2.1.

The width or radius of bN can be time-variable, in fact, for good ordering of map,

the bN should be large in the beginning of the training process (the “ordering

phase”), and then shrink with time so that toward the end of the process (the

“convergence phase”), bN should include only the closest neighbors of the winning

neuron b [34]. Also, it has been demonstrated that in biological neurons, there is

lateral interaction, which means that when a neuron is firing, it excites other neurons

in its closest neighborhood more than those farther away from it [41]. To incorporate

this feature in the algorithm, usually the neighborhood around the winning neuron is

made to decay gradually [34]. One of the typical choices is to let the amplitude of the

topological neighborhood (centered on the winning neuron) decay according to

Gaussian function, which was described in Section 4.4.2.1 with Equation 4.32. In

this way, the weight update is the strongest for the winning neuron, and becomes

weaker with increasing lateral distance.

 110

In this thesis, the neighborhood function is chosen to be an “Epanechicov function”

according to Kohonen [42]. Also “gaussian”, “cut-gaussian”, and “bubble” functions

[42] were used as neighborhood function, but the performance obtained by

“epanechicov function” was better then former. So, it is used in the whole

simulations. The “epanechicov” neighborhood function is

 2)(1,0max)(bitbi dth (5. 4)

where)(t is the width of the topological neighborhood function at time t,

ibbi rrd is the distance between map units b and i on the map grid as shown in

Figure 5.8. Also,)(t is given in Section 4.4.2.1 in Equation 4.33.

The training of SOM is usually performed in two phases. In the first phase, relatively

large initial learning rate and neighborhood radius are used. In the second phase both

learning rate and neighborhood radius are small right from the beginning. This

procedure corresponds to first tuning the SOM approximately to the space as the

input data and then fine-tuning the map as described in Section 4.4.2.1.

The SOFM algorithm can be implemented in two ways: as sequential and batch

training algorithms. In the traditional sequential training, samples are presented to the

map one at a time, and the algorithm gradually moves the weight vectors towards

them as described in Section 4.4.1.2. In the batch training, the data set is presented to

the SOM as a whole, and the new weight vectors are weighted averages of the data

vectors.

In an attempt to accelerate the computation of the SOM, the batch algorithm [42] is

used in this thesis. In batch map principle, the whole training set is gone through at

once and only after this the map is updated with the net effect of the samples.

Actually, the updating is done by replacing the prototype vector with a weighted

average over the samples, where the weighting factors are the neighborhood function

values. In each training step, the data set is partitioned according to the Voronoi

regions of the map weight vectors, i.e. each data vector belongs to the data set of the

map unit to which it is closest; this set is called the Voronoi set. After this, the new

weight vectors are calculated as:

 111

n

j ib

n

j jib

i

th

xth
tm

1

1

)(

)(
)1((5. 5)

where kjk mxb minarg is the index of the BMU of data sample jx . The new

weight vector is a weighted average of the data samples, where the weight of each

data sample is the neighborhood function value)(thib
 at its BMU “b” [38]. This is

the way batch algorithm has been implemented in this thesis.

In batch version of the SOFM algorithm the order in which the input patterns are

presented to the network has no effect on the final form of the feature map, and there

is no need for a learning-rate schedule. But the algorithm still requires the use of a

neighborhood function [5].

Finally, the “batch algorithm” can be summarized as follows [42]:

If all observation samples Ntx ,,2,1)(are available prior to computations, they

can be applied as a batch in the SOFM algorithm, whereby the following

computational scheme can be used:

i. Initialization: Choose random values for the initial weight vectors)0(im

(model vectors). The only restriction is that the)0(im be different for

 lj ,,2,1 , where l is the number of neurons in the lattice.

ii. Similarity: For each map unit i, collect a list of all those observation samples

x(t), whose most similar model vector belongs to the neighborhood set iN of

node i.

iii. Updating: Take for each new model vector the mean over the respective list.

And, update the im according to Equation 5.7.

iv. Continuation: Continue with steps 2 and 3 until the im can be regarded as

stationary, or until the end of the iteration time.

In the following paragraphs of this section simulation results for the training data set

described in Section 5.4.1.1 will be demonstrated by SOFM algorithm. Also the

 112

topological relationships of fault classes will be visualized and analyzed by the

visualization properties of the map.

A SOM was trained using the batch-training algorithm for the training set described

in Section 5.4.1.1. The data set consists of 250 example cases with 27 variables. The

data set is normalized according to “logarithmic transformation”. The neighborhood

function is selected to be “epanechicov” function, which was given in Equation 5.4.

A sheet shaped map with hexagonal lattice structure is used in this simulation. The

default number of map units is ())(*5(n =80) according to the empiric formula of

Kohonen [42]. It is selected to be 110 in this simulation to further compare the

results with default size of the map. The selected map size is (10,11) so, side length

along one dimension is longer than the other that make map orientated properly. The

initial radius of the bN is nine, to make the bN cover the majority of the neurons in

the (10,11) map. Special caution is required in the choice of the initial radius of the

)0(bb NN . If the initial neighborhood is too small to start with, the map will not be

ordered globally. This phenomenon can be avoided by starting with a fairly wide

)0(bb NN and letting it shrink with time. In this simulation the radius of bN is

decreased from the value nine (covering the majority of the neurons) to one

(covering neuron b and its six neighbors) with)(t given in Equation 4.33. Before

the training, initial values are given to the prototype vectors of the self-organizing

map. Properly accomplishing the initialization allows the SOM algorithm to

converge faster to an appropriate solution. Typically the map can be initialized by

one of the three-initialization procedures [42]:

i. random initialization, where the map weight vectors are initialized with small

random values

ii. sample initialization, where the map weight vectors are initialized with

random samples drawn from the input data set

iii. linear initialization, where the map weight vectors are initialized in an orderly

fashion along the two greatest eigenvectors of the covariance matrix of the

training data [42].

 113

In the simulations in this thesis, random and linear initializations have been

implemented.

In the SOFM batch algorithm, the training is performed in two phases. In the first

phase, relatively large initial neighborhood radius is used, and in the second phase

neighborhood radius is small right from the beginning as described above. This

procedure corresponds to first tuning the SOM approximately to the same space as

the input data and then fine-tuning the SOM approximately to the same space as the

input data.

Another important property before training the map is the total training time or the

number of training steps (iteration). The number of training steps should be at least

ten times the number of map units in the first phase. And the length of second phase

is at least four times that of the first phase [42]. In this simulation the number of

training steps is selected to be “1100” steps in the first phase of SOM algorithm, and

“4400” steps in the second phase. So totally “5500” steps is considered in the

simulation.

Each neuron in the SOM has actually two positions: one in the input space (the

prototype vector) and another in the output space (on the map grid). Thus SOM is a

vector projection method defining a nonlinear projection from the input space to a

lower-dimensional output space [42]. In this thesis the input space is a

27-dimensional vector, and the output space is a 2-dimensional map. The SOFM

gives topological relations of different classes on the 2-dimensional map by

examining the features of the input vector in a nonlinear fashion. These properties

are visualized in Figure 5.9 and Figure 5.10.

Figure 5.9a shows the average quantization error (QE) of the map at the second

phase of the learning. The average quantization error, denoted by Equation 4.35, is a

measure of the quality of the map [42]. It is the average distance from each data

vector to its best matching unit (the closest model vector). It is data-dependent: it

measures the map in terms of the given training data. The initial value of the QE was

“1.890” in the beginning of the first phase and “0.340” at the beginning of the

second phase of training the map. Finally at the end of the training it reached to

“0.1648”. In the first phase, initial neighborhood radius was relatively large (nine). In

 114

the second phase neighborhood radius is small (one) right from the beginning as

described above. The iteration time step was 1100 and 4400 for first and second

phase respectively. So, in the first phase the value of the QE changed faster than the

second phase. Since, the second phase corresponds to fine-tuning the map.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3
0.32
0.34 Quantization error after each epoch

Number of Iterations

Q
u

a
n

ti
z
a

ti
o

n
 E

rr
o

r

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4

0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4

0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

(a)

(b)

(c)

Figure 5.9 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the
distribution of prototype vectors on the input space. (c) Final state of the distribution
of prototype vectors on the input space

Figure 5.9b and Figure 5.9c shows the distribution of the prototype vectors on the

input space. An important issue should be clarified at this point that although the

prototype vector and the input vector is a 27-dimensional vector, to be able to plot

them on the 2-dimensional space, the first two components of the vectors are

selected. Figure 5.9b shows the linear initialization of the prototype vectors of the

map. During training, the map organizes itself and folds to the training data as shown

in Figure 5.9c. The feature map reflects variations in the statistics of the input

distribution. During training the prototype vector most similar to a data vector is

 115

modified so that it is even more similar to it. This way the map learns the position of

the data cloud. Also, not only the most similar prototype vector, but also its

neighbors on the map are moved towards the data vector. This way the map self-

organizes. Another case is that, the region of the input space containing frequently

occurring stimuli is represented by a larger area in the feature map than a region of

the input space where the stimuli occur less frequently. This reflects the so called

“density matching” property of the feature map [5]. So, the density of the prototype

vectors assigned to an input region approximates the density of the input occupying

this region. In other words, after training has been completed, the map reflects the

statistical characteristics of the inputs. And, the prototype vectors tend to be ordered

according to their mutual similarity (topology preserving property). This second

issue will be clarified in the next two figures.

An initial idea of the number of the clusters in the SOM, as well as their

relationships, is usually acquired by visual inspection of the map. For the trained

Kohonen map, the properties of the clusters can be further explained by analyzing

the weight vectors (prototype vectors) of the neurons in the clusters corresponding to

the given data. The most widely used methods for visualizing the cluster structure of

the SOM are distance matrix techniques, especially the unified distance matrix [43].

The unified distance matrix (U-matrix) shows distances between prototype vectors of

neighboring map units and thus shows the cluster structure of the map..

Figure 5.10 U-matrix of the (10,11) SOM of the training data set

 116

Figure 5.10 shows the U-matrix of the SOM of the training dataset in input space. In

the U-matrix, dark color indicates large distance between neighboring map units

(indicates class borders). Clusters are typically uniform areas of low areas with light

color. The colorbar in Figure 5.10 shows the meaning of the light and dark colors

with respect to the map. From the U-matrix, one can clearly distinguish several

separate areas. There are ten clusters, which were given in Table 5.1. The neurons

with the same color belong to the same category. Since the SOFM algorithm gives a

rough approximation to the probability density function of the data cloud, the borders

between some clusters are not very clear. Also, it is seen from Figure 5.10 that the U-

matrix visualization has much more hexagons than the map size (10,11). This is

because distances between map units are shown, and not only the distance values at

the map units.

