Akademik hukuk makalelerinde atıf önerisi

thumbnail.default.alt
Tarih
2023-06-22
Yazarlar
Arslan, Doğukan
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Lisansüstü Eğitim Enstitüsü
Özet
Hukuk ve Doğal Dil İşleme çalışmalarının kesişiminde, hukuki metinlerin anlaşılması, işlenmesi, yorumlanması ve üretilmesi gibi konulara odaklanan "Hukuki DDİ" çalışmaları yer alır ve bu çalışmalar farklı hukuki metin türleri üzerinde çeşitli alt görevlere odaklanmaktadır. Bu çalışmalardan biri de Atıf Öneri görevidir. Atıf Önerisi, bilimsel makalelerde belirli bir metin için potansiyel atıfların belirlenmesi çalışmalarını kapsar. Ancak, bu görevdeki çalışmalarda, veri kümelerinin alan bazında yeterince kapsayıcı olmaması ve alanlara dengesiz dağılması gibi sorunlar genellikle ihmal edilmektedir. Son zamanlarda yapılan bir çalışmada, bu sorunlar ele alınmış ve farklı alanları kapsayan yeni bir veri kümesi oluşturulmuştur. Ancak, hukuk gibi bazı temel alanlar hala bu tür çalışmaların dışında kalmaktadır. Bu nedenle, Atıf Önerisi gibi alt görevlerde bile, büyük veri kümeleriyle eğitilen dil modelleri, alan bazında eksiklikler gösterebilmektedir. Hukuki Doğal Dil İşleme bağlamında Atıf Önerisi, çoğunlukla mahkeme kararları gibi bilimsel olmayan hukuki metinlerden, var olan argümanları gerekçelendirmek için çeşitli atıfların elde edilmesini amaçlar. Hukuk sistemleri, Ortak Hukuk ve Kıta Avrupası Hukuk sistemi olmak üzere iki ana kategoriye ayrılabilir. Ortak Hukuk sistemine sahip ülkelerde, kararların sonuçları geçmiş davaların incelenmesiyle belirlenir ve bu nedenle kararlar arasında çok sayıda atıf bulunurken, Kıta Avrupası Hukuk sistemine sahip ülkelerde karar verme süreci daha çok olgusal kanıtlar ve ilgili kanun maddelerine dayanır. Bu da kararların kanunlara ve tüzüklere daha fazla atıf içermesine yol açar. Her iki sistemde de hukuk uygulayıcıları için emsal kararları bulmak önemlidir, ancak bu süreç zaman alıcı olabilir. Türkiye'de Yargıtay tarafından yayınlanan 7 milyondan fazla karar bulunmaktadır ve avukatlar, ilgili içtihatları aramak için önemli miktarda zaman harcamaktadır. Hukuki Atıf Önerisi görevinin halihazırdaki önemi ve faydaları, akademik hukuk metinlerinin gereken ilgiyi görmemesi ve görev kapsamına alınmamasıyla sonuçlanmıştır. Bununla birlikte, bilimsel makalelerden otomatik olarak atıf bilgisi çıkarılarak elde edilecek olan işaretli veri ile, etiketli veri oluşturmanın maliyetli olduğu Hukuki Doğal Dil İşleme görevleri için önemli bir kaynak oluşturulabilir. Bu yaklaşım, Atıf Önerisi görevinin yanı sıra emsal karar bulma, hukuki belge benzerliği ve hukuki karar tahmini gibi diğer görevlerde de etkili olabilir. Bu şekilde, akademik hukuk metinleri daha verimli bir şekilde kullanılarak daha iyi performans gösteren dil modelleri geliştirilebilir. Ayrıca, diğer bilimsel alanlardan farklı dilbilimsel özelliklere sahip olan hukuki metinler için özel bir ilgi gerekir. Geleneksel Atıf Önerisi görevinden ayrışan Hukuki Atıf Önerisi, bu özellikleri anlayabilen ve etkili atıf önerileri sunabilen dil modellerine ihtiyaç duyar. Bilimsel yayıncılığın hızlı genişlemesiyle birlikte, atıfların güvenilirliği ve kalitesiyle ilgili endişeler ortaya çıkmış ve Atıf Önerme görevi zaman içinde önem kazanmıştır. Bu