LEE- Bilgisayar Mühendisliği-Yüksek Lisans

Bu koleksiyon için kalıcı URI

Gözat

Son Başvurular

Şimdi gösteriliyor 1 - 5 / 5
  • Öge
    Ağ iletişimlerinde temel yenilikçi çözümlerin standartlaştırılması
    (Lisansüstü Eğitim Enstitüsü, 2023-08-30) Kalkan, Muhammed Salih ; Seçinti, Gökhan ; 504191579 ; Bilgisayar Mühendisliği
    Ağ iletişimlerindeki problemler oldukça eskiye dayanır. Bu problemleri çözmek için birçok çalışma yapılmıştır. Bu çalışmalar, günümüzde OSI model olarak adlandırdığımız, katmanlı bir iletişim yapısını ortaya çıkarmıştır. Bu katmanlardan birisi uygulama katmanıdır. Mesajlaşma ile ilgili problemler, bu katmana aittir. Dolayısıyla, mesajlaşma ile ilgili özellikler bu katmanda kullanılır. Bazı mesajlaşma özelliklerini standartlaştırmak için, bazı uygulama katmanı protokoller oluşturulmuştur. AMQP, MQTT vb. protokoller, uygulama katmanı protokollerine örnektir. Bu araştırmada da, temel yenilikçi çözümler uygulama katmanında değerlendirilir. Uygulamalar, mesajlaşma ile ilgili sorunları farklı şekillerde çözmektedir. Bazı özellikler uygulama koduyla, bazıları kütüphanelerle ve bazıları da protokollerle standardize edilerek sağlanır. Uygulama koduna eklenen mesajlaşma özelliklerinin her uygulama için tekrar tekrar yazılması gerekmektedir. Her uygulama için gerekli mesajlaşma özelliklerinin kodlarının tekrar tekrar yazılması, iş gücü kaybına, hata olasılığına, kodun her seferinde artan karmaşıklığına neden olur. Mesajlaşma sorunlarını kütüphane kodları ile çözmek, bu kütüphanenin diğer tüm uç noktalarla paylaşılmasını gerekli kılar. Bu nedenle mesajlaşma özelliklerinin bir protokol ile standardize edilmesi gerekmektedir. Bu çalışmada, yerel ağlarda ve IoT'de kullanılmak üzere temel yenilikçi özellikleri standartlaştırarak iş gücü kazancı sağlanması, uygulama kodunun karmaşıklığının azaltılması, çözümlerin her uç nokta için ortaklanması amaçlanmıştır. Bir protokol standardı oluşturmak için, protokollere ait özelliklerin arkaplan bilgisine ihtiyaç vardır. Bu yüzden öncelikle, ikili-metin protokoller, iletişim modelleri, merkezi-merkeziyetsiz yaklaşımlar gibi arkaplan bilgileri incelenmiştir. İkili protokoller, verileri ikili olarak ileten protokollerdir. Metin protokolleri, verileri Unicode veya ASCII olarak ileten protokollerdir. İkili protokoller, verilerin daha küçük boyutlarda iletilmesini sağladığı için performans açısından daha iyidir. Metin protokolleri, verileri daha büyük boyutlarda iletmesine karşın ikili protokollere kıyasla kolayca hata ayıklanabilir ve veriler insan tarafından okunabilirdir. Hem yüksek performans özelliği, hem verinin okunabilir olma özelliğine sahip olmak için, izleyici uç noktanın, ikili verilerin metin karşılıklarını bilmesi gerekir. Ayrıca ikili protokoller için bayt sırası (endianness) önemliyken, metin protokolleri için bayt sırası önemli değildir. Cihazın endianness tipi little-endian veya big-endian olabilir. İkili protokollerde, farklı endianness'e sahip iki cihaz iletişim kurduğunda, verilerin serileştirilmesinden önce ve verinin serisini çözümleme işleminden önce verilerin bayt adreslemesi tersine çevrilmelidir. Bu problemlerin çözümleri, uygulama katmanında standartlaştırılırsa, geliştiricilerin bu problemleri tekrar tekrar çözmeye çalışmasına gerek kalmaz. Sunucu-istemci modeli, birden fazla istemci uç noktasının tek bir sunucu uç noktasından