Another visualization method is hit histograms [42]. They are formed by taking a

data set, finding the BMU of each data sample from the map, and increasing a

counter in a map unit each time it is the BMU. The hit histogram shows the

distribution of the data set on the map. In Figure 5.11a multiple hit histograms are

shown simultaneously to investigate whole training data set using the map. Here the

hit histograms of ten data sets are shown with respect to color code on the U-matrix.

Here U-mat uses interpolated shading of colors [42]. (Interpolation is a process for

estimating values that lie between known data points). The size of the hit histogram

determines how many times the corresponding map unit is selected BMU.

It is not easy to visualize the structure of the data and distinguish each of the clusters

clearly when the category information is not available as seen in Figure 5.10. Since

the category information of the data is available, it is possible to label each unit in the

map by the class label of the patterns, which are projected onto the map. As shown in

Figure 5.11b, when the class labels are assigned to the map units after training, the

map clearly shows that the data is clustered and thereby demonstrates the topology

preserving property of the SOFM algorithm.

 117

Figure 5.11 (a) The hit histograms on the U-matrix. (b) The labeled SOM

Each node in the feature map is ”labeled” to learn what category of inputs it denotes.

This labeling of nodes of a feature map is accomplished by presenting a number of

input patterns whose class memberships are known, although these labels were not

referred to during the learning. In this simulations 250 input patterns that had been

used for training the feature map were presented to the trained map in order to

determine the classes denoted by the nodes of the feature map. The class of an input

pattern determines the label of the node it activates in the feature map. For example,

if an input pattern that represents the “category 5” according to Table 5.1, activates a

node in the feature map then this node is labeled to denote this category. If a node of

the feature map is activated by the input patterns of different classes, the label of the

node is decided by majority voting. In this case all of the map units are given a

counter of each label. And when the map unit wins a given data vector, the

corresponding counter is increased. After presenting all of the data vectors, the

higher counter determines the label of the map unit. If two or more counters are

equal, then the map unit is not labeled [34].

By comparing Figure 5.1a and Figure 5.1b it is possible to see the topology

preserving property of the map. The map units labeled with the same category are

generally clustered together. Since the SOFM algorithm gives a rough approximation

 118

to the probability density function of the data cloud, some of the clusters, especially

“category 5” and the “category 8”, are not well separable on the feature map.

According to Kohonen [34], if the SOM is to be used as a pattern classifier that the

map units are grouped into subsets, each of which correspond to a class of patterns,

then the problem becomes a decision process. One should not use the maps as such

for pattern recognition or decision processes, because it is possible to increase the

recognition accuracy by a significant amount if the maps are fine tuned according to

supervised learning algorithms. The SOFM algorithm is intended to approximate

input signal values, or their probability density function, by codebook vectors. If the

signal sets are to be classified into a number of categories, then several codebook

vectors are usually represent each class, and decisions made at class borders will be

important but the identity of the codebook vectors within the classes is no longer

important. It is possible to define values for the codebook vectors that they directly

define the decision borders between the classes. In this thesis “Type One-Learning

Vector Quantization (LVQ1) algorithm [34] is used as a supervised classifier that

uses class information to move the Voronoi vectors slightly to improve the quality of

the classifier decision regions.

5.4.3 Fine-tuning of Map By Type-1 Learning Vector Quantization (LVQ1)

The learning vector quantization (LVQ1) is called a binary output pattern classifier

since its output is either zero or one. It is a supervised version of the self-organizing

map networks, suitable particularly for pattern recognition problems.

The LVQ1 neural network consists of a single layer of nodes. The weight vectors for

these nodes are termed “codebook vectors”, since they serve as the reference vectors

against which the input is matched. With total lateral inhibition among all nodes,

only one node remains active for a given input, providing a binary output. This active

node has the codebook vector “closest” to the input sample. Here, the closeness

measure is the Euclidean distance, which was explained in Section 4.4.1.2.

To define the optimal placement of the codebook vectors, initial values for them

must first be set using randomly initialization or the Self-Organizing Map algorithm.

The initial values in the second method roughly correspond to the overall statistical

 119

density function of the input. The next phase is to determine the labels of the

codebook vectors, by presenting a number of input vectors with known classification,

and assigning the cells to different classes by majority voting, according to the

frequency with which each codebook vector is closest to the calibration vectors of a

particular class. The detailed description of labeling the map units was described in

the previous section.

After the codebook vectors are assigned to each class, and each of them is labeled

with the corresponding class symbol, the class regions in the input space are defined

by a simple nearest-neighbor comparison of the codebook vectors with the input data

vectors. The label of the closest codebook vector defines the classification of the

given input data. The LVQ1 algorithm was described in Section 4.4.2.2. The idea in

LVQ1 algorithm is to pull the codebook vectors away from the decision borders, to

demarcate the class borders more accurately. The training phase of the LVQ1 is said

to achieve convergence when the tuned LVQ recognizes input signals with nearly

100% accuracy. The next step is then testing the system with a new set of patterns

that were never presented to the pattern classification network.

The “LVQ1” can be summarized as follows [5]:

i. Initialization: Assign random values for the initial weight vectors)0(im

(model vectors) using randomly initialization or the Self-Organizing Map

algorithm.

ii. Calibration: Determine the labels of the codebook vectors, by presenting a

number of codebook vectors with known classification

iii. Updating: Update the)(tmm ii according to the rule in Equation 4.36.

iv. Continuation: Continue with step 3 until the end of the iteration time.

It is desirable for the learning rate in Equation 4.36 given in Section 4.4.2.2 to

decrease monotonically with the number of iterations. Since LVQ1 is a fine-tuning

method, the initial value should be small, i.e. 0.01 or 0.02 and decrease to zero [34].

In this thesis, several functions for the learning rate was used, such as power series,

linear, inverse-of-time functions. In all cases, the learning rate function was defined

 120

on the interval [0,1] and was monotonically decreasing with time. In the following

paragraph the learning rate functions used in this thesis will be described.

Figure 5.12 Different learning rate functions: linear (solid line), power series (dot-
dashed) and inverse-of-time (dashed) functions

The learning rate)(t is a scalar adaptation gain (1)(0 t), which is decreasing

monotonically in time. The learning rate functions are defined as [42]

)/1()(0 Ttt (5. 6a)

Ttt /

00)/()((5.6b)

)/1001()(0 Ttt (5.6c)

for “linear”, “power series”, and “inverse-of-time” functions respectively. Here 0 is

the initial value of the learning rate, is the final value of the learning rate, T is the

training length and t is the time steps. These are illustrated in Figure 5.12. According

to Kohonen, [34] the initial learning rate is taken between 0.01 or 0.02. The final

value of the learning rate is approximately zero (0.00005 0). In this thesis all of

these functions are used, and since better classification rate is obtained with the

“inverse” function, it is used in the whole simulations as the learning rate function.

 121

In the following paragraphs of this section simulation results for the training-test data

set described in Section 5.4.1.1 will be described. The codebook vectors obtained by

the self-organizing map in the previous section (Section 5.4.2) will be used as the

initial values of the codebook vectors in the LVQ1, as described in the first step of

the LVQ1 algorithm.

The “inverse function” shown in Figure 5.12, is used as the learning rate function.

The initial learning rate is “0.01”.

Another important parameter is the number of training steps that determines how

many times training sequence is performed. According to Kohonen [42], LVQ1

algorithm may be stopped after a number of steps, that is “30-50” times the number

of codebook vectors. In this simulation the selected map size was (10,11): there were

“110” map units (codebook vectors). In this simulation the number of training steps

is selected to be “35*mu=3850”, where “mu” is the number of codebook vectors.

Before proceeding to the next step and analyzing the test results, the “adaptive

pattern classification” network will be illustrated.

Two-dimensional

Kohonen layer

Input layer

1I 2I
3I 27I

Supervised

Training

Unsupervised

Training

Output layer

27 Inputs

10 Class Labels

Figure 5.13 Adaptive pattern classification with combined unsupervised-supervised
learning

 122

Since the problem is a multiclass problem with ten types of faults as given in the

Table 5.1, and learning vector quantization is a binary output pattern classifier; there

is ten units in the output layer of the LVQ1 structure.

The combined unsupervised/supervised training architecture is illustrated in

Figure 5.13. The pattern classification task can be described in two steps with respect

to Figure 5.13. In pattern classification, the first and most important step is feature

extraction. The techniques to extract relevant information from the raw data were

described in Section 5.3. Here the SOFM can be thought as a second feature

extractor to further examine the data and class characteristics. So, the objective of the

SOFM is to select a reasonably small set of features, in which the essential

information of the input data is concentrated. The self-organizing map is suitable for

the task of feature extraction, as described in Section 5.4.1 and Section 5.4.2. The

second step in pattern classification is the actual classification, where the features

selected from the input data are assigned to individual classes. It is recommended by

Kohonen [34] to combine a supervised learning scheme, especially the LVQ for the

second stage of classification with the SOFM for pattern recognition problems. The

combination of self-organizing map and a supervised learning scheme forms

“Adaptive Pattern Classification”, which has hybrid architecture [5].

Figure 5.14 (a) The hit histograms on the U-matrix. (b) The labeled SOM

 123

Figure 5.14 shows the hit histograms on the U-matrix and the labeled map after fine-

tuning the SOFM (described in Section 5.4.2) with LVQ1 algorithm. As seen from

the Figure 5.14a the final state of the map gives a better approximation to the input

data, and the cluster borders are represented better than Figure 5.11a. Also, as it is

seen in Figure 5.14b of the map units not labeled in the first phase of adaptive pattern

classification are now labeled with the class labels, and thus the clusters are

represented better than the case in Figure 5.11b. Then another measure of the map is

the count of labeled map units or cells. In rough training of the SOM the number of

map units that are not labeled is “51”, and after fine-tuning the SOM with LVQ1 the

number of the map units that are not labeled decreased to “40”. Also when the results

of the labeled maps in Figure 5.11b and Figure 5.14b are compared it can be seen

that “category 5” and the “category 8” are better represented and the border between

this two clusters is better demarcated. Moreover, some of the map units‟ labels are

changed because they were incorrectly labeled by the SOFM algorithm in the first

phase of pattern classification. These results reflect the properties of the LVQ1

algorithm. In order to clarify this point, it would be better to describe the main idea

of the LVQ1. LVQ employs supervised competitive learning, based on the “winner

takes all” strategy, to find the output node, which best matches the input pattern [5].

If the input pattern‟s class differs from the best-matched neuron‟s class, the best-

matched neuron is moved away from the exemplar. If the best matched neuron gives

the same class as that of the input pattern, then the best matched neuron is moved

closer to the input pattern vector. As a result the borders between the data clusters

can be demarcated better, and the map can better approximate the given data,

furthermore the initially incorrectly labeled map units can be labeled with the correct

class label.