görev kapsamında işbirlikçi filtreleme, çizge temelli filtreleme ve içerik temelli filtreleme gibi yöntemler kullanılmaktadır. Farklı metin türleri, haberlerden patentlere ve yargı kararlarına kadar, Atıf Önerme görevinde kullanılmıştır. Görev, önerinin kapsamına bağlı olarak da genellikle yerel ve küresel olmak üzere iki ana kategoriye ayrılır. Çeşitli akademik makale veri kümeleri, Atıf Önerme tekniklerinin geliştirilmesi ve test edilmesi için kullanılmıştır. Atıf Önerİ yöntemleri, akademik olmayan hukuki metinleri (mahkeme kararları, tüzükler, atıfta bulunulan yasalar vb.) tespit etmek amacıyla hukuk alanına uyarlanmaktadır. Bu uyarlamalar, Hukuki Atıf Önerme görevi adı altında gerçekleştirilmektedir. Tez kapsamında Hukuki Atıf Öneri görevi için, akademik hukuki makalelerden oluşan bir veri kümesi toplanmıştır. Bu veri kümesi, Atıf Önerme ve ilgili görevlerde iyi performans gösteren veya hukuk alanında eğitilmiş toplamda yedi farklı modelin test edildiği dört farklı deney düzeninde kullanılmıştır. Gerçekleştirilen deneylerde, yedi farklı model için dört farklı deney düzeni kullanılarak, önceden eğitilmiş modellerin doğrudan kullanılması, modellere ince ayar yapılması ve BM25 ile ilgili makalelerin çekilmesiyle birlikte yeniden sıralanması üzerinde çalışmalar yapılmıştır. Benimsenen iki aşamalı yaklaşım, dil modellerinin hantallığını azaltmak için BM25 gibi daha hızlı ancak daha az doğruluk gösteren modelleri kullanarak makale örneklerini hızlı bir şekilde seçmeyi amaçlar. Bu yaklaşım, bilgi getirimi çalışmalarında sistem etkinliğini artırmak için sıkça kullanılır. İlk aşamada, hızlı modellerle ilgili belgelerin örneklerini alırken, daha sonra yavaş ancak daha doğru olan modellerle bu aday makaleler yeniden sıralanır. İngilizce hukuki atıf önerme görevi için LawArXiv adlı hukuki bilimsel makaleler veritabanından makaleler indirilmiştir. Bu veritabanı, 1366 bilimsel hukuki makaleye sahip olan ve çeşitli hukuki konuları kapsayan bir kaynaktır. Makalelerin atıf yapılan kaynakları elde etmek için Google Scholar kullanılmış ve 10 binden fazla atıf içeren makale elde edilmiştir. Elde edilen makalelerin öz kısmı pdfplumber adlı bir Python paketi ile çıkarılmış, ardından başarılı bir şekilde çıkarılan İngilizce makaleler seçilmiştir. Ön işleme adımlarıyla makaleler düzenlenmiş ve öz kısımları çıkarılmıştır. Deneylerde 719 LawArXiv makalesi ve 8,887 atıf içeren 10,111 atıf bağlantısı içeren bir veri kümesi kullanılmıştır. Makalelerin öz kısımları, benzer içerik temelli küresel atıf önerme çalışmalarıyla uyumlu bir şekilde, ince ayar, temsil elde etme ve test aşamalarında girdi olarak kullanılmıştır. Veri kümesi, eğitim ve test olarak ayrılmış olup, verilerin %70'i eğitimde kullanılmış ve kalan %30'u test için ayrılmıştır. İnce ayar aşamasında üçlü kayıp fonksiyonu kullanılmıştır. Bu fonksiyon referans girdiyi (çapa) pozitif bir girdiyle (benzer) ve çapayla eşleşmeyen negatif bir girdiyle karşılaştırır. İnce ayar ve temsil elde etme adımlarından sonra, belge temsil vektörleri vektör uzayında benzerliklerine göre sıralanmıştır. Tüm eğitim ve test süreçlerinde Sentence-Transformers çerçevesi kullanılmıştır. Deneylerin sonuçları, bilgi getirimi çalışmalarında yaygın olarak kullanılan üç farklı metrik