hizmet talep ettiği bir modeldir. Yayınla-abone ol modeli, yayıncı ve abone uç noktalarının merkezi bir mesaj yönelimli ara yazılım aracılığıyla mesaj iletimlerini sağlayan bir modeldir. Uç noktalar, konulara abone olur veya mesajları yayınlar. Mesaj aracısı, yayınlanan mesajları, mesaja abone olan uç noktalara iletir. Mesaj aracısı, gevşek bağlantı ve esneklik sağlar. Uç noktalar, birbirlerinin varlığından bağımsız olarak mesajlaşmaya devam eder. Transformatörler ve filtreler, mesaj aracısı üzerinde çalışabilir. Gevşek bağlantı aynı zamanda bir dezavantajdır. Yayıncı uç noktaları, abone uç noktalarının iletişim kurup kurmadığından emin olamaz. Yayıncılar ve aboneler arttıkça, mesaj aracısını aşırı yükleyebilir. Mesaj aracısı, merkezi olduğundan darboğaza neden olabilir. Bu, yatay ölçeklenebilirliği sınırlar. İletileri doğrudan hedef uç noktalara iletmek yerine önce mesaj aracısına iletmek gecikmeyi artırır. Mesaj aracısı ile gelen bu problemlerden kurtulmak için, merkezi olmayan yayınla-abone ol modeline ihtiyaç vardır. Mesajlaşan uç noktalar için en büyük sorunlardan biri, uç noktalardan birinde mesaj yapılarının güncel olmaması veya yanlış implement edilmiş olmasıdır. Mevcut mesajlaşma protokolleri için, bir bağlantıdaki uç noktaların mesaj yapılarının uyumluluğunu kontrol etmeye yönelik standart bir yaklaşım yoktur. Bir iletişimde giden ve gelen mesajları izlemek kritik olabilir. Mesaj gönderme noktadan noktaya ise, üçüncü bir izleme uzak uç noktası iletişime dahil edilemez. IP paket başlığındaki hedef IP adresi, noktadan noktaya iletişim için tek bir cihaza ait olmalıdır. Bu problem, uygulama katmanında üçüncü uzak noktalara yönlendirme yapılarak çözülebilir. Birçok uygulama katmanı protokolü, taşıma katmanındaki bir protokole bağlıdır. Bu da gelecek kullanımları kısıtlayabilir. Örneğin, QUIC protokolü, TCP'nin yerini aldığını varsayalım. Artık TCP implementasyonlarının ortadan kalktığını varsayalım. Bu durumda, düzinelerce TCP tabanlı protokolün yeni bir sürümle QUIC tabanlı olması gerekecektir. Bu yüzden alt protokollerden soyutlanmak, gelecek kullanımlar için önemlidir. Birden çok protokol kullanmak için birden çok iletişim arabirimi oluşturulmalıdır. Ancak bir protokol, çoklu alt katman protokol ile kullanılabilir olma özelliğine sahip ise, tek bir iletişim arabirimi yeterli olacaktır. Bu çalışmada, mevcut protokollerin, bu sorunları ne kadar çözdüğüne dair veriler toplandı. Bu sorunları çözen özellikler ile mevcut protokolleri kullanarak bir tablo oluşturuldu. Diğer uygulama katmanı protokollerinin tüm bu özellikleri desteklemediği görülmektedir. Bu nedenle, bu özellikleri sağlayan yeni bir protokole ihtiyaç vardır. Bu protokolün adı mesajlaşma kontrol protokolüdür (MCP). MCP'nin hedeflediği kullanım alanı daha çok yerel ağ iletişimleridir. MCP, daha çok yerel ağ iletişimleri, asenkron iletişimler, non-stateless iletişimler ve gömülü sistemlerde kullanılabilecek özelliklere yoğunlaşmıştır. MCP'nin alt katman protokollerinden bağımsız olması için ve çoklu alt protokollerle kullanılabilmesi için MCP'nin iki bileşeni vardır: MCP Adaptörü ve iletişim arayüzü. MCP Adaptörü, MCP'nin ön koşullarını sağlamak için gereklidir. Alt protokollerin işlevlerini kullanmak için iletişim arayüzü gereklidir. Böylece MCP alt protokollerden bağımsız hale gelir ve birden fazla alt protokol ile kullanılabilir. MCP'de iki mesaj sınıfı vardır: MCP Standart Mesajı, MCP Uygulama Mesajı. MCP, MCP standart mesajları olarak adlandırılan, uygulama kodundan bağımsız yerleşik mesajlara sahiptir. 