To obtain the classification rate of the pattern classification network, the following

simple procedure is followed according to [44]. The data set (unlabeled) to be

classified is submitted to the trained prototype vectors. And the labels with respect to

nearest neighboring rule of LVQ are assigned to the given input vectors. In other

words, the codebook vectors best matching to each input vector gives its label to this

input vector. To ensure that the prototypes really represent the “right” classes, the

labels given to each vector in the data set is compared with the “actual” labels of

each vector in the data set. If the labels of a vector before and after classification is

 124

the same, then the binary output “1” is produced. However, if the labels differ, that is

the pattern vector is “incorrectly” classified, than a binary output “0” is produced.

According to this procedure, all of the input vectors in the data set are given a label.

And the sum of the incorrectly labeled vectors determine the misclassification rate of

the pattern classifier.

To further clarify the measure of classification rate, the procedure is given below:

i. Obtain the unlabeled pattern vector from the data set to be classified.

ii. Label the pattern vector according to nearest neighbor rule of LVQ algorithm.

iii. Compare the identifier of the pattern vector by comparing its given label and

actual label.

iv. If the labels are the same then produce “1”.

v. Else if the labels are different then produce “0”.

vi. Proceed with the other pattern vectors in the data set from step 2 to 5.

vii. Count the “errors”, which represent the pattern vectors incorrectly labeled.

viii. Find the error percentage of the classifier for the given data set.

For the data set described in Section 5.4.1.1 and the simulation described in this

section, the misclassification rate for the training data set is “1%” and the

misclassification rate for the test data is “15%”. So the classification performance of

the Adaptive pattern classifier is “99%” for the training data, and “85%” for the test

data.

There are several simulations performed in this thesis, and the maximum

classification rate is “92%” for the test data, which was never given to the “hybrid”

pattern classifier during the training phase. In the following section, the results of the

simulations with varying parameters will be given and the performance of the hybrid

classifier will be described.

 125

5.4.4 Simulation Results

In this thesis it is aimed to design a classifier capable of recognizing ten classes of

three-phase system faults. The ten types of faults to be classified in this thesis are

described in Table 5.1 in Section 5.4.1.1. The fault classifier model was illustrated

and described in Figure 5.7 in Section 5.4.

In this section several simulations with varying parameters related to the hybrid

pattern classifier illustrated in Figure 5.7 and Figure 5.13 will be given. The

simulations include six cases, which are obtained with the best performance overall

the simulations. As the network parameters related to these six cases are explained,

the test results are given in a table as well.

The simulations are performed on a platform with the following properties:

 CPU: Pentium III-MMX Processor at 1 GHz.

 Memory: SDRAM with 3x256 MB.

 Operating System: Windows 2000 Professional Edition.

 MATLAB Version 6.0.0.88 (R12).

 Preprocessor: Wavelet Toolbox Version 2.0 (R12).

 Adaptive Pattern Classifier: SOM Toolbox Version 2.0 [42].

Feature detection and extraction with the “wavelet multi-resolution analysis”

technique was performed using the “Wavelet Toolbox Version 2.0” in “Matlab 6.0”.

The classification of ten-fault classes is based on the “SOM Toolbox”, which is a

freely available Matlab package developed by “Helsinki University of Technology”

[42].

The six simulation cases are described in the following paragraphs.

The common properties of the simulations are as follows. The simulations include

several map sizes between “80” map units to “110” map units. A sheet shaped map

with a local topology of rectangular and hexagonal structure is used for the

simulations. The map sizes are (8,10), (9,10), and (11,10). The initial values of the

 126

prototype vectors of SOM are given according to random initialization and linear

initialization as described in Section 5.4.2. The neighborhood function for SOFM

algorithm is chosen to be an “Epanechicov function” given by Equation 5.4. The

SOFM algorithm is implemented in batch training algorithm. The number of training

steps for the SOFM algorithm was between “4000” and “5500” iterations, which will

be described in more detail in the following paragraphs. For the LVQ1 algorithm the

initialization of the codebook vectors is performed according to the final state of the

SOFM corresponding to each simulation. The learning rate function for LVQ1

algorithm is selected to be the “inverse-of-time” function given by Equation 5.6c.

The initial learning rate is “0.01” for all cases. The number of training steps for the

LVQ1 algorithm was between “2800” and “3850” iterations, which will be described

in more detail in the following paragraphs. For all simulations the data set described

in Section 5.4.1.1 is used. First the hybrid classifier (shown in Figure 5.7 and

Figure 5.13 in more detail) is trained with the training set that consists of 250

training examples (25 examples per class). Afterwards it is tested with the test set

that consists of 100 training examples (10 examples per class). (The data set was

normalized according to “logarithmic transformation” before being used in adaptive

pattern classifier). The rated performance of the test data is between “85%” and

“92%”.

The following six paragraphs describe the parameters of the six simulation cases.

The first simulation case (will be denoted by “SIM_1”) consists of a sheet shaped

map with a local topology of hexagonal structure of (8,10) map. The initial values of

the map units are given according to random initialization. “Epanechicov function” is

used as the neighboring function for the SOFM batch algorithm. In the first phase of

SOFM algorithm the initial neighborhood radius was seven and in the second phase

neighborhood radius is one. So, the bN is large in the beginning of the training

process, and then shrink with time so that toward the end of the process, bN includes

only the closest neighbors of the winning neuron b. bN is the neighborhood set of

the best matching unit (BMU), which is denoted by b. The number of training steps

should be at least ten times the number of map units in the first phase. And the length

of second phase is at least four times that of the first phase [42]. So, in this respect,

the number of training steps is selected to be “800” steps in the first phase of SOM

 127

algorithm, and “3200” steps in the second phase. So totally “4000” steps is

considered in the simulation. The initial value of the QE (that was described in the

simulation in Section 5.4.2) was “2.415” in the beginning of the first phase and

“0.475” at the beginning of the second phase of training the map. Finally at the end

of the training it reached to “0.2376”. The quantization error in the second phase of

SOM algorithm, initial state of the distribution of prototype vectors on the input

space, and final state of the distribution of prototype vectors on the input space are

illustrated in the Figure C.1 in Appendix C. As seen from Figure C.1b and

Figure C.1c after training has been completed, the map reflects the statistical

characteristics of the input space. The feature map tends to imitate the distribution of

the data cloud. After adaptation of the map with the SOFM algorithm, it is calibrated

according to “majority voting” as described in Section 5.4.2 and Section 5.4.3. The

classification task is performed with LVQ1 algorithm as described in Section 5.4.3.

In this simulation the number of training steps is selected to be “35*mu=2800”,

where “mu” is the number of codebook vectors. The classification performance of

the Adaptive pattern classifier is “100%” for the training data, and “89%” for the test

data. The hit histograms on the U-matrix and the labeled map before and after fine-

tuning the SOFM with LVQ1 algorithm are illustrated in the Figure C.2 and

Figure C.3 in Appendix C. It is seen that the cluster border demarcation is better

approximated after training the SOFM with LVQ1 algorithm. The clusters are better

represented on the U-mat with the “hit-histograms”. Since there is some correlation

between the cluster labeled with “BC” and the cluster labeled with “BCG”, the

separation between them is not very clear on the U-mat, but from the labels and “hit-

histograms” it seems that they correspond to two different clusters. Moreover, as

seen from Figure C.2b and Figure C.3b the number of missing labels (or the map

units not assigned to any of the clusters) is decreased after fine-tuning the feature

map with LVQ1. This is because the LVQ1 provides a better approximation to the

data cloud. So the map units without cluster labels are now assigned to clusters.

The second simulation case (will be denoted by “SIM_2”) consists of a sheet shaped

map with a local topology of rectangular structure of (8,10) map. The initial values

of the map units are given according to linear initialization. “Epanechicov function”

is used as the neighboring function for the SOFM batch algorithm. In the first phase

of SOFM algorithm the initial neighborhood radius was seven and in the second

 128

phase neighborhood radius is one. The number of training steps is selected to be

“800” steps in the first phase of SOM algorithm, and “3200” steps in the second

phase. So totally “4000” steps is considered in the simulation. The initial value of the

QE was “1.893” in the beginning of the first phase and “0.421” at the beginning of

the second phase of training the map. Finally at the end of the training it reached to

“0.2132”. The quantization error in the second phase of SOM algorithm, initial state

of the distribution of prototype vectors on the input space, and final state of the

distribution of prototype vectors on the input space are illustrated in the Figure C.4 in

Appendix C. As seen from Figure C.4b and Figure C.4c after training has been

completed, the map reflects the statistical characteristics of the input space. The

feature map tends to imitate the distribution of the data cloud. After adaptation of the

map with the SOFM algorithm, it is calibrated according to “majority voting”. The

classification task is performed with LVQ1 algorithm. In this simulation the number

of training steps is selected to be “35*mu=2800”, where “mu” is the number of

codebook vectors. The classification performance of the Adaptive pattern classifier is

“99%” for the training data, and “92%” for the test data. The hit histograms on the

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1

algorithm are illustrated in the Figure C.5 and Figure C.6 in Appendix C. It is seen

that the cluster border demarcation is better approximated after training the SOFM

with LVQ1 algorithm. The clusters are better represented on the U-mat with the

“hit-histograms”. Since there is some correlation between the cluster labeled with

“AB” and the cluster labeled with “ABG”, the separation between them is not very

clear on the U-mat, but from the labels and “hit-histograms” it seems that they

correspond to two different clusters. Also it is seen from the U-mat plots in

Figure C.5a and Figure C.6a that there is some relation between “AC” and “ACG”.

Moreover, as seen from Figure C.5b and Figure C.6b the number of missing labels

(or the map units not assigned to any of the clusters) is decreased after fine-tuning

the feature map with LVQ1. This is because the LVQ1 provides a better

approximation to the data cloud. So the map units without cluster labels are now

assigned to clusters.

The third simulation case (will be denoted by “SIM_3”) consists of a sheet shaped

map with a local topology of hexagonal structure of (9,10) map. The initial values of

the map units are given according to random initialization. “Epanechicov function” is

 129

used as the neighboring function for the SOFM batch algorithm. In the first phase of

SOFM algorithm the initial neighborhood radius was eight and in the second phase

neighborhood radius is one. The number of training steps is selected to be “900”

steps in the first phase of SOM algorithm, and “3600” steps in the second phase. So

totally “4500” steps is considered in the simulation. The initial value of the QE was

“2.523” in the beginning of the first phase and “0.365” at the beginning of the

second phase of training the map. Finally at the end of the training it reached to

“0.236”. The quantization error in the second phase of SOM algorithm, initial state

of the distribution of prototype vectors on the input space, and final state of the

distribution of prototype vectors on the input space are illustrated in the Figure C.7 in

Appendix C. As seen from Figure C.7b and Figure C.7c after training has been

completed, the map reflects the statistical characteristics of the input space. The

feature map tends to imitate the distribution of the data cloud. After adaptation of the

map with the SOFM algorithm, it is calibrated according to “majority voting”. The

classification task is performed with LVQ1 algorithm. In this simulation the number

of training steps is selected to be “35*mu=3150”, where “mu” is the number of

codebook vectors. The classification performance of the Adaptive pattern classifier is

“100%” for the training data, and “89%” for the test data. The hit histograms on the

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1

algorithm are illustrated in the Figure C.8 and Figure C.9 in Appendix C. It is seen

that the cluster border demarcation is better approximated after training the SOFM

with LVQ1 algorithm. The clusters are better represented on the U-mat with the

“hit-histograms”. Since there is some correlation between the cluster labeled with

“BC” and the cluster labeled with “BCG”, the separation between them is not very

clear on the U-mat, but from the labels and “hit-histograms” it seems that they

correspond to two different clusters. Also it is seen from the U-mat plots in

Figure C.8a and Figure C.9a that there is some relation between “AC” and “ACG”.

