Gardner Tipi Denklemler İçin Whitham Modülasyon Teorisi
Gardner Tipi Denklemler İçin Whitham Modülasyon Teorisi
Dosyalar
Tarih
2021
Yazarlar
Aslanova, Günay
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Lisansüstü Eğitim Enstitüsü
Özet
Dispersif şok dalgaları, teorideki kısaltmayla DSW'lar, okyanuslardan atmosfere, optik fiberlere kadar birçok uygulamada görülür. Bu dalgaları incelemek için dalga teorisindeki en önemli araştırmalardan biri olarak görülen Whitham Modülasyon Teorisi (WMT) geliştirilmiştir. Bu teori ile dalga trenlerinin yavaş modülasyonunun analizi yapılabilmektedir. Modülasyon teorisi, genlik, frekans ve dalga sayısı kavramlarının zamandaki yavaş değişimini içermektedir. Bu teori ile yavaş değişkenler için kısmi diferansiyel denklemler elde edilir. "Whitham modülasyon denklemleri" veya "Whitham sistemi" olarak adlandırılan bu denklemler, oldukça zengin bir matematiksel yapıya sahiptir ve aynı zamanda dispersif şok dalgalarının tanımlanması için güçlü bir analitik araçtır. Bu tez çalışmasında ilk olarak, (2+1) boyutlu Gardner-KP denklemi için bir benzerlik dönüşümü uygulanmasıyla (1+1) boyutlu silindirik Gardner (cG) denklemi elde edilmiştir. Elde edilen bu denklem için dispersif şok dalgası çözümünü betimleyen Whitham sistemi, tanımlanan uygun Riemann değişkenleri cinsinden türetilmiştir. cG denkleminin Whitham sisteminin sayısal çözümleriyle elde edilen DSW çözümü (asimptotik çözüm) ve cG denkleminin doğrudan sayısal çözümü karşılaştırılarak aralarında uyumlu sonuçlar oluştuğu gözlemlenmiştir. Bu çalışmada incelenen ikinci problemde, (3+1) boyutlu Gardner-KP denklemi için benzer analiz yapılarak uygun başlangıç koşulu ile bu denklem (1+1) boyutlu küresel Gardner (sG) denklemine indirgenmiştir. İndirgenen denklem için WMT uygulanarak modülasyon denklemleri elde edilmiştir. Whitham sisteminin sayısal çözümlerinin bulunması sonucunda asimptotik çözümle sG denkleminin sayısal simülasyonları karşılaştırılarak aralarında tutarlılık olduğu gözlemlenmiştir. Böylece, uygun koşullar altında yüksek boyutlu denklemler için de DSW analizinin başarılı sonuçlar verdiği görülmüştür.
Dispersive shock waves, theoretically abbreviated DSWs, are seen in many applications, from the oceans to the atmosphere, to optical fibers. Whitham Modulation Theory (WMT), which is seen as one of the most important researches in wave theory, was developed to study these waves. With this theory, the slow modulation of wave trains can be analyzed. Modulation theory involves the slow change in time of the concepts of amplitude, frequency and wavenumber. With this theory, partial differential equations are obtained for slow variables. These equations, called "Whitham modulation equations" or "Whitham system", have a very rich mathematical structure and are also a powerful analytical tool for the description of dispersive shock waves. In this thesis, firstly, the (1+1) dimensional cylindrical Gardner (cG) equation is obtained by applying a similarity reduction for the (2+1) dimensional Gardner-KP equation. The Whitham system describing the dispersive shock wave solution for this obtained equation is derived in terms of the appropriate Riemann variables. By comparing the DSW solution (asymptotic solution) obtained by the numerical solutions of the Whitham system of the cG equation and the direct numerical solution of the cG equation, it was observed that compatible results were obtained between them. In the second problem examined in this study, a similar analysis was made for the (3+1) dimensional Gardner-KP equation, and this equation was reduced to the (1+1) dimensional spherical Gardner (sG) equation with the appropriate initial condition. The modulation equations were obtained by applying WMT for the reduced equation. As a result of finding the numerical solutions of the Whitham system, the numerical simulations of the asymptotic solution and the sG equation were compared and it was observed that there was consistency between them. Thus, it has been seen that DSW analysis gives successful results for high-dimensional equations under suitable conditions.
Dispersive shock waves, theoretically abbreviated DSWs, are seen in many applications, from the oceans to the atmosphere, to optical fibers. Whitham Modulation Theory (WMT), which is seen as one of the most important researches in wave theory, was developed to study these waves. With this theory, the slow modulation of wave trains can be analyzed. Modulation theory involves the slow change in time of the concepts of amplitude, frequency and wavenumber. With this theory, partial differential equations are obtained for slow variables. These equations, called "Whitham modulation equations" or "Whitham system", have a very rich mathematical structure and are also a powerful analytical tool for the description of dispersive shock waves. In this thesis, firstly, the (1+1) dimensional cylindrical Gardner (cG) equation is obtained by applying a similarity reduction for the (2+1) dimensional Gardner-KP equation. The Whitham system describing the dispersive shock wave solution for this obtained equation is derived in terms of the appropriate Riemann variables. By comparing the DSW solution (asymptotic solution) obtained by the numerical solutions of the Whitham system of the cG equation and the direct numerical solution of the cG equation, it was observed that compatible results were obtained between them. In the second problem examined in this study, a similar analysis was made for the (3+1) dimensional Gardner-KP equation, and this equation was reduced to the (1+1) dimensional spherical Gardner (sG) equation with the appropriate initial condition. The modulation equations were obtained by applying WMT for the reduced equation. As a result of finding the numerical solutions of the Whitham system, the numerical simulations of the asymptotic solution and the sG equation were compared and it was observed that there was consistency between them. Thus, it has been seen that DSW analysis gives successful results for high-dimensional equations under suitable conditions.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2021
Anahtar kelimeler
asimptotik yöntem,
asymptotic method,
doğrusal olmayan mekanik,
nonlinear mechanics,
doğrusal olmayan kuramlar,
nonlinear theories