5 tür standart mesaj vardır: El Sıkışma Mesajı, Kalp Atışı Mesajı, Rol Başvuru Mesajı, Abone Olma Mesajı, Abonelikten Çıkma Mesajı. İstemciler, kullanıcı tanımlı mesajların yapılarını el sıkışma istek mesajı ile JSON formatında gönderir. Böylece uç noktaların mesaj uyumlulukları kontrol edilir. Sunucu, endianness tipini el sıkışma yanıt mesajı ile gönderir. İstemci, sunucunun endianness tipini öğrenir. İstemci ve sunucunun endianness türleri farklıysa, istemci verilerin bayt sıralamasını otomatik olarak değiştirir. Bağlantının canlı olup olmadığını tespit etmek için periyodik olarak kalp atışı mesajı gönderilir. Bir istemci, bir mesaja abone olmak için ya da bir mesajın aboneliğinden çıkmak için Abone Olma Mesajı ve Abonelikten Çıkma Mesajını kullanır. MCP uygulama mesajları, uygulama kodunda tanımlanan mesajlardır. Dört tür uygulama mesajı vardır: İstek-Yanıt Mesajı, Olay Mesajı, Başlangıç Mesajı, Rapor Mesajı. İstek-yanıt mesajları için, yalnızca ilgili istek mesajı alındığında ilgili yanıt mesajı oluşturularak iletişim sağlanır. Olay mesajları, bir olayın tetiklenmesi ile iletilir. Olay mesajları tüm bağlı abone istemcilerine gönderilir. Başlangıç mesajı, aslında bağlantı kurulduğunda tetiklenen bir olay mesajıdır. Rapor mesajı, aslında zamana göre tetiklenen bir olay mesajıdır. Yetkilendirme için rol tabanlı erişim kontrol yöntemi kullanılır. İstemcilerin MCP bağlantısında rolleri vardır. İstemcilerin rolleri, mesajlaşma arayüzündeki mesajların erişilebilirliğini belirler. Sunucu, her mesaj için hangi istemci rollerinin erişebileceğini belirler. Rollerin istemcilere atanmasını ise, admin rolündeki istemci gerçekleştirir. Noktadan noktaya iletişimde mesajları izlemek isteyen istemcilerin rolü, izleme rolüdür. İzleyici rolü, iletilerin erişilebilirliğinden bağımsızdır. Noktadan noktaya iletişimdeki tüm mesajlar monitör istemcisine iletilir. İzleme istemcisi, iletişime katılmak için bir bağlantı isteği gönderir. Monitör, bağlantı kurma aşamasında el sıkışma mesajı ile mesaj yapılarını alır ve iletişimdeki ikili verilerin metin karşılıklarını öğrenir. Böylece veriler ikili olarak iletilse de, metin olarak görüntülenebilir. Uygulama katmanında oluşturulan MCP protokolü, mesajlaşma problemlerini protokol kodunda çözerek problemlerin çözümünü standardize eder. Diğer uygulama katmanı protokolleri, MCP'nin çözdüğü tüm sorunları çözemez. Bu nedenle, MCP fark yaratır. MCP kullanılırsa, bu çalışmada belirtilen çözümlerin uygulama kodunda olmasına gerek kalmaz. Böylece uygulama kodunun karmaşıklığı azaltılmakta ve mesajlaşma özelliklerinde oluşabilecek hatalar ortadan kaldırılmaktadır. MCP sadece mesajlaşma için birçok özellik sunmakla kalmaz, aynı zamanda performansa da önem verir. Performans için, MCP dinamik başlık boyutunu kullanır ve MCP ikili protokoldür. MCP, temel mesajlaşma problemlerine odaklandığı ve performansı önemsediği için yerel ağların yanında IoT'ye de uygulanabilir. Gelecekte IoT alanında MCP'nin kullanılabilmesi için analizler yapılabilir. Sonuç olarak, MCP yenilikçi temel mesajlaşma özellikleri sağlar, bu özellikleri standardize ederek hata olasılığını azaltır ve uygulama kodunun karmaşıklığını azaltır.