Moreover, as seen from Figure C.8b and Figure C.9b the number of missing labels

(or the map units not assigned to any of the clusters) is decreased after fine-tuning

the feature map with LVQ1. This is because the LVQ1 provides a better

approximation to the data cloud. So the map units without cluster labels are now

assigned to clusters.

 130

The forth simulation case (will be denoted by “SIM_4”) consists of a sheet shaped

map with a local topology of rectangular structure of (9,10) map. The initial values

of the map units are given according to linear initialization. “Epanechicov function”

is used as the neighboring function for the SOFM batch algorithm. In the first phase

of SOFM algorithm the initial neighborhood radius was eight and in the second

phase neighborhood radius is one. The number of training steps is selected to be

“900” steps in the first phase of SOM algorithm, and “3600” steps in the second

phase. So totally “4500” steps is considered in the simulation. The initial value of the

QE was “1.891” in the beginning of the first phase and “0.376” at the beginning of

the second phase of training the map. Finally at the end of the training it reached to

“0.1691”. The quantization error in the second phase of SOM algorithm, initial state

of the distribution of prototype vectors on the input space, and final state of the

distribution of prototype vectors on the input space are illustrated in the Figure C.10

in Appendix C. As seen from Figure C.10b and Figure C.10c after training has been

completed, the map reflects the statistical characteristics of the input space. The

feature map tends to imitate the distribution of the data cloud. After adaptation of the

map with the SOFM algorithm, it is calibrated according to “majority voting”. The

classification task is performed with LVQ1 algorithm. In this simulation the number

of training steps is selected to be “35*mu=3150”, where “mu” is the number of

codebook vectors. The classification performance of the Adaptive pattern classifier is

“99%” for the training data, and “91%” for the test data. The hit histograms on the

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1

algorithm are illustrated in the Figure C.11 and Figure C.12 in Appendix C. It is seen

that the cluster border demarcation is better approximated after training the SOFM

with LVQ1 algorithm. The clusters are better represented on the U-mat with the

“hit-histograms”. Since there is some correlation between the cluster labeled with

“AB” and the cluster labeled with “ABG”, the separation between them is not very

clear on the U-mat, but from the labels and “hit-histograms” it seems that they

correspond to two different clusters. Moreover, as seen from Figure C.11b and

Figure C.12b the number of missing labels (or the map units not assigned to any of

the clusters) is decreased after fine-tuning the feature map with LVQ1. This is

because the LVQ1 provides a better approximation to the data cloud. So the map

units without cluster labels are now assigned to clusters.

 131

The fifth simulation case (will be denoted by “SIM_5”) consists of a sheet shaped

map with a local topology of hexagonal structure of (11,10) map. The initial values

of the map units are given according to linear initialization. “Epanechicov function”

is used as the neighboring function for the SOFM batch algorithm. In the first phase

of SOFM algorithm the initial neighborhood radius was nine and in the second phase

neighborhood radius is one. The number of training steps is selected to be “1100”

steps in the first phase of SOM algorithm, and “4400” steps in the second phase. So

totally “5500” steps is considered in the simulation. The initial value of the QE was

“1.890” in the beginning of the first phase and “0.34” at the beginning of the second

phase of training the map. Finally at the end of the training it reached to “0.1648”.

The quantization error in the second phase of SOM algorithm, initial state of the

distribution of prototype vectors on the input space, and final state of the distribution

of prototype vectors on the input space are illustrated in the Figure 5.9. As seen from

Figure 5.9b and Figure 5.9c after training has been completed, the map reflects the

statistical characteristics of the input space. The feature map tends to imitate the

distribution of the data cloud. After adaptation of the map with the SOFM algorithm,

it is calibrated according to “majority voting”. The classification task is performed

with LVQ1 algorithm. In this simulation the number of training steps is selected to

be “35*mu=3850”, where “mu” is the number of codebook vectors. The

classification performance of the Adaptive pattern classifier is “99%” for the training

data, and “85%” for the test data. The hit histograms on the U-matrix and the labeled

map before and after fine-tuning the SOFM with LVQ1 algorithm are illustrated in

the Figure 5.11 and Figure 5.14. It is seen that the cluster border demarcation is

better approximated after training the SOFM with LVQ1 algorithm. The clusters are

better represented on the U-mat with the “hit-histograms”. Since there is some

correlation between the cluster labeled with “BC” and the cluster labeled with

“BCG”, the separation between them is not very clear on the U-mat, but from the

labels and “hit-histograms” it seems that they correspond to two different clusters.

Moreover, as seen from Figure 5.11b and Figure 5.14b the number of missing labels

(or the map units not assigned to any of the clusters) is decreased after fine-tuning

the feature map with LVQ1. This is because the LVQ1 provides a better

approximation to the data cloud. So the map units without cluster labels are now

assigned to clusters.

 132

The last simulation case (will be denoted by “SIM_6”) consists of a sheet shaped

map with a local topology of rectangular structure of (11,10) map. The initial values

of the map units are given according to random initialization. “Epanechicov

function” is used as the neighboring function for the SOFM batch algorithm. In the

first phase of SOFM algorithm the initial neighborhood radius was nine and in the

second phase neighborhood radius is one. The number of training steps is selected to

be “1100” steps in the first phase of SOM algorithm, and “4400” steps in the second

phase. So totally “5500” steps is considered in the simulation. The initial value of the

QE was “2.294” in the beginning of the first phase and “0.280” at the beginning of

the second phase of training the map. Finally at the end of the training it reached to

“0.1390”. The quantization error in the second phase of SOM algorithm, initial state

of the distribution of prototype vectors on the input space, and final state of the

distribution of prototype vectors on the input space are illustrated in the Figure C.13

in Appendix C. As seen from Figure C.13b and Figure C.13c after training has been

completed, the map reflects the statistical characteristics of the input space. The

feature map tends to imitate the distribution of the data cloud. After adaptation of the

map with the SOFM algorithm, it is calibrated according to “majority voting”. The

classification task is performed with LVQ1 algorithm. In this simulation the number

of training steps is selected to be “35*mu=3850”, where “mu” is the number of

codebook vectors. The classification performance of the Adaptive pattern classifier is

“100%” for the training data, and “88%” for the test data. The hit histograms on the

U-matrix and the labeled map before and after fine-tuning the SOFM with LVQ1

algorithm are illustrated in the Figure C.14 and Figure C.15 in Appendix C. It is seen

that the cluster border demarcation is better approximated after training the SOFM

with LVQ1 algorithm. The clusters are better represented on the U-mat with the

“hit-histograms”. Since there is some correlation between the cluster labeled with

“AC” and the cluster labeled with “ACG”, the separation between them is not very

clear on the U-mat, but from the labels and “hit-histograms” it seems that they

correspond to two different clusters. Moreover, as seen from Figure C.14b and

Figure C.15b the number of missing labels (or the map units not assigned to any of

the clusters) is decreased after fine-tuning the feature map with LVQ1. This is

because the LVQ1 provides a better approximation to the data cloud. So the map

units without cluster labels are now assigned to clusters.

 133

“SIM_5”; the fifth simulation was explained in the Section 5.4.2 and Section 5.4.3 in

more detail.

In the next paragraph the results of the adaptive pattern classification system for the

six simulation cases described above are summarized in a table. The results shown in

Table 5.2 were obtained after the hybrid system in Figure 5.7 and Figure 5.13 is

trained using 250 different fault patterns as described previously. During the testing,

the pattern classifier was presented with 100 new fault patterns. The neural network

never saw these patterns, and its task was to classify new patterns based on the

previous experience (i.e., using the information learned during the training).

Table 5.2 Hybrid neural network classification results

Simulation Description

Classification rate (%)

Training

data set

Test

data set

SIM_1 Random initialized hexagonal structure

of (8,10) map

100 89

SIM_2 Linear initialized rectangular structure of

(8,10) map

99 92

SIM_3 Random initialized hexagonal structure

of (9,10) map

100 89

SIM_4 Linear initialized rectangular structure of

(9,10) map

99 91

SIM_5 Linear initialized hexagonal structure of

(11,10) map

99 85

SIM_6 Random initialized rectangular structure

of (11,10) map

100 88

 134

Classification was based on the following procedure:

The data set (unlabeled) to be classified is submitted to the trained prototype vectors.

And the labels with respect to nearest-neighboring-rule of LVQ are assigned to the

given input vectors. In other words, the codebook vectors best matching to each input

vector gives its label to this input vector. To ensure that the prototypes really

represent the “right” classes, the labels given to each vector in the data set is

compared with the “actual” labels of each vector in the data set. If the labels of a

vector before and after classification is the same, then the binary output “1” is

produced. However, if the labels differ, that is the pattern vector is “incorrectly”

classified, than a binary output “0” is produced. According to this procedure, all of

the input vectors in the data set are given a label. And the sum of the incorrectly

labeled vectors determines the misclassification rate of the pattern classifier.

As the test results in Table 5.2 and the figures in the Appendix C are examined, some

properties of the parameters used in the SOFM algorithm and the LVQ1 algorithm is

obtained. These properties are described below.

As the number of the units in the self-organizing map is increased, the map become

smoother and the topological relations and the clusters can be examined better in the

SOFM. So the map can be visualized better.

In this simulation, the best classification value is obtained using the empiric formula

of Kohonen [42], which was given in Section 5.4.2. The number of map units is

())(*5(n =80) for this case. In the literature, increasing the number of map units

generally improves the classification performance of the map [42]. However the

results of the simulations were close to each other as the number of the map units are

increased for the cases in Table 5.2. This may be because of the initial states of the

weight vectors on the map. It may be possible to obtain some improvements on the

performance if some more experiments are done.

Using rectangular map structure generally increases the classification rate of the

classifier. For example, in the case of a (8,10) map the result obtained by a

rectangular lattice (92%) is better than the hexagonal lattice (89%). Also in the case

of [9 10] map rectangular lattice (91%) is better than the hexagonal lattice (89%).