olan Mean Average Precision (MAP) (Ortalama Kesinliklerin Ortalaması), Recall (Duyarlılık) ve Mean Reciprocal Rank (MRR) (Sıralamaların Terslerinin Ortalaması) kullanılarak sunulmuştur. Bu metrikler, bir makalenin ortalama olarak 14 atıf bağlantısına sahip olduğu göz önüne alınarak, getirilen ilk 10 belge için (n=10) raporlanmıştır. Önceden eğitilmiş çeşitli modeller ve derlenen veri kümesi eğitilmiş BM25 modelinin karşılaştırması, SciBERT'in diğer modellere kıyasla en düşük performansı gösterdiği, Law2Vec ve LegalBERT gibi hukuki derlemlerle eğitilen modellerin atıf önerme görevinde başarısız olduğu, SGPT'nin ise SPECTER ve SciBERT'ten daha iyi performans gösterdiği ancak BM25'in en başarılı model olarak öne çıktığı sonucunu ortaya koymuştur. Bu sonuçlar, literatürdeki bilimsel alan temelli Atıf Önerme çalışmalarıyla da uyumludur. Önceden eğitilmiş modellere ince ayar yapıldığında elde edilen sonuçlar incelendiğinde, modellerin genel olarak benzer performans sergilediği ancak BM25'i geçemediği görülmektedir. Bununla birlikte, ince ayarlı LegalBERT modelinin performansının önemli ölçüde arttığı, modelin göreve aşinalığının alan bilgisiyle birleşmesinin performansı artırdığı gözlemlenmiştir. En başarılı modeller arasında SciNCL ve SciBERT öne çıkmaktadır, SciBERT'in performansındaki sıçrama dikkat çekicidir. Önceden eğitilmiş modellerin sıralama yeteneklerini BM25'in geri getirme kapasitesiyle birleştiren deneylerin sonuçları önceden eğitilmiş modellerin BM25'in performansını artıramadığını gösterse de, SciNCL'nin tartışmasız olarak en başarılı model olduğunu ortaya koymaktadır. BM25 ile getirilen makalelerin ince ayarlı modellerle yeniden sıralanması sonucunda, tüm ince ayarlı modellerin BM25'in performansını artırdığı gözlemlenmekte olup, SciNCL'in diğer deneylerle uyumlu olarak en başarılı model olduğu görülmektedir (0.30 MAP@10). Bu çalışmada, İngilizce Hukuki Atıf Önerisi veri kümesi oluşturulmuş ve Atıf Önerisi görevinde başarılı modeller ile alana özel eğitilmiş modellerin performansları karşılaştırılmıştır. Ayrıca, iki aşamalı bilgi getirme yöntemi kullanılmıştır. Sonuçlar, öne sürülen hipotezlerin doğruluğunu desteklemektedir. Dil modellerinin Hukuki Atıf Önerisi görevinde başarılı olabilmesi için akademik hukuk makalelerine yer verilmesi gerektiği ortaya çıkmıştır. Aynı şekilde, hukuki dokümanlarla eğitilen modellerin daha kapsayıcı olabilmesi için akademik hukuk makalelerinin de eğitim veri kümesinde bulunması gerektiği gösterilmiştir. İki aşamalı bilgi getirme yöntemi, büyük dil modellerinin ve BM25'in en iyi yönlerini birleştirerek genel performansı artırmaktadır. BM25 ile SciNCL'in birlikte kullanılması, Hukuki Atıf Önerisi görevinde en başarılı sonuçları vermektedir. Gelecek çalışmalar açısından, iki aşamalı bilgi getirme yöntemi önemli bir araştırma alanıdır. Ayrıca, elde edilen Hukuki Atıf Önerisi modelinin farklı hukuki görevlere uygulanması ve başarımlarının test edilmesi önemlidir. Veri kümesinin boyutunu artırmak için çeşitli çalışmalar da yapılabilir. Özellikle veri kümesi büyüdükçe, BM25'in hızı ve performansı daha iyi değerlendirilebilir.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, 2023
Anahtar kelimeler
doğal dil işleme, natural language process, hukuk, law
Alıntı