3D-printed actuator-based beam-steering approach for improved physical layer security in visible light communication

dc.contributor.advisor Ferhanoğlu, Onur
dc.contributor.author Erdem, Mehmet Can
dc.contributor.authorID 504201223
dc.contributor.department Electronics Engineering
dc.date.accessioned 2024-12-19T09:01:14Z
dc.date.available 2024-12-19T09:01:14Z
dc.date.issued 2022-09-05
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2022
dc.description.abstract In this thesis, the design, manufacturing and implementation of a 3D-printed lens scanner-based beam-steering are presented for use in visible light communication (VLC) applications. The scanner, measuring 5 x 5 cm, is designed for low-cost 3D printing with fused deposition modeling using polylactic acid (PLA). The scanning is facilitated through electromagnetic actuation of the lens frame, carrying a conventional 25 mm lens in two nearly orthogonal directions. The serpentine spring that connects the lens frame to the external frame is tailored to offer similar spring constants in the directions of actuation, and minimal (< 1.5 mm) sag due to the mass of the lens. The manufactured actuator was integrated on a miniaturized VLC test-bed (70 cm x 40 cm x 40 cm). Using the test-bed, the applied voltage vs. beam displacement behavior of the actuator was characterized in the lateral plane, and beam-steering on a moving target was demonstrated with face-recognition feedback. The proposed scheme was targeted to offer an improved security measure in VLC through tracking the legitimate receiver (i.e. via face recognition) and using the feedback to steer the focused light onto the targeted device. The joint use of focusing and steering features allows for the legitimate receiver to roam within the room while enjoying the improved secrecy due to focused light. The secrecy capacity for the demonstrated approach was also calculated, which compares favorably to a number of jamming, spatial modulation and beam-forming counterparts. The presented actuator can be used with larger room dimensions, yet up-scaling to larger illumination units will require the use of a lens having a smaller focus to achieve a larger total steering angle. This thesis is composed of five different chapters. The concepts of visible light communication and light fidelity (Li-Fi) are introduced with a thorough literature review in the first chapter, while the techniques used in the thesis are also defined and presented. In the second chapter, the design of the actuator is described through definite computer-aided design (CAD) models and finite element analysis (FEA) simulations, while the experimental setup is also presented. Meanwhile, the demonstrations and the measurement results from the beam-steering operation of the actuator are presented in the third chapter. Then, the discussion section, based on the secrecy improvement through the use of the actuator and the up-scaling of the actuator to real-world dimensions, is presented in the fourth chapter. Finally, the fifth chapter presents the conclusions and further future work based on the actuator. Also, the details regarding the experiments conducted in Chapter 3, some of the designs of the actuator that were changed in order to obtain the final prototype and some discussion based on the mechanical stress on the actuator caused by the weight of the lens are presented in the Appendix section.
dc.description.degree M.Sc.
dc.identifier.uri http://hdl.handle.net/11527/25875
dc.language.iso en_US
dc.publisher Graduate School
dc.sdg.type Goal 7: Affordable and Clean Energy
dc.sdg.type Goal 9: Industry, Innovation and Infrastructure
dc.subject indoor communication
dc.subject bina içi haberleşme
dc.subject electronic communication
dc.subject elektronik haberleşme
dc.subject optoelectronic
dc.subject optoelektronik
dc.subject three dimensional simulation
dc.subject üç boyutlu simulasyon
dc.subject three dimensional scanne
dc.subject üç boyutlu tarayıcı
dc.title 3D-printed actuator-based beam-steering approach for improved physical layer security in visible light communication
dc.title.alternative Görünür ışıkla haberleşmede geliştirilmiş fiziksel katman güvenliği için 3D baskılı aktüatör tabanlı ışın hüzmesinin yönlendirilmesi tekniği
dc.type Master Thesis
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
504201223.pdf
Boyut:
13.64 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
1.58 KB
Format:
Item-specific license agreed upon to submission
Açıklama