 135

Finally in the case of (11,10) map rectangular lattice (88%) is better than the

hexagonal lattice (85%). This may be possible because as opposed to the six

neighbors in a hexagonal lattice, the eight neighbors of a neuron are at the same

distance (as seen in Figure 4.18 in Section 4.4.2.1). So, the map can organize itself

better.

 136

6. CONCLUSION

A Combined Wavelet-ANN based fault classifier has been investigated for electrical

distribution systems in this thesis. Ten fault categories have been selected to be

identified by using the proposed approach. It is shown that the technique presented

correctly recognizes and discriminates the fault type and faulted phases(s) with a

high degree of accuracy for different location and time of occurrence in the simulated

model distribution system.

The underlying approach of the proposed classifier is to carry out (preprocessed)

waveform recognition in the self-organizing feature map. The SOFM is intended to

discover significant patterns or features from a set of feature vectors obtained by the

data preprocessor. SOFM obtains the information hidden in high dimensional data

that is otherwise difficult to interpret. The test results show that the decision regions

between different fault classes are quite clearly defined. A final decision about the

fault type is made by combining the information extracted by SOFM with a

supervised learning algorithm: type-one learning vector quantization.

The performance of the proposed fault classification technique is comparable and

close to the classifiers in the literature. As described in Section 5.4.4, the results

shown in Table 5.2 were obtained after the hybrid system in Figure 5.7 and

Figure 5.13 is trained using 250 different fault patterns as described previously.

During the testing, the pattern classifier was presented with 100 new fault patterns.

The rated performance of the test data is between “85%” and “92%”. All the test

results presented show that the proposed fault classification technique based on SOM

is well suited for fault classification problems. This hybrid method is easy and very

promising for fault classification problem.

Furthermore, the classification performance of the combined Wavelet-SOM network

may be improved by performing some modifications to the fault classifier. First of

all, depending on the computing power of the test platform, using a large (above 100

 137

units) map size may improve the clustering performance of the map since in this case

the data and the cluster borders may be better represented by the feature map. Also

some more experiments with varying system parameters may be performed to

investigate if better performance can be obtained. Moreover, modifying the SOM

algorithm with conscience mechanism may improve the performance of the

classifier: A problem with competitive learning algorithms is that they sometimes

lead to solutions where several nodes of the network remain unchanged. For

example, if some region of the input space is more crowded than others and the

initial density of weight vectors is too low in this region, specific nodes may be

winning the competitions. The Kohonen learning algorithm attempts to overcome

this problem by using topological neighborhoods. Although this approach is very

effective, some more modifications may be possible to completely alleviate this case.

Conscience mechanism is a technique developed for this issue. The idea is that each

neuron keeps track of how many times it has won the competition (i.e., how many

times its synaptic weight vector has been the neuron closest to the input vector in

Euclidean distance). The notion used here is that if a neuron wins too often, it “feels

guilty” and therefore pulls itself out of the competition. This method adapts the

weights of the winning node only and the learning rate is assumed to be constant [5].

This research has showed that combined Wavelet-ANN technique can be used for the

classification of power system short-circuit faults. More work is needed to further

explore the other aspects of cluster characteristics and to better classifying each of

them. Future work can involve the use of actual recorded field data to verify initial

results obtained in this study.

 138

REFERENCES

[1] Santoso, S., Powers, E.J., Grady, W.M., Parsons, A.J., 2000. Power Quality
Disturbance Waveform Recognition Using Wavelet-Based Neural
Classifier-Part 1: Theoretical Foundation, IEEE Transactions on
Power Delivery, 15/1, 222-228, January.

[2] Kezunovic, M., Rikalo, I., 1996. Detect and Classify Faults Using Neural Nets,
IEEE Computer Applications in Power, October, 43-47.

[3] Momoh, J.A., Dias, L.G., Laird, D.N., 1997. An Implementation of a Hybrid
Intelligent tool for Distribution System Fault Diagnosis, IEEE
Transactions on Power Delivery, 12/2, 1035-1040, April.

[4] Anderson, P.M., 1995. Analysis of Faulted Power Systems, IEEE Press, USA.

[5] Haykin, S., 1999. Neural Networks: A Comprehensive Foundation, Prentice Hall
International. Inc., New Jersey.

[6] Song, H., Lee, S., 1998. A Self-Organizing Neural Tree for Large-Set Pattern
Classification, IEEE Transactions on Neural Networks, 9/3, 369-380,
May.

[7] Aggarwal, R.K., Xuan, Q.Y., Johns, A.T., Li, F., Bennett, A., 1999. A Novel
Approach to Fault Diagnosis in Multicircuit Transmission Lines Using
Fuzzy ARTmap Neural Networks, IEEE Transactions on Neural
Networks, 10/5, 1214-1221, September.

[8] Ebron, S., Lubkeman, D.L., White, M., 1990. A Neural Network Approach to
the Detection of Incipient Faults on Power Distribution Feeders, IEEE
Transactions on Power Delivery, 5/2, 905-914, April.

[9] Gaouda, A.M., El-Saadany, E.F., Salama, M.M.A., Sood, V.K., and
Chikhani, A.Y., 2001. Monitoring HVDC Systems Using Wavelet
Multi-Resolution Analysis, IEEE Transactions on Power Systems,
16/4, 662-670, November.

[10] Ghosh, A.K., Lubkeman, D.L., 1995. The Classification of Power System
Disturbance Waveforms using a Neural Network Approach, IEEE
Transactions on Power Delivery, 10/1, 109-115, January.

[11] Aggarwal, R.K., Xuan, Q.Y., Dunn, R.W., Johns, A.T., Bennett, A., 1999. A
Novel Fault Classification Technique for Double-circuit Lines Based
on a Combined Unsupervised/Supervised Neural Network, IEEE
Transactions on Power Delivery, 14/4, 1250-1256, October.

[12] Fahmida, N.C., Arevena, J.L., Grady, W.M., Parsons, A.J., 1998. A Modular
Methodology for Fast Fault Detection and Classification in Power
Systems, IEEE Transactions on Control Systems Technology, 6/5,
623-633, September.

 139

[13] Kandil, N., Sood, V.K., Khorasani, K., Patel, R.V., 1992. Fault Identification
in AC-DC Transmission System Using Neural Networks, IEEE
Transactions on Power Systems, 7/2, 812-819, May.

[14] Frick, K.L., Starrett, S.K., 2000. Classification of Disturbance Characteristics
Using a Kohonen Neural Network, Large Engineering Systems
Conference on Power Engineering, Halifax, Canada, July 2000,
124-128.

[15] Wang, H., Keerthipala, W.W.L., 1998. Fuzzy-Neuro Approach to Fault
Classification for Transmission Line Protection, IEEE Transactions
on Power Delivery, 15/1, 222-228, January.

[16] Elmitwally, A., Farghal, S., Kandil, M., Abdelkader, S., and Elkateb, M.,
2001. Proposed Wavelet-neurofuzzy Combined System for Power
Quality Violations Detection and Diagnosis, IEE Proc.-Gener.
Transm. Distrib., 148/1, 662-670, January.

[17] Dash, P.K., Mishra, S., Salama, M.M.A., Liew, A.C., 2000. Classification of
Power System Disturbances Using a Fuzzy Expert System and a
Fourier Linear Combiner, IEEE Transactions on Power Delivery,
15/2, 472-477, April.

[18] Gaouda, A.M., Salama, M.M.A., Sultan, M.R., and Chikhani, A.Y., 1999.
Power Quality Detection and Classification Using Wavelet-
Multiresolution Signal Decomposition, IEEE Transactions on Power
Delivery, 14/4, 16-25, October.

[19] Zhao, W., Song, Y.H., Min, Y., 1998. Wavelet Analysis Based Scheme for
Fault Detection and Classification in Underground Power Cable
Systems, Electric Power Systems Research, Elsevier, December 1978,
23-30.

[20] EMTDC User’s manual, Manitoba HVDC Research Center, Manitoba,
Canada.

[21] Chan, Y.T., 1996. Wavelet Basics, Kluver Acedemic Publisher, Norwell,
Massachusetts.

[22] Kaiser, G., 1994. A Friendly Guide To Wavelets, Boston: Birkhauser,
Cambridge.

[23] Galli, A.W., Heydt, G.T. and Ribeiro, P.F., 1996. Exploring the Power of
Wavelets, IEEE Computer Applications in Power, October, 37-41.

[24] Vetterli, M. and Rioul, O., 1991. Wavelets and Signal Processing, IEEE SP
Magazine, October, 14-38.

[25] Graphs, A., 1995. An Introduction to Wavelets, IEEE Computational Science
& Engineering, Summer, 50-61.

[26] Rao, R.M. and Bopardikar, A.S., 1998. Wavelet Transforms: Introduction to
Theory and Applications, Addison-Wesley Longman, Massachusetts.

[27] Daubechies, I., 1992. Ten Lectures On Wavelets, Society for Industrial and
Applied Mathematics, Pennsylvania.

 140

[28] Vetterli, M. and Herley, C., 1992. Wavelets and Filter banks: Theory and
Design, IEEE Transactions on Signal Processing, 40/9, 2207-2232.

[29] Mallat, S., 1999. A Wavelet Tour Of Signal Processing, Academic Press,
Cambridge.

[30] Rojas, R., 1996. Neural Networks: A Systematic Introduction, Springer-Verlag
Berlin Heidelberg, Germany.

[31] Amari, S., 1990. Mathematical Foundations of Neurocomputing, Proceedings
of the IEEE, 78/9, 54-73, September.

[32] Sarle, W.S., 1997. Neural Network FAQ, part 1 of 7: Introduction, periodic
posting to the Usenet newsgroup comp.ai.neural-nets, URL:
ftp://ftp.sas.com/pub/neural/FAQ.html.

[33] Ripley, B.D., 1996. Pattern Recognition and Neural Networks, Cambridge
University Press, Cambridge.

[34] Kangas, J.A., Kohonen, T. and Laaksonen, J.T., 1990. Variants of Self-
Organizing Maps, IEEE Transactions on Neural Networks, 1/1, 93-99,
March.

[35] Kohonen, T., 1990. The Self-Organizing Map, Proceedings of the IEEE, 78/9,
74-90, September.

[36] Bose, N.K. and Garga, A.K., 1993. Neural Network design Using Voronoi
Diagrams, IEEE Transactions on Neural Networks, 4/5, 778-787,
September.

[37] Chu, W.C. and Bose, N.K., 1998. Vector Quantization of Neural Networks,
IEEE Transactions on Neural Networks, 9/6, 1235-1244, November.

[38] Galli, A.W. and Nielsen, O.M., 1999. Wavelet Analysis for Power System
Transients, IEEE Computer Application in Power, 16-25, January.