  • Öge
    Occlusion robust and aware face recognition
    (Graduate School, 2023-05-25) Erakın, Mustafa Ekrem ; Ekenel, Hazım Kemal ; 504201532 ; Computer Engineering
    Occluded faces, due to accessories such as sunglasses and face masks, present a challenge for current face recognition systems. This thesis provides a comprehensive exploration of the issues caused by occlusions, particularly upper-face and lower-face obstructions, in real-world scenarios. The increased prevalence of sunglasses and face masks, the latter due to the COVID-19 pandemic, has amplified the importance of addressing these problems. In this thesis, the Real World Occluded Faces (ROF) dataset is gathered, a collection of faces experiencing both upper and lower face occlusions, serving as a critical resource for this area of study. Contrary to synthetic occlusion data, the ROF dataset provides an authentic representation of the issue, which our benchmark experiments have shown to be a significant impediment for even the most sophisticated deep face representation models. These models, while highly effective on synthetically occluded faces, exhibit substantial performance degradation when tested against the ROF dataset. This research comprises two distinct, yet interconnected sections. The first stresses the vital role of real-world data for the design and refinement of occlusion-robust face recognition models. Our experiments demonstrate the increased challenges posed by real-world occlusions in comparison to their synthetic counterparts. This insight allows us to gauge the performance and limitations of various model architectures under different occlusion conditions. The second section presents a novel, occlusion-robust, and occlusion-aware face recognition system, designed to increase performance on occlusions caused by sunglasses and masks, with minimal impact on generic face recognition performance. The system incorporates an occlusion-robust face recognition model, an occlusion-aware model, and an innovative layer integrating the outputs of these models to minimize occlusion effects. This unique configuration ensures the system's resilience to occlusions, focusing less on occluded regions and more on overall facial recognition. This thesis provides a thorough investigation of the challenges presented by occluded face recognition and proposes an innovative solution for the same. It underscores the necessity of utilizing real-world data for developing robust face recognition models and introduces a novel occlusion-aware face recognition system. This work has the potential to significantly enhance the performance of occluded face recognition methods in various real-world scenarios.
  • Öge
    Çapraz e-ticaret pazarlarında hibrit öneri sistemi
    (Lisansüstü Eğitim Enstitüsü, 2023-08-04) Köse, Emre ; Yaslan, Yusuf ; 504181559 ; Bilgisayar Mühendisliği
    Öneri sistemleri, film, müzik, e-ticaret ve diğer çeşitli platformlarda, çeşitli algoritmalar kullanarak kullanıcıların ihtiyaçlarına uygun ürünlerin tavsiye edilmesini amaçlamaktadır. Bu algoritmalar genellikle kullanıcı-öğe temsillerini elde ederek öneri yapmaktadır. Çalışmalar başlangıçta matris çarpanlarına ayırma ile ilerlerken, daha sonra hem işbirlikçi hem de içerik tabanlı önerilerde farklı bellek veya model tabanlı yaklaşımlar geliştirilmiş ve geliştirilmeye devam etmektedir. Çapraz pazar öneri problemi sosyal medya, e-ticaret uygulamaları ve diğer çevrimiçi platformlarda ortaya çıkmış, farklı kaynak pazarın/pazarların verilerini kullanarak, hedef pazar olarak adlandırılan kısıtlı veri kümesinde kullanıcılara öneri amaçlayan yeni bir çalışma alanı olarak ifade edilebilir. Veriden öğrenme aşamasında dikkat edilmesi gereken bazı noktalar bulunmaktadır. Kaynak pazarların verisinden öğrenilen ve optimize edilen modeller, hedef pazarın davranışları dikkate alınmadan uygulanırsa sorunlu sonuçlar ortaya çıkabilmektedir. Örneğin giyim kategorisinin diğer kategorilere göre daha yoğun kullanıldığı bir ülke düşünelim. Bu ülkenin ortalama sıcaklığı hedef pazardan çok daha yüksekse, kaynak pazarda standart pantolon alan bir müşteriye tişört önermek