Makine Öğrenmesi Algoritmaları İle Nüfus Tahmini: Türkiye Örneği

thumbnail.default.placeholder
Tarih
2019
Yazarlar
Şahinarslan, Fatih Veli
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Sosyal Bilimler Enstitüsü
Institute of Social Sciences
Özet
Ülkelerin geleceğine dair sosyal, ekonomik, politik ve çevresel kararların daha tutarlı alınabilmesi için ülke nüfusu hakkında bilgi sahibi olunmalıdır. Bu sebeple, büyük maliyetler ile nüfus sayımları yapılmakta ve farklı teknikler ile ülkenin gelecekteki nüfusu tahmin edilmektedir. Bu çalışmada farklı makine öğrenmesi algoritmaları ile nüfus tahmini yapılmıştır. Bunun için altı farklı makine öğrenmesi algoritması seçilmiştir; Light Gradyan Artırma (Light Gradient Boosting, LightGBM), Doğrusal Regresyon, Ridge Regresyon, Üstel Düzeltme yöntemlerinden biri olan Holt-Winters, Bütünleşik Otoregresif Hareketli Ortalama (Autoregressive Integrated Moving Average, ARIMA) ve Prophet tahmin modeli. 262 farklı ülkenin 1960-2017 yılları arasındaki 1595 farklı demografik göstergesi kullanılarak modeller eğitilmiştir. Kullanılan veri seti dünya genelinde demografik göstergeler yayınlayan Dünya Bankası'ndan (World Bank) temin edilmiştir.
The population of the countries should be known to be more consistent with the social, economic, political and environmental decisions regarding the future of them. For this reason, censuses are made with great cost and the future population of the country is estimated with different techniques. In this study, different machine learning algorithms are used to forecast population. This study employed six different machine learning algorithms; Light Gradient Boosting, Linear Regression, Ridge Regression, Holt-Winters, Exponential Autoregressive Integrated Moving Average (ARIMA) and Prophet Prediction Model. Models were trained using 1595 different demographic indicators of 262 different countries between 1960 and 2017.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, 2019
Thesis (M.A.) -- İstanbul Technical University, Institute of Social Sciences, 2019
Anahtar kelimeler
ARIMA modelleri, Doğrusal regresyon modelleri, Regresyon ağaçları, Ridge regresyon, Winters üssel düzeltme tekniği, Üstel düzeltme, ARIMA models, Linear regression models, Regression trees, Ridge regression, Winters exponential smoothing technique, Exponential smoothing
Alıntı