[39] Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V.,
and Saarela, A., 2000. Self-Organization of a Massive Document
Collection, IEEE Transactions on Neural Networks, 11/3, 574-585,
May.

[40] De, A., Chatterjee, N., 2001. Impulse Fault diagnosis in Power Transformers
Using Self-Organizing Map and Learning Vector Quantization, IEE
Proc.-Gener. Transm. Distrib., 148/5, 397-405, September.

[41] Gaugh, J.L., Weinberger, N.M., and Lynch, G., 1990. Brain Organization and
Memory, 323-337., Oxford University Press, USA.

[42] Vesanto, J., Himberg, J., Alhoniemi, E., and Parkankangas, J., 2000. SOM
Toolbox for Matlab 5, Helsinki University of Technology, URL:
http://www.cis.hut.fi/projects/somtoolbox/.

[43] Vesanto, J., Alhoniemi, E., 2000. Clustering of the Self-Organizing Map, IEEE
Transactions on Neural Networks, 11/3, 586-600, May.

[44] Nikhil, R.P., Bezdek, J.C., Erik, C., and Tsao, K., 1993. Generalized
Clustering Networks and Kohonen‟s Self-Organizing Scheme IEEE
Transactions on Neural Networks, 4/4, 549-557, May.

 141

APPENDICES

Appendix A

A 1. Basis Vectors

A vector in V, vector space, is said to be linear combination of a set of vectors

n ,,, 21 in V provided there exist constants naaa ,,, 21 such that

k

N

k

ka

1

 (A.1)

Equation A.1 shows how any vector can be written as a linear combination of the
basis vectors k and the corresponding coefficients ka [22].

A set of vectors n ,,, 21 is said to be linearly dependent if there exist constants

naaa ,,, 21 not all zero such that the linear combination

0
1

k

N

k

ka (A.2)

A set that is not linearly dependent is linearly independent. Linear independence is a
prerequisite for a set of vectors to be a basis of a vector space. Another requirement
is that every vector in vector space should be expressible as a linear combination of
members of this set. In other words, the basis vectors should span the vector space.
Therefore, if ,, 21 bb and so on are the basis of a vector space V, then a vector in V
can be represented as

k

N

k

kba

1

 (A.3)

The number of vectors in any basis of a finite dimensional vector space gives its
dimension. An example of basis vectors is the standard basis of 3R with)0,0,1(1 b ,

)0,1,0(2 b ,)1,0,0(3 b .

This concept, given in terms of vectors, can easily be generalized to functions, by
replacing the basis vectors kb with basis functions)(tk , and the vector with a
function)(tf . Equation A.3 then becomes

)()(tatf k

k

k (A.4)

A 2. Inner Product

An inner product on a vector space V is a rule that associates a real number, defined
as ,u with each pair of vectors u and in V.

 142

The following axioms satisfied by the inner product for all vectors u, , and in V:

1. Symmetry: ,u = u, .

2. Additivity: ,,, uu .

3. Homogeneity: ,, ukku , if k is a scalar.

4. Positivity: 0, and 0, if and only if v = 0

A vector space with an inner product defined on it is called an inner product space
[26]. An example of an inner product space is the space of all polynomials of degree
n. If)(tf and)(tg are two polynomials in this space, then the inner product is

dttgtftgtf)()()(),(

 (A.5)

If V is an inner product space and if u is a vector in this space, then the norm of u
denoted by u is defined by

uuu , (A.6)

So, the squared norm is an inner product of a vector with itself. In this manner, the
inner product operation induces a norm.

The distance between two vectors u and in an inner product space is defined as

 uvud),((A.7)

Equation A.5 defines the similarity between)(tf and)(tg .

A 3. Hilbert Spaces

A Hilbert space is defined as any vector space with an inner product satisfying
positivity, homogenity, and symmetry (see Appendix 2) that is; moreover, complete
with respect to this norm [22].

Given a set of infinitive sequences of vectors 21, , and so on, in the vector space V;
this sequence is convergent if there is a vector in V such that

n
n
lim (A.9)

A Cauchy sequence is one that has the property that as n , successive points
tend to be closer together. Mathematically, this property is as follows: given 0
there exists a positive integer 0n such that for 0, nnm , then mn ,
(is the norm defined on V). A convergent sequence must be a Cauchy sequence.
However, the converse is not true. Every Cauchy sequence is not necessarily
convergent because the element to which the sequence tends may not be in V. There
are certain inner product spaces where every Cauchy sequence does converge to a
vector in that space. Such vector spaces are called complete [22].

An example of a Hilbert space is Lebesgue vector space;)(2 RL , for one dimensional,
measurable, square integrable functions defined on the real values R. [26].

 143

A function f)(2 RL is said to be supported in an interval Rba , if 0tf
outside of ba, . So f satisfies; baf , . The set of square integrable functions
supported in ba, is denoted by),(2 baL . It is a subspace of)(2 RL and is itself a
Hilbert space. Given an arbitrary function f)(2 RL , f has “compact support” if

 baf , for some bounded interval Rba , [22]. It is common to use the term
“compact support” instead of “finite length”.

A 4. Orthogonality and Orthonormality

A set of vectors nii ,,2,1, is orthogonal if

ijji c , (A.10)

where the Kronecker delta

ij 0, ji (A.11)

ij 1, ji

and c is a constant. It is orthonormal if c=1, in Equation A.10. When two vectors are
orthogonal, they have no correlation or common components. The projection of one
onto another is zero, and their inner product is zero. When a set of vectors
 nii ,,2,1, is said to be orthonormal, they are pair-wise orthogonal to each
other, and all have length one [21].

Similarly, a set of functions nktk ,,3,2,1),(is said to be orthonormal if

kll

b

a

k cdttt

)()((A.12)

There may be more than one set of basis functions (or vectors). Among them, the
orthonormal basis functions (or vectors) are of particular importance because of the
properties they provide in finding the analysis coefficients. The orthonormal bases
allow computation of these coefficients in a very simple and straightforward way
using the orthonormality property [21].

For orthonormal bases, the coefficient ka , can be calculated as

dtttffa kkk)()(, (A.13)

and the function)(tf can then be reconstructed by Equation A.4 by substituting the

ka coefficients. This yields

)(,)()(tftatf k

k

kk

k

k (A.14)

Orthonormal bases may not be available for every type of applications where a
generalized version, biorthogonal bases can be used. The term biorthogonal refers to
two different bases that are orthogonal (pair-wise orthogonal) to each other, but each
do not form an orthogonal set [21].

In some applications, however, biorthogonal bases also may not be available in
which case frames can be used. Frames constitute an important part of wavelet
theory [21].

 144

A 5. Frames in Vector Space

When two vectors are orthogonal, they have no correlation or common components.
The projection of one onto another is zero, and their inner product is zero.
Decomposition of a vector into its components of ortonormal basis vectors is
therefore a simple inner product operation as described in Appendix 4.

Let i be a set of orthonormal vectors that spans the n-dimensional space, then any
1n vector g is a linear combination of the

i given by

i

n

i

igg

1

, (A.15)

If i is not orthonormal (or orthogonal), g can still be expressed as a linear
combination of i , but the coefficients of i are no longer simple inner products of

ig , . Note that basis vectors need not be orthonormal; they can even be linearly
dependent and hence redundant. The only requirement is that they span the vector
space so that any vector can be represented in terms of them. The theory of frames is
a generalization of the orthonormal decomposition principle and gives a
representation of an 1m vector as

i

n

i

igg ~,
1

 , mn (A.16)

This is similar to Equation A.15, except i is not necessarily orthonormal and since
mn , the i basis vectors can be linearly dependent. The i

~ is called the dual of
 i . Equation A.16 states that the simple inner product form is still valid in
decomposition, but at the expense of introducing dual in the reconstruction [21].

The i are called elements of a frame, and i
~ the dual frame of i . For

simplicity, i will be assumed as unit vectors. A frame i is a set of vectors that
satisfies, for any nonzero 1m vector g,

2
2

1

2
, gBggA

n

i

i

 , mn (A.17)

when A and B are constants dependent on i only, called frame bounds, with
 BA 10 . They are the highest lower bound and lowest upper bound. The

lower bound guarantees that the set i spans the vector space, i.e., i is a
complete frame, otherwise

2

1
,

n

i ig can become zero for some 0g .

The theory of frames provides the representation of a set of basis vectors that are not
necessarily orthonormal, nor linearly independent. The coefficients are still inner
products of the vector with the basis vectors. Reconstruction, however, requires new
basis vectors called duals. As long as i obey Equation A.17, any vector g can be
synthesized according to Equation A.16. If A=B, then Aii /~ and if A=B=1, then

ii ~ and i forms an orthonormal basis. When A=B the frame is said to be tight.
Also, if A>1 then the frame is redundant and A can be interpreted as a minimum
redundancy factor [29].

If i is a tight frame, then ii c ~ , where c is a constant. However to find the dual
frame i

~ when i is not tight, suppose nnmV 1 , and nnmV ~~~
1 . i

obey Equation A.16 so that it follows from Equation A.15 that gVVg T~
 for any

1m vector g. So V
~

 must satisfy

mm

T

mnnm IVV
~

 (A.18)

 145

where I is an identity matrix. The solution of Equation A.18 is

VVVV T 1)(
~ (A.19)

The theory of frames is necessary in the decomposition and reconstruction of a
function by wavelets.

A last point about frames is the resolution of the identity property which states that;
if a transformation is invertible, then the signal energy in the original domain must be
equal to, within a constant, the signal energy in the transform domain. The
reconstruction of the signal in terms of the basis functions is feasible if energy
preservation holds within a constant.

Frames in general satisfy resolution of the identity. In the case of vector
transformation, it is easy to verify that if i is an orthonormal set, then

i

i

igg , and
22

,
i

igg , so resolution of the identity property holds.
But when a transform violates resolution of the identity, duals are needed for
reconstruction. Finally, from Equation A.16, since gVVg T

i

i

i

~~, , then g can
be found as

i

i

ii

i

i ggg ~,~, (A.20)

A 6. Heisenberg Uncertainty Principle

All functions, including windows, in time-frequency analysis obey the uncertainty
principle, which states that sharp localizations in time and in frequency are mutually
exclusive [22].

If a nonzero function)(tg is small outside a time-interval of length T and its Fourier
transform is small outside a frequency band of width , then an inequality of the
type cT must hold for some positive constant c1. The precise value of c
depends on how the widths T and of the signal in time and frequency are
measured. For instance, given a normalized function g is 1g ;

2
)(tg is weight

distribution of the window in time and
2

)(wg

 is a weight distribution of the window
in frequency. The “centers of gravity” of the window in time and frequency are then

dttgtt

2

0)(

 , dwg

2

0)(

 (A.21)

for)(2 RLg [22]. A common way of defining T and is as the standard
deviations from 0t and 0 :

 dttgttT
22

0

2)()(, dwg
2

2

0

2)()(

 (A.22)

With these definitions, it can be shown that 14 T , which is the Heisenberg
form of the uncertainty relation. For Gaussian windows, the Heisenberg inequality
becomes an equality: 14 T [22].