mantıklı olabilir ancak bu hedef pazarda alakasız olabilir. Bu nedenle verilerden öğrenme, her iki pazardaki dağılımları ve yanlılıkları dikkate alabilen bir kapsamda olmalıdır. Çapraz pazar öneri sistemleri son yıllarda ortaya çıkmış yeni sayılabilecek bir konu olarak ifade ediliyor olsa da bahsi geçen yöntemler burada farklı şekillerde çözüm olarak kullanılabilmektedir. Literatürde, FOREC algoritması bu alanda hem getirdiği çözüm hem de sağladığı açık kaynak veri kümesi ile önemli bir çalışma olarak yer almaktadır. Pazar adaptasyonu ve meta-öğrenme kavramları üzerinde ilerlenerek, 2021 yılında yayınlanan Pazarlar Arası Ürün Önerisi araştırmasında geliştirilen çoklu ağ yapısına sahip algoritma, XMarket ismiyle 18 yerel pazarın, yani ülkenin, 16 farklı kategorideki kullanıcı-öğe ikililerini ve skorlarından oluşan veri kümesini de içermektedir. Algoritma içinde ilk olarak GMF, MLP ve NMF modellerini kullanarak pazar-bağımsız, yani kaynak ve hedef pazar verisinin birlikte kullanıldığı bir eğitim gerçekleştirilir. Bu adımda buna ek olarak MAML çerçevesi ile few-shot öğrenme tekniğini de kullanır. İkinci aşamada ise pazara-özel olarak ifade edilen sadece hedef pazar verisi ile ekstra MLP katmanları eğitilerek FOREC sistemi eğitimi tamamlanmış olur. Yapay sinir ağları milyonlarca parametre ile ürün-kullanıcı çiftleri ile beslenerek, benzerliklerini anlayabileceğimiz ve karşılaştırabileceğimiz temsiller elde edebiliyor olsa da başlangıç noktasında her bir veri örneğini, örneğin kullanıcıları (veya ürünleri) fiziksel manada yakınlıklarını temsil eden bir yapıda değildir. Bu noktada, elimizdeki veriyi kullanıcı ve ürünlerin etkileşim halinde olduğunu da düşünerek, bir çizge ağı olarak temsil etmek, bağlama farklı bir mimari ve öğrenme yöntemi olarak girebilir. Evrişimli çizge ağları, komşu birleştirme yöntemini sadeleştirilmiş bir şekilde kullanarak, derin sinir ağlarının ya da few-shot öğrenme yönteminin mimari olarak öğrenmesi mümkün olmayan farklı derinliklerdeki komşu düğüm ilişkilerinin kullanımıyla birçok pazar verisinde, tek başına diğer yaklaşımların üstünde bir performans göstererek başarılı sonuçlar alabilmektedir. Bu çalışmada çapraz marketler için geliştirilen öneri sistemi çizge yapısını kullanmaktadır. Hafif Çizge Evrişimli Ağı (LGCN) yapısı, FOREC çalışmasında olduğu gibi pazar-bağımsız ve pazara-özel adımlarla eğitilmiştir. Bu iki aşama arasında temsil aktarımını uygulayarak geliştirdiğimiz sistem daha sade bir eğitim akışından oluşmaktadır. Eğitimin ilk adımında kaynak ve hedef pazar verisindeki ikililerle oluşturulan çizge ağı yine bu iki pazarın verisiyle eğitilmiştir. Bu aşamadaki eğitim sonrası kaydedilen kullanıcı ve ürün temsilleri, ikinci adımda yeni çizge ağı oluşturulurken yeni temsillerin yarısının başlangıç noktası olarak kullanılmıştır. Temsilin diğer parçası ise pazara-özel öğrenime odaklanabilmesi için bu adımda belli bir dağılımla rastlantısal olarak başlatılmıştır. Çalışmamızda test aşamasından önce, eğitimi tamamlanan çizge ağı ile farklı pazar verilerinin ilişkilerini ve potansiyel iyileştirme noktalarını keşfedebilmek için, doğrulama verisi ile ilinti gösterebilecek farklı metriklerin incelemesi yer almaktadır. Bu metrikler aşağıda listelenmiştir. - Kullanıcıların eğitim verisindeki ürünlerine verdiği ortalama puan değeri - Kullanıcının hedef pazar eğitim kümesinde birinci dereceden kaç ürün ile etkileşimde olduğu - Kullanıcıların kaynak ve hedef eğitim kümelerindeki ikinci dereceden kaç ikiliye sahip oldukları - Derece Merkezliliği (Degree Centrality) - Yakınlık Merkezliliği (Closeness Centrality) - Düğüm Fazlalık Katsayısı (Node Redundancy Coefficient) - Kümeleme Katsayısı (Clustering Coefficient) Görüldüğü üzere bu değerler arasında ham veriden çıkarılabilen temel istatistik değerlerinin hem de iki-parçalı çizge oluşumu sonrası çıkarılabilen metrikler bulunmaktadır. Bu aşamadaki sonuçlardan elde ettiğimiz çıkarım, kullanıcıların bireysel olarak nDCG skorlarının iki-parçalı çizgeden elde edilen Düğüm Fazlalık Katsayısı ve Kümeleme Katsayısı değerlerinin, diğerlerine oranla daha fazla ilintiye sahip olduğudur. Çalışmamızın detayında bu ilinti