Heisenberg Uncertainty is an important principle in time-frequency analysis. Time
and frequency energy conservations are restricted by the Heisenberg uncertainty
principle. The fundamental fact about the T and can be summarized as follows:
The precise measurements of time and frequency are fundamentally incomplete,
because frequency cannot be measured instantaneously. That is, if a signal has
frequency 0 , then the signal must be observed for at least one period, i.e., for a time

 146

interval
01t . The larger the number of periods for which the signal is

observed, the more meaningful it becomes to say that it has frequency
0 . Hence it

is not possible to say with certainty exactly when the signal has a constant frequency
[22].

A 7. The Downsampler

The downsampler is also called the sampling rate compressor and the subsampler.
Figure A.1 shows an M-fold downsampler. It takes an input sequence)(nx and
produces an output sequence

)()(Mnxny (A.23)

where M is an integer. In other words, a downsampler by M retains only those
samples of)(nx that occur at times that are multiples of M. Figure A.1b shows how
the downsampler acts on a sequence for the case of M=2 [26].

2

x(n) y(n)

M

Figure A.1 An M-fold downsampler

0 1 2 3

4

5 6

7

8 9
n

x(n)

(a)

0 2

4

6 8
n

y(n)

(b)

Figure A.2 Demonstration of a downsampler for the case of M=2. (a) Original
sequence. (b) The downsampled sequence

A 8. The Upsampler

The upsampler is also called a sampling rate expander or simply an expander.
Figure A.3 shows an L-fold upsampler. It takes an input sequence)(nx and produces
an output sequence

 147

)(ny)/(Lnx if n is an integer multiple of L (A.24)

)(ny 0 otherwise

So, upsampling by a factor of L involves inserting L-1 zeros between consecutive
samples of the input sequence. The process of upsampling is demonstrated in Figure
A. 4 for L=2 [26].

2

x(n) y(n)

L

Figure A.3 An L-fold upsampler

0 1 2 4 5
n

x(n)

3

(a)

0 2 4

6

8 10
n

y(n)

(b)

Figure A.4 Demonstration of an upsampler for the case of L=2. (a) Original
sequence. (b) The upsampled sequence

 148

Appendix B

B 1. Power System Data of the Simulation System

Table B.1 Power system parameters of Figure 5.1

Component Name Component Parameters

Source*

154 kV, 10000 MVASC, 50 Hz,

1X =j2.3716,
2X =j2.3716,

0X =j0.7905,

Transformer TRF 1

100 MVA, 154 Y / 34.5 Y kV, 50 Hz
Leakage Inductance= 10.0 %

TRF 2,3,4,5,6

20 MVA, 34.5 Y / 10.5 kV, 50 Hz
Leakage Inductance= 10.0 %

Capacitor Bank
7.2 MVAr, Delta connected, C= 34.5 F

Cables 1,2,3,4
20.3 / 34.5 kV, 3.0 km, 3x(1x240

2mm) XLPE Cable

Cable 5
20.3 / 34.5 kV, 3.5 km, 3x(1x240

2mm) XLPE Cable

Loads 1,2,3,4

19 MVA, Cos =0.906, Delta Connected,

R= 5.259 [], L=0.007806

Load 5

19 MVA, Cos =0.707, Delta Connected,

R= 4.103 [], L=0.01306

The parameters of the “infinite source” are based on the assumption that the “short-
circuit power” is “100” times the maximum rated power on the distribution system,
which is “100 MVA”. This assumption is based on an empiric formula according to
[4]. Also, the zero sequence impedance of the source is based on an assumption that
the zero sequence impedance is between (1/3) and (1/6) of the positive sequence
impedance for the source according to [4]. Positive sequence impedance is calculated
by)10000/154()/(22

kSU according to [4].

 149

B 2. The Simulation System Layout in PSCAD/EMTDC

B
R

K

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

A

B

C

FAULTS

A->G

A

B

C

FAULTS

A->G

Timed
Fault
Logic

B
R

K
L

O
A

D
1

a

B
R

K
L

O
A

D
1

b

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
1

c

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
2

a

B
R

K
L

O
A

D
2

b

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
2

c

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

 V

 S
O

U
R

C
E

 B

 V

 S
O

U
R

C
E

 C

T imed
Fault
Logic

 V

 S
O

U
R

C
E

 A

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

V
 S

O
U

R
C

E
_

B

V
 S

O
U

R
C

E
_

C

V
 S

O
U

R
C

E
_

A

V
 S

O
U

R
C

E
_

A

V
 S

O
U

R
C

E
_

B

V
 S

O
U

R
C

E
_

C

V
 A

V
 B

V
 C

I
T

R
S

C
_

A

I
T

R
S

C
_

C

I
T

R
S

C
_

B

V
 M

E
R

K
1

i_
B V

 M
E

R
K

1
i_

C
V

 M
E

R
K

1
_

C

C
1

C
A

B
L

E
 2

C
2

C
3

B
R

K

A B C

 T

R
F

 S
E

C
 C

U
R

R
E

N
T

 B

 T

R
F

 S
E

C
 C

U
R

R
E

N
T

 C

0
.0

0
7

5
4A B C

R
L

5.259

5.259

0.007806

0.007806

0.0078065.259

5.259 0.007806

0.007806

0.0078065.259

5.259

B

R
E

A
K

E
R

C

O
N

T
R

O
L

C
1

 C
A

B
L

E
 2

C
2

C
3

 S

E
N

D
 S

IG
N

A
L

 T
O

C

_
1

 S

E
N

D
 S

IG
N

A
L

 T
O

 B
_

1

V
_

E
1

1
_

a

V
_

E
1

1
_

b

V
_

E
1

1
_

c

 S

E
N

D
 S

IG
N

A
L

 T
O

 A
_

1

C
1

C
A

B
L

E
 1

C
2

C
3

V
 M

E
R

K
2

i_
A

V
 M

E
R

K
2

i_
C

V
 M

E
R

K
1

_
C

V
 M

E
R

K
1

_
B

V
 M

E
R

K
1

_
A

V
 M

E
R

K
1

_
B

V
 M

E
R

K
1

i_
A

V
 M

E
R

K
1

_
A

B

R
E

A
K

E
R

C

O
N

T
R

O
L

T
im

e
d

B
re

a
k

e
r

L
o

g
ic

O
p

e
n

@
t0

 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

 1

-
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

 2

-
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

 3

-
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

 4

-
 P

H
A

S
E

 A

-
 B

 T
O

 G
R

O
U

N
D

 5

-
 P

H
A

S
E

 B

-
C

 T
O

 G
R

O
U

N
D

 6

-
 P

H
A

S
E

 A

-
C

 T
O

 G
R

O
U

N
D

 7

-
 P

H
A

S
E

 A

-
B

 -
 C

 T
O

 G
R

O
U

N
D

 8

-
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

 9
 -

 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

1
0

 -

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

 1

-
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

 2

-
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

 3

-
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

 4

-
 P

H
A

S
E

 A

-
 B

 T
O

 G
R

O
U

N
D

 5

-
 P

H
A

S
E

 B

-
C

 T
O

 G
R

O
U

N
D

 6

-
 P

H
A

S
E

 A

-
C

 T
O

 G
R

O
U

N
D

 7

-
 P

H
A

S
E

 A

-
B

 -
 C

 T
O

 G
R

O
U

N
D

 8

-
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

 9
 -

 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

1
0

 -

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

 B

R
K

L
O

A
D

1
a

 I
_

B
R

K
_

L
O

A
D

1
_

A

 B
R

K
L

O
A

D
1

b

 I
_

B
R

K
_

L
O

A
D

1
_

B

 B
R

K
L

O
A

D
1

c

 I
_

B
R

K
_

L
O

A
D

1
_

C

 B
B

R
K

L
O

A
D

2
c

 I
_

B
R

K
_

L
O

A
D

2
_

C

 B
B

R
K

L
O

A
D

2
b

 I
_

B
R

K
_

L
O

A
D

2
_

B

 B
B

R
K

L
O

A
D

2
a

 I
_

B
R

K
_

L
O

A
D

2
_

A

30.0

30.0

A B C

A B C

1
0

0
.0

 [
M

V
A

]

1
5

4
.0

3
4

.5

#
1

#
2

30.0

30.0

 L
O

A
D

2

:

 1
9

M

V
A

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

 L
O

A
D

1

:

 1
9

M

V
A

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

C
1

C
A

B
L

E
 5

C
2

C
3

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

 T

R
F

 S
E

C
 C

U
R

R
E

N
T

 A

 E
X

T
E

R
N

A
L

S

Y
S

T
E

M

 (
 I

N
F

IN
IT

E

S
Y

S
T

E
M

)

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

1
5

4
 k

V

1
0

0
0

0
 M

V
A

 S
C

S
A

G
M

A
L

C
IL

A
R

 S
U

B
S

T
A

T
IO

N

F

A
U

L
T

 C
O

N
T

R
O

L

C
1

 C
A

B
L

E

5

C
2

C
3

C
A

B
L

E
 5

F

A
U

L
T

 C
O

N
T

R
O

L

C
A

B
L

E
 2

T

R
F

 1

G
R

A
P

H

P
A

G
E

T

R
F

 3

T

R
F

 2

C
1

 C
A

B
L

E
 1

C
2

C
3

C
A

B
L

E
 1

V
 M

E
R

K
2

i_
B

 F
A

U
L

T

1

 F
A

U
L

T

2

F
ig

u
re

 B
.

1
a

T
h
e

R
ed

u
ce

d
 3

4
.5

 k
V

 S
ag

m
al

cı
la

r-
M

al
te

p
e

S
u
b
st

at
io

n
 S

y
st

em
 M

o
d
el

 (
p
ar

t
1
)

 150

F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

 1

-
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

 2

-
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

 3

-
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

 4

-
 P

H
A

S
E

 A

-
 B

 T
O

 G
R

O
U

N
D

 5

-
 P

H
A

S
E

 B

-
C

 T
O

 G
R

O
U

N
D

 6

-
 P

H
A

S
E

 A

-
C

 T
O

 G
R

O
U

N
D

 7

-
 P

H
A

S
E

 A

-
B

 -
 C

 T
O

 G
R

O
U

N
D

 8

-
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

 9
 -

 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

1
0

 -

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

Timed
Fault
Logic

A

B

C

FAULTS

A->G

Timed
Fault
Logic

B
R

K
L

O
A

D
4

a

B
R

K
L

O
A

D
4

b

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
4

c

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
3

a

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

B
R

K
L

O
A

D
3

b

B
R

K
L

O
A

D
3

c

A
_
1

C
_

1

B
_
1

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

T
im

e
d

B
re

a
k
e

r
L
o
g
ic

O
p

e
n

@
t0

5.259

0.007806

5.259 0.007806

5.259

5.259

0.007806

0.0078065.259

0.007806

C
A

B
L

E
 3

C
1

 C
A

B
L

E
 3

C
2

C
3

C
1

 C
A

B
L

E
 4

C
2

C
3

C
1

C
A

B
L

E
 3

C
2

C
3

C
1

C
A

B
L

E
 4

C
2

C
3

A

B

C

FAULTS

A->G

 B
R

K
L
O

A
D

3
b

 I
_
B

R
K

_
L
O

A
D

3
_
B

 B
R

K
L
O

A
D

3
c

 I
_
B

R
K

_
L
O

A
D

3
_
C

 B
R

K
L
O

A
D

4
a

 I
_
B

R
K

_
L
O

A
D

4
_
A

 B
R

K
L
O

A
D

4
b

 I
_
B

R
K

_
L
O

A
D

4
_
B

 B
R

K
L
O

A
D

4
c

 I
_
B

R
K

_
L
O

A
D

4
_
C

5.259

0.007806

V
 M

E
R

K
3

i_
A

V
 M

E
R

K
3

i_
B

V
 M

E
R

K
3

i_
C

V
 M

E
R

K
4

i_
A

V
 M

E
R

K
4

i_
B

V
 M

E
R

K
4

i_
C

V
 M

E
R

K
3

_
A

V
 M

E
R

K
3

_
B

V
 M

E
R

K
3

_
C

V
 M

E
R

K
4

_
A

V
 M

E
R

K
4

_
B

V
 M

E
R

K
4

_
C

B

R
E

A
K

E
R

C

O
N

T
R

O
L

F

A
U

L
T

 C
O

N
T

R
O

L

B

R
E

A
K

E
R

C

O
N

T
R

O
L

 B
R

K
L
O

A
D

3
a

 I
_
B

R
K

_
L
O

A
D

3
_
A

 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

 1

-
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

 2

-
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

 3

-
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

 4

-
 P

H
A

S
E

 A

-
 B

 T
O

 G
R

O
U

N
D

 5

-
 P

H
A

S
E

 B

-
C

 T
O

 G
R

O
U

N
D

 6

-
 P

H
A

S
E

 A

-
C

 T
O

 G
R

O
U

N
D

 7

-
 P

H
A

S
E

 A

-
B

 -
 C

 T
O

 G
R

O
U

N
D

 8

-
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

 9
 -

 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

1
0

 -

 P
H

A
S

E
 A

 T
O

 P
H

A
S

E
 C

C
A

B
L

E
 4

 L
O

A
D

3

:

 1
9

M

V
A

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

 L
O

A
D

4

:

 1
9

M

V
A

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.9

0
6

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

30.0

30.0

S

E
N

D
 S

IG
N

A
L
 T

O
 A

_
2

F

A
U

L
T

 C
O

N
T

R
O

L

T

R
F

 3

T

R
F

 4

S

E
N

D
 S

IG
N

A
L
 T

O
 B

_
2

A B C

A B C

2
0

.0
 [

M
V

A
]

3
4

.5
1

0
.5

#
1

#
2

 S
E

N
D

 S
IG

N
A

L
 T

O
 C

_
2

F
A

U
L

T

3

F
A

U
L

T

4

F
ig

u
re

 B
.

2
a

T
h
e

R
ed

u
ce

d
 3

4
.5

 k
V

 S
ag

m
al

cı
la

r-
M

al
te

p
e

S
u
b
st

at
io

n
 S

y
st

em
 M

o
d
el

 (
p
ar

t
1
)

 151

 BRKBANKc

 I_BRK_BANK_C

A

B

C

FAULTS

A->G

Timed
Fault
Logic

V
e
n
d
a

A
e
n
d

V
e
n
d
b

B
e
n
d

V
e
n
d
c

C
e
n
d

B
R

K
L
O

A
D

a

B
R

K
L
O

A
D

b

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

B
R

K
L
O

A
D

c

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

0.168154

135.9462

135.9462 0.168154

135.9462

0.168154

A
_
2

B
_
2

C
_
2

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

F

A
U

L
T

 C
O

N
T

R
O

L

B
R

K
B

A
N

K
a

B
R

K
B

A
N

K
b

B
R

K
B

A
N

K
c

B
R

K
B

A
N

K

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

C
lo

s
e
d
@

t0

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

T
im

e
d

B
re

a
k
e
r

L
o
g
ic

O
p
e
n
@

t0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

34.0

7
2
0
0
 k

V
A

r

 1
8
x
4
0
0
 k

V
A

r

 C
 B

A
N

K

B

R
E

A
K

E
R

C

O
N

T
R

O
L

B

R
E

A
K

E
R

C

O
N

T
R

O
L

B

R
K

L
O

A
D

a

I_
B

R
K

_
L
O

A
D

_
A

B

R
K

L
O

A
D

b

I_
B

R
K

_
L
O

A
D

_
B

B

R
K

L
O

A
D

c

I_
B

R
K

_
L
O

A
D

_
C

 BRKBANKa

 I_BRK_BANK_A

 BRKBANKb

 I_BRK_BANK_B

B

R
K

B
A

N
K

 I

_
B

R
K

_
B

A
N

K

A

B

C

A

B

C

20.0 [MVA]

34.5 10.5

#1 #2

 L
O

A
D

:

 1
9

M
V

A

 P
O

W
E

R
 F

A
C

T
O

R
 :

 0
.7

0
7

3
0
.0

 2
x
 C

 B
A

N
K

 C
 =

3
4
,0

 m
ic

ro
F

 1
 B

A
N

K
=
 9

 C

 M
A

L
T

E
P

E

 S

U
B

S
T

A
T

IO
N

T

R
F

 5

 F

A
U

L
T

 T
Y

P
E

 C
O

N
T

R
O

L
:

 1

-
 P

H
A

S
E

 A
 T

O
 G

R
O

U
N

D

 2

-
 P

H
A

S
E

 B
 T

O
 G

R
O

U
N

D

 3

-
 P

H
A

S
E

 C
 T

O
 G

R
O

U
N

D

 4

-
 P

H
A

S
E

 A

-
 B

 T
O

 G
R

O
U

N
D

 5

-
 P

H
A

S
E

 B

-
C

 T
O

 G
R

O
U

N
D

 6

-
 P

H
A

S
E

 A

-
C

 T
O

 G
R

O
U

N
D

 7

-
 P

H
A

S
E

 A

-
B

 -
 C

 T
O

 G
R

O
U

N
D

 8

-
 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 B

 9
 -

 P

H
A

S
E

 B
 T

O
 P

H
A

S
E

 C

1
0
 -

 P

H
A

S
E

 A
 T

O
 P

H
A

S
E

 C

 F
A

U
L
T

 5

 152

Appendix C

0 500 1000 1500 2000 2500 3000 3500 0.25

0.3

0.35

0.4

0.45

0.5 Quantization error after each epoch

Number of Iterations

Q
u
a
n
ti
z
a
ti
o
n
 E

rr
o
r

0 0.5 1 1.5 2 2.5 3 0
0.2

0.4
0.6
0.8

1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

(a)

(b)

(c)

Figure C.1 (a) The QE in the second phase of SOM algorithm (b) Initial state of the
distribution of prototype vectors on the input space (c) Final state of the distribution
of prototype vectors on the input space (for SIM_1)

 153

Figure C.2(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 40 for SIM_1)

Figure C.3(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 57 for SIM_1)

 154

0 500 1000 1500 2000 2500 3000 3500 0.2

0.25

0.3

0.35

0.4

0.45 Quantization error after each epoch

Number of Iterations

Q
u

a
n

ti
z
a

ti
o

n
 E

rr
o

r

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4

0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

(a)

(b)

(c)

Figure C.4 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the
distribution of prototype vectors on the input space. (c) Final state of the distribution
of prototype vectors on the input space. (for SIM_2)

 155

Figure C.4(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 41 for SIM_2)

Figure C.5(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 49 for SIM_2)

 156

0 500 1000 1500 2000 2500 3000 3500 4000 0.22
0.24
0.26
0.28
0.3

0.32
0.34
0.36
0.38

Quantization error after each epoch

Number of Iterations

Q
u

a
n

ti
z
a

ti
o

n
 E

rr
o

r

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8

1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

(a)

(b)

(c)

Figure C.7 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the
distribution of prototype vectors on the input space. (c) Final state of the distribution
of prototype vectors on the input space. (for SIM_3)

 157

Figure C.6(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 43 for SIM_3)

Figure C.7(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 52 for SIM_3)

 158

0 500 1000 1500 2000 2500 3000 3500 4000 0.15

0.2

0.25

0.3

0.35

0.4 Quantization error after each epoch

Number of Iterations

Q
u

a
n

ti
z
a

ti
o

n
 E

rr
o

r

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8
1

1.2

1.4 x 10 -4
First two components of map units (o) and data vectors ()

(a)

(b)

(c)

Figure C.10 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the
distribution of prototype vectors on the input space. (c) Final state of the distribution
of prototype vectors on the input space. (for SIM_4)

 159

Figure C.8(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 46 for SIM_4).

Figure C.9(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 56 for SIM_4).

 160

0 500 1000 1500 2000 2500 3000 3500 4000 4500 0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3 Quantization error after each epoch

Number of Iterations

Q
u

a
n

ti
z
a

ti
o

n
 E

rr
o

r

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8

1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

0 0.5 1 1.5 2 2.5 3 0

0.2

0.4
0.6

0.8
1

1.2
1.4 x 10 -4 First two components of map units (o) and data vectors ()

(a)

(b)

(c)

Figure C.13 (a) The QE in the second phase of SOM algorithm. (b) Initial state of the
distribution of prototype vectors on the input space. (c) Final state of the distribution
of prototype vectors on the input space. (for SIM_6)

 161

Figure C.14(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 58 for SIM_6)

Figure C.15(a) The hit histograms on the U-matrix. (b) The labeled SOM.
(labeled map unit amount = 68 for SIM_6)

 162

BIOGRAPHY

Oben Dağ was born in 1978 in Istanbul. After graduating from Tercuman College, he
started studying Electrical Engineering at Yıldız Technical University. He graduated

from YTU in 1999 with the forth-highest degree. His undergraduate thesis was the
control of a “0.7 kV AC Asynchronous Motor” using Siemens Access System and to

transfer data from S7-200 PLC to workstation via Dynamic Data Exchange
communication protocol. He is currently enrolled in Electrical Engineering
programme at the Institute of Science and Technology in Istanbul Technical

University as a M.Sc. student. His research areas cover signal processing, artificial
neural networks, and data communication. He is a student member of IEEE and he is

also currently a Cisco Certified Network Associative.