değerlerinin gelecek çalışmalarda nasıl kullanılabileceği ile ilgili fikirlere yer verilmiştir. Deney sonuçları yedi farklı modelin sonuçlarını içermektedir. Bunların beş tanesi referans araştırması olarak düşündüğümüz FOREC çalışmasında da yer alan sonuçların bizim benzer şekilde uygulamamız sonrası elde ettiğimiz sonuçlardır. Diğer iki model ise bu problem için geliştirdiğimiz sistemin ilk adımındaki pazar-bağımsız adımın sonucu, diğeri ise iki-aşamanın eğitimi sonrası elde ettiğimiz nihai hibrit LGCN model sonucudur. Bahsedilen sonuçlar pazarların ikili olarak eğitimini ve sonucunu içeren deneylerdir. Yani, FOREC çalışması yedi hedef pazarı üzerinden sonuçları her bir pazar için geriye kalan diğer altı pazarı tekli olarak kaynak pazar olarak kullanır ve eğitimlerini buna göre gerçekleştirerek sonuçlarını alır. Biz de referans noktası olarak düşündüğümüz FOREC çalışmasına benzer şekilde eğitimlerini ilerlettiğimiz sistemimizde, bu hedef pazarların içinden seçtiğimiz dört tanesini alarak ilerledik. Bunlar Almanya, Japonya, Meksika ve İngiltere pazar verileridir. Buna ek olarak Amerika pazarının verisi sadece kaynak veri olarak deneylerde yer almıştır. İki aşamalı yaklaşımımız ile farklı hedef pazarlar için %5 ve %8'lik bir aralıkta FOREC'in tüm sonuçlarından daha iyi sonuçlar elde ettiğimiz gözlemlenmiştir. Buna ek olarak, ilk adımdan sonra uyguladığımız pazara-özel eğitimin sonuçların iyileşmesinde %1 ile %2 oranında katkı sağladığı açığa çıkmıştır. Sonuç olarak, bu çalışmada çapraz pazarlar için iki aşamalı çizge sinir ağı ile öğrenilen model önerilmiş ve başarımları bu alanda yüksek sonuç verdiği gözlemlenen FOREC algoritması ile karşılaştırılmıştır. Önerilen model farklı hedef pazarlarında nDCG@10 değerlendirme metriği kullanıldığında FOREC algoritmasından daha iyi sonuçlar vermektedir.
  • Öge
    Generalized multi-view data proliferator (gem-vip) for boosting classification
    (Graduate School, 2022-08-08) Çelik, Mustafa ; Rekik, Islem ; 504131531 ; Computer Engineering
    Multi-view network representation revealed multi-faced alterations of the brain as a complex interconnected system, particularly in mapping neurological disorders. Such rich data representation maps the relationship between different brain views which has the potential of boosting neurological diagnostic tasks. However, multi-view brain data is scarce and generally is collected in small sizes. Thus, such data type is broadly overlooked among researchers due to its relatively small size. Despite the existence of data proliferation techniques as a way to overcome data scarcity, to the best of our knowledge, multi-view data proliferation from a single sample has not been fully explored. Here, we propose to bridge this gap by proposing our GEneralized Multi-VIew data Proliferator (GEM-VIP), a framework aiming to proliferate synthetic multi-view brain samples from a single multi-view brain to boost multi-view brain data classification tasks. For the given Connectional Brain Template (i.e., represents an approximation of brain graphs that captures the unique connection shared by a population's subjects), we set out the proliferate synthetic multi-view brain graphs using the inverse of multi-variate normal distribution (MVND). However, one needs two crucial components, which are the mean an the covariance of a given population. As such, first, our proposed GEM-VIP framework obtains a population-representative tensor (i.e., drawn from the prior CBT) which can be mathematically regarded as a mean of the population. Second, drawing inspiration from the genetic algorithm paradigm our proposed GEM-VIP learns the covariance matrix of the population using the given CBT. Lastly, it proliferates synthetic samples using the earlier obtained representative tensor and created covariance matrix of the population on the MVND equation. We evaluate our GEM-VIP against several comparison methods. The results show that our framework boosts the multi-view brain data classification accuracy of AD/ lMCI and eMCI/ normal control (NC) datasets. In short, our GEM-VIP method boosts the diagnoses of the neurological disorders.
  • Öge
    Türkçe zamansal ifadelerin etiketlenmesi ve normalleştirilmesi
    (Lisansüstü Eğitim Enstitüsü, 2021-07-29) Uzun, Ayşenur ; Tantuğ, Ahmet Cüneyd ; 504161504 ; Bilgisayar Mühendisliği ; Computer Engineering
    Yapısal olmayan metinden bilgi çıkarma alanında yapılan çalışmalar, doğal dil işleme alanında önemli bir yere sahiptir. Kelime kökü bulma, kelime sözcük türü etiketleme, kelime bağımlılık yapı ağacı çıkarım gibi yapısal çalışmaların yanı sıra, son senelerde bilgi çıkarım alanında yapılan çalışmalar önem kazanmıştır. Metin içerisinde tespit edilen semantik bilginin, yapısal bir forma normalleştirilmesi, bilginin çeşitli doğal dil işleme çalışmalarında etkili biçimde kullanılabilmesi için önem arz etmektedir. Zamansal ifade işaretleme ve normalizasyon çalışması, bilgi çıkarım sistemleri içerisinde önemli bir yere sahiptir. Metin içerisinde geçen olaylar hakkında zaman, süre, sıklık, aralık gibi bilgi taşıyan ifadelere (ör. bugün, iki ay sonra, 19 Temmuz'da, her hafta) zamansal ifadeler denilmektedir. Zamansal ifadelerin tespit edilmesi ve belirtilen standarda göre normalize edilmesi başta İngilizce, İspanyolca, Almanca, Çince, Arapça gibi dillerde yaygın bir araştırma alanıdır. Literatürde, bu diller için birçok zamansal ifade işaretleme ve normalizasyon sistemleri sunulmuş, manuel veya otomatik yöntemler ile zamansal ifadeleri işaretlenmiş veri setleri yayınlanmıştır. Sunulan bu sistemlerin, veri setleri üzerinde değerlendirilmesi için semantik değerlendirme seminerleri düzenlenmiştir. Bilgimiz dahilinde Türkçe literatüründe, bu zamana kadar herhangi bir zamansal ifadeleri işaretlenmiş, yapısal bir veri bankası yayınlanmamıştır. Ayrıca, baştan sona Türkçe zamansal ifade tespit ve normalizasyon görevlerini gerçekleştiren bir sisteme, literatür incelemelerimiz sırasında rastlanmamıştır. Bu tez çalışmasında, Türkçe zamansal ifade çıkarım ve normalizasyon alanında temel bir çalışma sayılabilecek, ilk uçtan uca ve Türkçe biçimbilimsel yapısının da dahil edildiği, kural tabanlı zamansal ifade etiketleme ve normalizasyon sistemi geliştirilmiştir. Sistemin geliştirilmesi ve test aşamasında kullanılmak üzere, 109 haber metninde yer alan zamansal ifadeler manuel yöntemle işaretlenmiştir. Tez kapsamında geliştirilen bu veri seti, gelecek araştırma çalışmalarında kullanılması amacı ile ortak kullanıma açılmıştır. Geliştirlen bu sistem, yayınlanan test veri seti üzerinde çalıştırılmıştır. Sistemin performansı, zamansal ifade etiketleme çalışmalarında kullanılan doğruluk (precision) ve tutarlılık (recall) formülleri kullanılarak ölçülmüştür. Metin içerisinde geçen zamansal ifadeler %89 F1 skoru başarısı ile tespit edilirken, doğru tespit edilen ifadelerin "type" ve "value" niteliklerinin normalizasyonunda sırasıyla %89 ve %88 F1 başarısı elde edilmiştir. Gelecek çalışmalarda, hata analizi ve sistem kısıtlamaları bölümlerinde bahsedilen eksiklikler ve tavsiyler göz önünde bulundurularak, daha yüksek başarımlı Türkçe zamansal ifade işaretleme ve normalizasyon çalışmaları gerçekleştirilebilir.